Exploratory Factor Analysis

Lecture 5
Survey Research & Design in Psychology
James Neill, 2012

Overview

- 1. What is factor analysis?
- 2. Assumptions
- 3. Steps / process
- 4. Examples
- 5. Summary

2

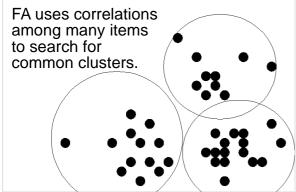
Readings: EFA

- 1. Fabrigar et al. (1999). Evaluating the use of exploratory factor analysis in psychological research. [article]
- 2. Tabachnick & Fidell (2001).
 Principal components and factor analysis.
 [chapter]

Available on e-reserve

What is factor analysis?

- 1. What is factor analysis?
- 2. Purpose
- 3. History
- 4. Types
- 5. Models


4

A galaxy is like a "factor" within the universe.

explained by some underlying factors (due to the co-relations (or clustering together)) of many variables.

Conceptual model of factor analysis

Factor analysis...

- is used to identify clusters of intercorrelated variables (called 'factors').
- is a *family* of multivariate statistical techniques for examining correlations amongst variables.
- empirically tests theoretical data structures.
- is commonly used in psychometric instrument development.

Purposes

There are two main applications of factor analytic techniques:

- **1. Theory development**: Detect structure in the relationships between variables, that is, to classify variables.
- **2. Data reduction**: Reduce the number of variables to a smaller number of factors.

8

9

Purposes: Theory development

- Investigates the underlying correlational pattern shared by the variables in order to test theoretical models e.g., How many personality factors are there? Is intelligence general or multiple?
- The goal is to address a theoretical question (as opposed to calculating factor scores).

Purposes: Data reduction Simplifies data structure by revealing a smaller number of underlying factors (part of psychometrics) Helps to eliminate or identify items for improvement: • redundant variables unclear variables • irrelevant variables Leads to calculating factor scores 10 History of factor analysis • Invented by Charles Spearman (1904)• Usage hampered by onerousness of hand calculation Since the advent of computers, usage has thrived, esp. to develop: - Theory e.g., determining the structure of personality or intelligence - Practice e.g., 10,000s+ of psychological screening & measurement tests Two main types of FA: Exploratory vs. confirmatory factor analysis **EFA = Exploratory Factor Analysis**

 explores & summarises underlying correlational structure for a data set

CFA = Confirmatory Factor Analysis

 tests the correlational structure of a data set against a hypothesised structure and rates the "goodness of fit"

This lecture focuses on exploratory factor analysis

This (introductory) lecture focuses on **Exploratory Factor Analysis** (recommended for undergraduate level).

However, note that **Confirmatory Factor Analysis** (and Structural
Equation Modeling) is generally preferred,
but is more advanced, so is
recommended for graduate/professional
level.

Conceptual model - Simple model

Factor 1

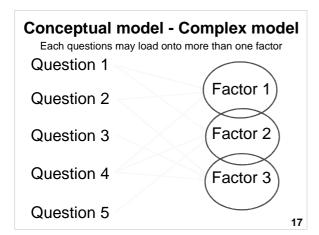
Factor 2

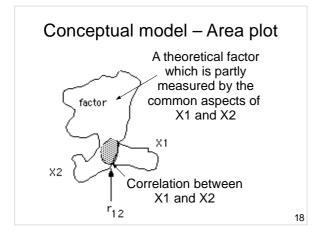
Factor 3

- e.g., 12 items may 'tap' 3 underlying factors
- Factors consist of relatively homogeneous variables.

