General Vector Space (3A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Vector Space

V : non-empty set of objects
defined operations:

addition	$\mathbf{u}+\mathbf{v}$
scalar multiplication	$k \mathbf{u}$

if the following axioms are satisfied
for all object $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalar k, m
V : vector space
objects in V : vectors

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Test for a Vector Space

1. Identify the set V of objects
2. Identify the addition and scalar multiplication on V
3. Verify $\mathbf{u}+\mathbf{v}$ is in V and $k \mathbf{u}$ is in V
closure under addition and scalar multiplication
4. Confirm other axioms.
5. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
6. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
7. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
8. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
9. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
10. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
11. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
12. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
13. $k(m \mathbf{u})=(k m) \mathbf{u}$
14. $1(\mathbf{u})=\mathbf{u}$

Subspace

a subset W of a vector space V

If the subset W is itself a vector space
the subset W is a subspace of V

1. if \mathbf{u} and \mathbf{v} are objects in W , then $\mathbf{u}+\mathbf{v}$ is in W
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in W, then $k \mathbf{u}$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Subspace Example (1)

Subspace Example (2)

Subspace Example (3)

In vector space R^{3}

any one vector	(linearly indep.)	spans	R^{1}	line through 0
any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane through 0
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^{3}	3-dim space

Subspaces of R^{2}
$\{0\}$
R^{1}
line through 0
R^{2}
plane through 0

$$
R^{3}
$$

3-dim space

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{r}_{\mathbf{1}}=\left\{\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\boldsymbol{r}_{2}= \\
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right\}, ~
\end{array} \\
& \boldsymbol{r}_{\boldsymbol{m}}=\left(\begin{array}{llll}
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \\
& \left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)
\end{aligned}
$$

Null Space

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \boldsymbol{A x}=\mathbf{0}
$$

$$
\begin{array}{cc}
\text { NULL Space } \quad R^{n} \text { subspace } & \text { Row Space subspace of } R^{n} \\
=\operatorname{span}\left\{\mathbf{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{n}}\right\} & =\operatorname{span}\left\{\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\} \\
\text { solution space } & \text { Column Space subspace of } R^{m} \\
& =\operatorname{span}\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}, \cdots, \boldsymbol{c}_{\boldsymbol{n}}\right\}
\end{array}
$$

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] D.G. Zill, "Advanced Engineering Mathematics"

