Formatting (2A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com .
This document was produced by using OpenOffice and Octave.

Formatting and Source Coding

Formatting

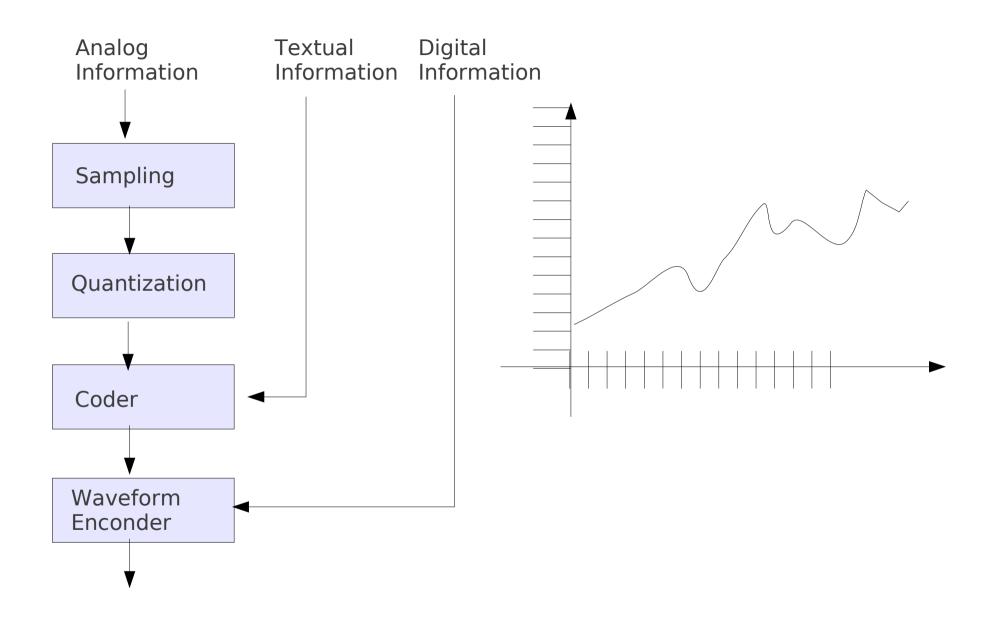
Make the source signal compatible with digital processing

Transmit Formatting

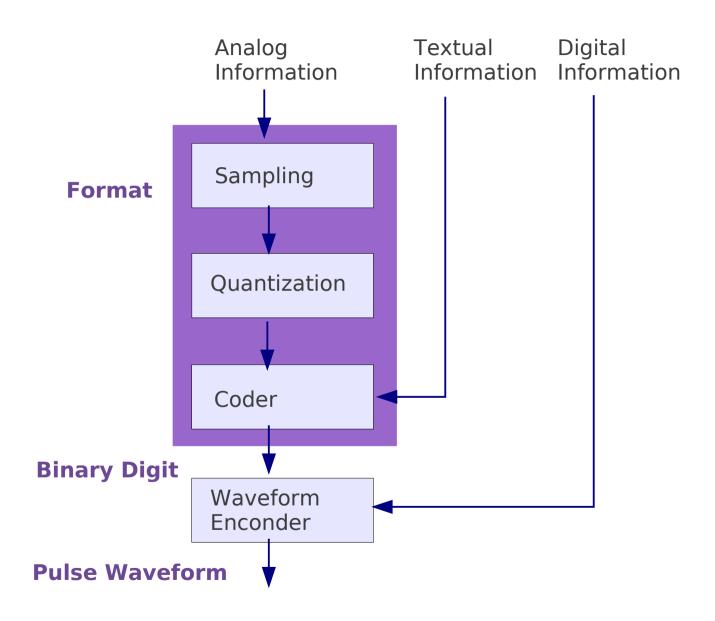
A transformation from source information to digital symbols

