Elementary Matrix

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

Backward Phase

Elementary Row Operation

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Elementary Matrix (4A)

Elementary Matrix

Multiplication by an Elementary Matrix

Elementary Matrix (4A)

$$+2x_1 + x_2 - x_3 = 8 (L_1) (+2) +1 -1 +8
-3x_1 - x_2 + 2x_3 = -11 (L_2) (-3) -1 +2 -11
-2x_1 + x_2 + 2x_3 = -3 (L_3) (-2) +1 +2 -3$$

$$\left[\begin{array}{ccccc} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad \left[\begin{array}{ccccc} +2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{array} \right]$$

 $+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = 4 \qquad (\frac{1}{2} \times L_{1})$ $-3x_{1} - x_{2} + 2x_{3} = -11 \qquad (L_{2})$ $-2x_{1} + x_{2} + 2x_{3} = -3 \qquad (L_{3})$ (+1) + 1/2 -3 -1 -2 + 1

+	$1x_1 - $	$+\frac{1}{2}X_{2}$	$-\frac{1}{2}X$	$_{3} = +$	4		(L_1)		+1 +1/2	-1/2	+4	
	$-3x_{1}$	$_{1} - x_{2}$	+2x	$_{3} = -$	11		(L_2)		-3 -1	+2	-11	
	$-2x_{1}$	$+ x_{2}$	+ 2x	₃ = -	3		(L_3)		-2 +1	+2	-3	J
												-
ſ	1	0	0]	ſ	1	0	0	+1 +1/2	-1/2	+4	
	0	1	0			3	1	0	-3 -1	+2	-11	
	2	0	1			0	0	1	-2 +1	+2	-3	
				2.								•
	1	1.	1	1	1		(\mathbf{r})		r			

$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	+1 +1/2 -1/2	+4
$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1$	$(3 \times L_1 + L_2)$	0 +1/2 +1/2	+1
$0x_1 + 2x_2 + 1x_3 = +5$	$(2 \times L_1 + L_3)$	0 +2 +1	+5

$$\begin{array}{c} +1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 & (L_{1}) \\ 0x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} = +1 & (L_{2}) \\ 0x_{1} + 2x_{2} + 1x_{3} = +5 & (L_{3}) \end{array} \qquad \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ 0 & +2 & +1 \\ \end{array}\right) \\ \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right) \qquad \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & +2 & +1 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ 0 & +2 & +1 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ 0 & +2 & +1 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ 0 & +2 & +1 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/2 \\ \end{array}\right) \\ \left(\begin{array}{c} +1 & +1/$$

$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	+1 +1/2 -1/2 +4
$0x_1 + 1x_2 + 1x_3 = +2$	$(2 \times L_2)$	0 (+1) +1 +2
$0x_1 + 2x_2 + 1x_3 = +5$	(L_3)	0 +2 +1 +5

Elementary Matrix (4A)

Elementary Matrix (4A)

$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$		$\left(L_1\right)$		ſ	+1	+1/2	-1/2	+4	
$0x_1 + 1x_2 + 1x_3 = +2$		(L_2)			0	+1	+1	+2	
$0x_1 + 0x_2 - 1x_3 = +1$		(L_3)			0	0		+1	
ſ	1	0	0	ſ	+1	+1/2	-1/2	+4	
	0	1	0		0	+1	+1	+2	
	0	0	-1		0	0		+1	
									1

$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	ſ	+1	+1/2	-1/2	+4
$0x_1 + 1x_2 + 1x_3 = +2$	(L_2)		0	+1	+1	+2
$0x_1 + 0x_2 + 1x_3 = -1$	$(-1 \times L_3)$		0	0	(+1)	-1

Forward Phase

Forward Phase - Gaussian Elimination

$$\begin{array}{c} +1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 & (L_{1}) \\ 0x_{1} + 1x_{2} + 1x_{3} = +2 & (L_{2}) \\ 0x_{1} + 0x_{2} + 1x_{3} = -1 & (L_{3}) \end{array} \qquad \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & +1 & +1 \\ 0 & 0 & +1 \\ \end{array} \right] + 4 \\ 0 & +1 & +1 \\ -1 \end{array} \right]$$

Elementary Matrix (4A)

13

$$\begin{aligned} +1x_{1} + \frac{1}{2}x_{2} + 0x_{3} &= +\frac{7}{2} & (L_{1}) \\ 0x_{1} + 1x_{2} + 0x_{3} &= +3 & (L_{2}) \\ 0x_{1} + 0x_{2} + 1x_{3} &= -1 & (L_{3}) \end{aligned} \qquad \begin{bmatrix} +1 + \frac{1}{2} & 0 & +\frac{7}{2} \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix} \\ \\ \begin{bmatrix} 1 & 0 & +1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} +1 + \frac{1}{2} & 0 & +\frac{7}{2} \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} +1x_{1} + 0x_{2} - 0x_{3} &= +2 & (+1 \times L_{3} + L_{1}) \\ 0x_{1} + 1x_{2} + 0x_{3} &= +3 & (L_{2}) \\ 0x_{1} + 0x_{2} + 1x_{3} &= -1 & (L_{3}) \end{aligned} \qquad \begin{bmatrix} +1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix}$$

 $0x_1 + 0x_2 + 1x_3 = -1 \qquad (L_3)$

Elementary Matrix (4A)

14

Backward Phase

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

Backward Phase

Pulse

Pulse

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"