14

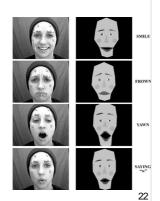
Eysenck's 3 personality factors


talkative


shy sociable fun anxious gloomy relaxed tense loner

harsh nurturing unconventional

E.g., 12 items which measure 3 underlying dimensions of personality


Conceptual model - Simple model Each question loads onto only one factor					
Question 1					
Question 2	Factor 1				
Question 3	Factor 2				
Question 4	Factor 3				
Question 5	16				

How many factors? One factor? Three factors? Nine factors? (independent items) 19 **Example: Personality** How many dimensions of personality are there - and what are they? How could you decide between 3 or 5 personality factors? Eysenck's 3? "Big 5"? • Neuroticism Extraversion Neuroticism Extraversion • Psychoticism Agreeableness • Openness • Conscientiousness 20 **Example: Intelligence** Is intelligence better described as: • one global factor (g) or • several specific factors (e.g., verbal, spatial, mathematical, social, kinaesthetic)? How could you decide?

Example: What are the essential facial features for expression and communication?

(Ivancevic, 2003)

Example: Essential facial features

Six orthogonal (independent) factors, represent 76.5% of the total variability in facial recognition (in order of importance) (Ivancevic, 2003):

- upper-lip
- eyebrow-position
- nose-width
- eye-position
- eye/eyebrow-length
- face-width

23

EFA assumptions

- 1. Garbage-In-Garbage-Out
- 2. Sample size
- 3. Levels of measurement
- 4. Normality
- 5. Linearity
- 6. Outliers
- 7. Factorability

Garbage. In. $\rightarrow G$ arbage. Out

- · Screen the data
- Use variables that theoretically "go together"

25

Assumption testing: Sample size

Some guidelines:

- Min.: *N* > 5 cases per variable
 - e.g., 20 variables, should have > 100 cases (1:5)
- Ideal: *N* > 20 cases per variable
 - e.g., 20 variables, ideally have > 400 cases (1:20)
- Total *N* > 200 preferable

26

Assumption testing: Sample size

Comrey and Lee's (1992) guidelines:

50 = very poor,

100 = poor,

200 = fair

300 = good,

500 = very good

1000+ = excellent

Assumption testing: Sample size

	Perso and	nal of onality Social hology	Journal of Applied Psychology		
Variable	N	%	N	%	
Ratio of variable to factors					
Less than 3:1	1	0.6	1	1.7	
3:1	28	17.6	9	15.5	
4:1	26	16.4	10	17.2	
5:1	14	8.8	10	17.2	
6:1	13	8.2	6	10.3	
More than 6:1	74	46.5	18	31.0	
Unknown	2	1.3	4	6.9	
					2

Assumption testing: Level of measurement

All variables must be suitable for correlational analysis

i.e., they should be ratio/metric data or at least Likert data with several interval levels.

29

Assumption testing: Normality

- FA is generally robust to minor violation of assumptions of normality.
- If the variables are normally distributed then the solution is enhanced.

Assumption Testing: Linearity

 Because FA is based on correlations between variables, it is important to check there are linear relations amongst the variables (i.e., check scatterplots)

31

Assumption testing: Outliers

- FA is sensitive to outlying cases
 - Bivariate outliers(e.g., check scatterplots)
 - -Multivariate outliers (e.g., Mahalanobis' distance)
- Identify outliers, then remove or transform

32

Example factor analysis: Classroom behaviour

- 15 classroom behaviours of highschool children were rated by teachers using a 5-point Likert scale.
- Task: Identify groups of variables (behaviours) that are strongly inter-related & represent underlying factors.

Classroom behaviour items

- 1. Cannot concentrate
- 2. Curious & enquiring
- 3. Perseveres
- 4. Irritable
- 5. Easily excited
- 6. Patient
- 7. Easily upset
- ⇔ can concentrate
- ← little curiousity
- → lacks perseverance
- ⇔ even-tempered
- → not easily excited

 \leftrightarrow relaxed

- \leftrightarrow demanding
- \leftrightarrow contented

34

Classroom behaviour items

- 8. Control \leftrightarrow no control
- 9. Relates warmly to others
- 10. Persistent \leftrightarrow frustrated
- 11. Difficult easy
- 12. Restless
- 13. Lively \leftrightarrow settled
- 14. Purposeful \leftrightarrow aimless
- 15. Cooperative