Source Coding

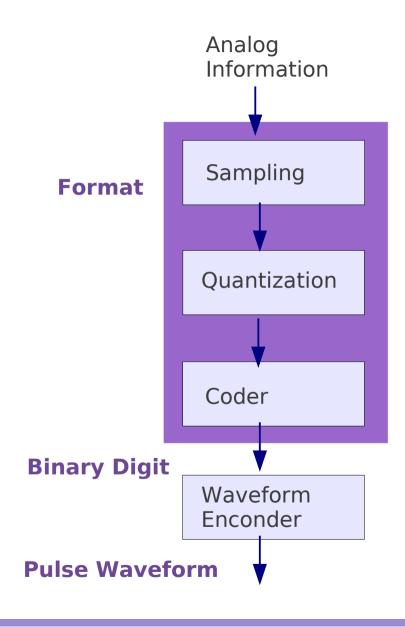
Formatting + Data Compression

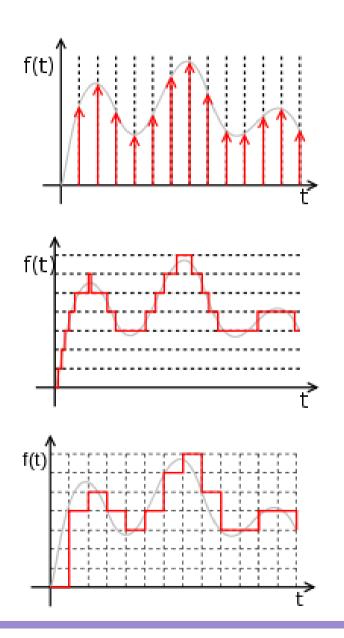

Baseband Signal

From DC up to some finite frequency (< a few MHz)
Transmitted over the cable
Not appropriate to transmit over long distance → Bandpass Mod

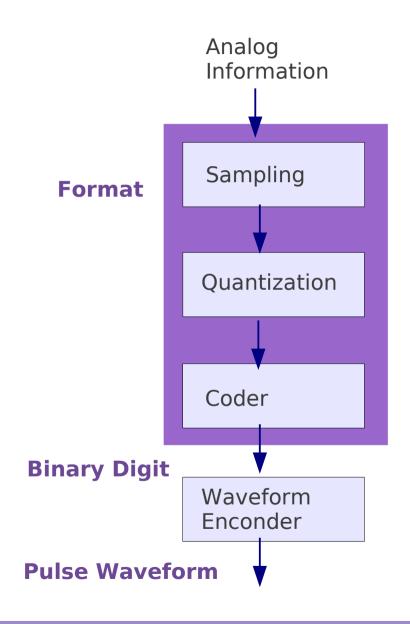

Pulse (Baseband) Modulation

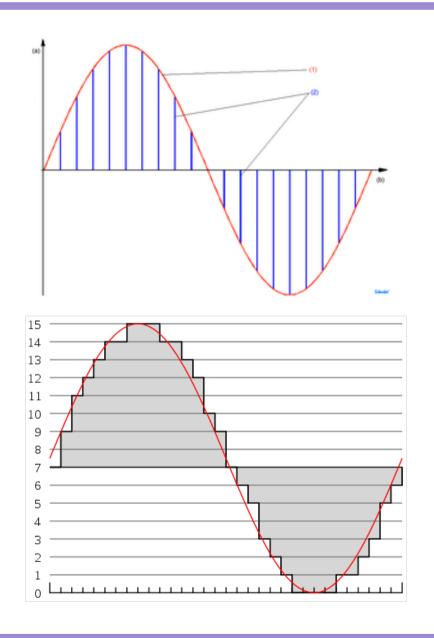
Pulse waveforms are assigned that represent formatted symbols


Energy and Power Spectral Densities (2)



Baseband Signal




Sampling and Quantization

PAM and PCM

8-ary Symbol

T H I N K Message $001010 \ 000100 \ 100100 \ 011100 \ 110100$ 6-bit ASCII $001 \ 010 \ 000 \ 100 \ 100 \ 100 \ 011 \ 100 \ 110 \ 100$ 8-ary digits '(symbols) $s_1(t) \ s_2(t) \ s_0(t) \ s_4(t) \ s_4(t) \ s_3(t) \ s_4(t) \ s_6(t) \ s_4(t)$ 8-ary waveform

