General Vector Space (3A)

Young Won Lim 11/7/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/7/12

Vector Space

V: non-empty set of objects				
defined operations:	addition scalar multiplication	u + v <i>k</i> u		
if the following axioms are satisfied for all object u , v , w and all scalar k, m \lor				
1. if u and v are objects in V , then u + v is in V 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ 4. $0 + \mathbf{u} = \mathbf{u} + 0 = \mathbf{u}$ (zero vector) 5. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = 0$ 6. if <i>k</i> is any scalar and u is objects in V , then <i>k</i> u is in V 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ 9. $k(m\mathbf{u}) = (km)\mathbf{u}$ 10. $1(\mathbf{u}) = \mathbf{u}$				

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then \mathbf{u} + \mathbf{v} is in W

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace Example (1)

In vector space R^2

General (2A) Vector Space

Subspace Example (2)

Subspace Example (3)

In vector space R^3

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any <mark>two</mark> non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^3	3-dim space
	(linearly dep.)	spans	R^3	3-dim space

General	(2A)
Vector S	Space

Row & Column Spaces

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$ROW Space \quad subspace of \quad R^n$$

$$= span\{r_1, r_2, \cdots, r_m\}$$

$$COLUMN Space \quad subspace of \quad R^m$$

$$= span\{c_1, c_2, \cdots, c_n\}$$

$$r_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ r_m = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{m2} & \cdots & a_{mn} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

General (2A) Vector Space

9

Null Space

$$= span\{c_1, c_2, \cdots, c_n\}$$

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [4] D.G. Zill, "Advanced Engineering Mathematics"