Elementary Matrix

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
\oplus 2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
\oplus 1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
0 & +2 & +1 & +5
\end{array}\right] \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \quad\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Backward Phase
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & -+1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right]$

Elementary Row Operation

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Elementary Matrix

Identity Matrix
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Multiplication by an Elementary Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 6 & 9 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 13 & 18 \\
7 & 8 & 9
\end{array}\right]}
\end{aligned}
$$

Gauss-Jordan Elimination - Step 1

$$
\left.\begin{array}{ll}
+2 x_{1}+x_{2}-x_{3}=8 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{3}\right)
\end{array}\left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right]\right)
$$

Gauss-Jordan Elimination - Step 2

$$
\begin{aligned}
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \quad\left(L_{1}\right) \\
& -3 x_{1}-x_{2}+2 x_{3}=-11 \quad\left(L_{2}\right) \\
& -2 x_{1}+x_{2}+2 x_{3}=-3 \quad\left(L_{3}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right]} \\
& \begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & & \left(L_{1}\right) \\
0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3} & =+1 & & \left.3 \times L_{1}+L_{2}\right) \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5 & & \left.2 \times L_{1}+L_{3}\right)
\end{aligned} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
\hline 0 & +1 / 2 & +1 / 2 & +1 \\
\hline 0 & +2 & +1 & +5
\end{array}\right]
\end{aligned}
$$

Gauss-Jordan Elimination - Step 3

$$
\begin{aligned}
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& 0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=+1 \\
& 0 x_{1}+2 x_{2}+1 x_{3}=+5 \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
0 & +2 & +1 & +5
\end{array}\right]} \\
& \begin{array}{rll}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \left(2 \times L_{2}\right) \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5 & \left(L_{3}\right)
\end{array} \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 4

$$
\begin{aligned}
& \begin{array}{rlr}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \left(L_{2}\right) \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5 & \left(L_{3}\right)
\end{array} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right] \quad\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \\
& \begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}-1 x_{3} & =+1 & & \left.-2 \times L_{2}+L_{3}\right)
\end{aligned} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 5

Forward Phase

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline 0 & +1 / 2 & +1 / 2
\end{array}+4\right. \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$
\begin{aligned}
& \begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1 & & \left(L_{3}\right)
\end{aligned} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right] \\
& \begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3} & =+\frac{7}{2} \\
0 x_{1}+1 x_{2}+0 x_{3} & =+3 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1
\end{aligned} \quad\left(+\frac{1}{2} \times L_{3}+L_{1}\right) \quad\left(-1 \times L_{3}+L_{2}\right) \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 7

$$
\begin{aligned}
& \begin{array}{rlr}
+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3} & =+\frac{7}{2} & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+0 x_{3} & =+3 & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1 & \left(L_{3}\right)
\end{array} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & +1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \\
& \begin{aligned}
+1 x_{1}+0 x_{2}-0 x_{3} & =+2 \\
0 x_{1}+1 x_{2}+0 x_{3} & =+3 \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1
\end{aligned} \quad\left(+1 \times L_{3}+L_{1}\right) \quad\left(L_{2}\right) \quad\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Backward Phase

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
\oplus 2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
\oplus 1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
0 & +2 & +1 & +5
\end{array}\right] \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \quad\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Backward Phase
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & -+1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right]$

Pulse

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"