Binary Symbol

T H I N K Message

001010 000100 100100 011100 110100 6-bit ASCII

 $0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0$

001010 00010010010001110011, binary digits (symbols)

S₀(t) S₁(t) S₂(t) S₃(t) S₃(t) S₃(t) S₃(t) S₃(t)

binary waveform

Impulse Sampling

Impulse train

$$X_{\delta}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) \qquad \longleftrightarrow \qquad X_{\delta}(f) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} \delta(f - nf_s)$$

Shifting property

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

$$\begin{array}{lll} x_s(t) &=& x(t)x_\delta(t) & & \longleftarrow & X_s(f) &=& X(f) * X_\delta(f) \\ &=& \sum\limits_{n=-\infty}^{+\infty} x(t)\delta(t-nT_s) & &=& X(f) * \left[\frac{1}{T_s}\sum\limits_{n=-\infty}^{+\infty} \delta(f-nf_s)\right] \\ &=& \sum\limits_{n=-\infty}^{+\infty} x(nT_s)\delta(t-nT_s) & &=& \frac{1}{T_s}\sum\limits_{n=-\infty}^{+\infty} X(f-nf_s) \end{array}$$

Natural Sampling

Pulse train

$$x_p(t) = \sum_{n=-\infty}^{+\infty} c_n e^{j2\pi n f_s t} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad c_n = \frac{1}{T_s} sinc(\frac{nT}{T_s})$$

$$\begin{array}{lll} x_s(t) &=& x(t)x_p(t) & & & \longrightarrow & X_s(f) &=& X(f) \, * \, X_p(f) \\ \\ &=& x(t)\sum_{n=-\infty}^{+\infty} c_n e^{j2\pi f_s t} & & & \\ \\ &=& \sum_{n=-\infty}^{+\infty} c_n \big[x(t)e^{j2\pi f_s t}\big] & & \longrightarrow & = \sum_{n=-\infty}^{+\infty} c_n X(f-nf_s) \end{array}$$

11

Sample and Hold

Sampled Pulse train

$$x_p(t) = \sum_{n=-\infty}^{+\infty} c_n e^{j2\pi n f_s t}$$

$$c_n = \frac{1}{T_s} sinc(\frac{nT}{T_s})$$

$$x_s(t) = p(t)*[x(t)x_{\delta}(t)]$$

$$X_s(t) = p(t)*[x(t)x_s(t)]$$
 \longrightarrow $X_s(f) = X(f) * X_p(f)$

$$= p(t) * \left[x(t) \sum_{n=-\infty}^{+\infty} \delta(t-nT_s) \right]$$

$$= p(t) * \left[x(t) \sum_{n=-\infty}^{+\infty} \delta(t-nT_s) \right] \qquad = P(f) \left[X(f) * \left[\frac{1}{T_s} \sum_{n=-\infty}^{+\infty} \delta(f-nf_s) \right] \right]$$

$$= P(f) \left[\frac{1}{T_s} \sum_{n=-\infty}^{+\infty} X(f - n f_s) \right]$$

Sampling Theorem

Uniform Sampling Theorem

A bandlimited signal having no spectral components above $\mathbf{f_m}$ Hz can be determined uniquely by values sampled at *uniform intervals* of $\mathbf{T_c}$ seconds

$$T_s \leq \frac{1}{2f_m} \qquad f_s = \frac{1}{T_s}$$

Upper limit of T

$$f_s \ge 2f_m$$

Lower limit of **f**_s

Nyquist Criterion

Nyquist Rate $f_s = 2 f_m$

Ensemble Average

Time Averaging and Ergodicity

Time Averaging and Ergodicity

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] B. Sklar, "Digital Communications: Fundamentals and Applications"