35

Classroom behaviour items

Teachers, for each of the following paired behavioral statements, please mark a cross over the dot (e.g.,な) which is **nearest** the statement that **best** describes the TYPICAL behavior of THIS student at school

- Cannot concentrate on any o o o o Gan concentrate on any task; not easily distracted
 Perseveres in the face of difficult or challenging tasks
 Persistent, sustained attention span
 Purposeful activity

Assumption testing: Factorability

Check the factorability of the correlation matrix (i.e., how suitable is the data for factor analysis?) by one or more of the following methods:

- Correlation matrix correlations > .3?
- Anti-image matrix diagonals > .5?
- Measures of sampling adequacy (MSAs)?
 - Bartlett's sig.?
 - -KMO > .5 or .6?

37

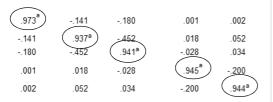
Assumption testing: Factorability (Correlations)

Are there SOME correlations over .3? If so, proceed with FA

Correlation Matri

		CONCEN		PERSEV	EVEN-TE		ı
		TRATES	CURIOUS	ERES	MPERED-	PLACID	ı
Correlation	CONCENTRATES	1.000	.717	.751	.554	.429	_
	CURIOUS	.717 /	1.000	.826	.472	.262	ı
	PERSEVERES	.751	.826	1.000	.507	.311	ı
	EVEN-TEMPERED	.554	472	.507	1.000	610	ĺ
	PLACID	429	.262	311	610	1 000	ı

Takes some effort with a large number of variables, but accurate


38

39

Assumption testing: Factorability: Anti-image correlation matrix

- Examine the diagonals on the antiimage correlation matrix
- Consider variables with correlations less than .5 for exclusion from the analysis – they lack sufficient correlation with other variables
- Medium effort, reasonably accurate

Anti-Image correlation matrix

Make sure to look at the anti-image CORRELATION matrix

40

Assumption testing: Factorability: Measures of sampling adequacy

- Global diagnostic indicators correlation matrix is factorable if:
 - Bartlett's test of sphericity is significant and/or
 - -Kaiser-Mayer Olkin (KMO) measure of sampling adequacy > .5 or .6
- Quickest method, but least reliable

4

Assumption testing: Factorability

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

.956

Bartlett's Test of Sphericity Approx. Chi-Square

19654.15

ui Sig. 105

Summary: Measures of sampling adequacy

Draw on one or more of the following to help determine the factorability of a correlation matrix:

- 1. Several correlations > .3?
- 2. Anti-image matrix diagonals > .5?
- 3. Bartlett's test significant?
- 4. KMO > .5 to .6? (depends on whose rule of thumb)

43

Steps / process

- 1. Test assumptions
- 2. Select type of analysis
- 3. Determine no. of factors (Eigen Values, Scree plot, % variance explained)
- 4. Select items
 (check factor loadings to identify which items belong in which factor; drop items one by one; repeat)
- 5. Name and define factors
- 6. Examine correlations amongst factors
- 7. Analyse internal reliability
- 8. Compute composite scores

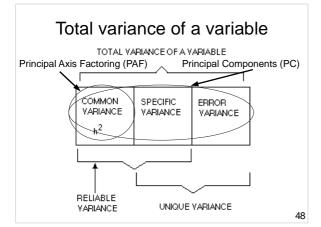
44

Type of EFA: Extraction method: PC vs. PAF

Two main approaches to EFA:

- Analyses shared variance: Principle Axis Factoring (PAF)
- Analyses all variance: Principle Components (PC)

4	
4	-


Principal axis factoring (PAF)

- Used to uncover the structure of an underlying set of p original variables
- More theoretical
- Analyses only shared variance (i.e. leaves out unique variance)

46

Principal components (PC)

- More common
- More practical
- Used to reduce data to a set of factor scores for use in other analyses
- Analyses all the variance in each variable

PC vs. PAF

- Often there is little difference in the solutions for the two procedures.
- If unsure, check your data using both techniques
- If you get different solutions for the two methods, try to work out why and decide on which solution is more appropriate

49

Communalities

- Each variable has a communality =
 the proportion of its variance
 - the proportion of its variance explained by the extracted factors
- Ranges between 0 and 1
- If communality for a variable is low (e.g., < .5, consider extracting more factors or removing the variable)

50

Communalities

- High communalities (> .5):
 Extracted factors explain most of the variance in the variables being analysed
- Low communalities (< .5): A variable has considerable variance unexplained by the extracted factors
 - May then need to extract MORE factors to explain the variance or remove these items from the EFA

_		

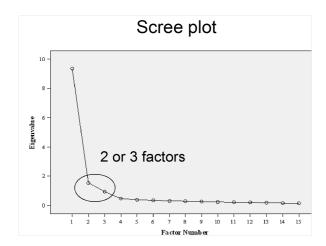
	Initial	Extraction
behav1 CONCENTRATES	.713	.746
behav2 CURIOUS	.743	.788
behav3 PERSEVERES	.766	.811
behav4 EVEN-TEMPERED	.729	.747
behav5 PLACID	.609	.664
behav6 COMPLIANT	.687	.710
behav7 SELF-CONTROLLED	.730	.749
behav8 RELATES-WARMLY	.605	.660
behav9 SUSTAINED ATTENTION	.776	.803
behav10 COMMUNICATIVE	.657	.674
behav11 RELAXED	.786	.820
behav12 CALM	.737	.786
behav13 PURPOSEFUL ACTIVITY	.764	.798
behav14 COOPERATIVE	.626	.647
behav15 CONTENTED	.595	\.621/

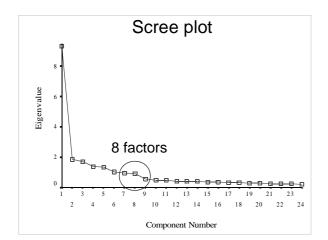
Explained variance

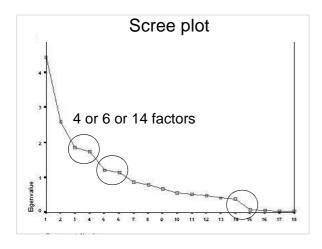
- A good factor solution is one that explains the most variance with the fewest factors
- Realistically, researchers are happy with 50-75% of the variance explained

	Initial Eigenvalues		Extraction	Extraction Sums of Squared Loadings			
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	9.355	62.366	62.366	9.094	60.628	60.628	7.801
2	1.532	10.216	72.583	1.294	8.625	69.253	7.26
3	.933	6.220	78.802	.635	4.232	73.485	5.732
4	.467	3.113	81.915				
5	.378	2.519	84.434	3 fac	tore a	xplain 7	3 5%
6	.344	2.295	86.729				
7	.305	2.032	88.761	of the	e varia	ance in t	the
8	.285	1.902	90.663	itomo	- 1/0	rv usefu	ш
9	.262	1.745	92.408	пень	5 – VC	iy uselu	11:
10	.229	1.525	93.933				
11	.219	1.459	95.392				
12	.201	1.340	96.732				
13	.184	1.227	97.959				
14	.159	1.059	99.018				
15	.147	.982	100.000				

Eigen values (EVs)


- Each factor has an EV which indicates the amount of variance each factor accounts for.
- EVs for successive factors have lower values.
- Rule of thumb: Eigen values over 1 are 'stable' (Kaiser's criterion).
- EVs can also be expressed as %s.
- Total of all EVs is the number of variables.
 Each variable contributes a variance of one.
 EVs are then allocated to factors according to amount of variance explained.


55


	In	itial Eigenva	lues	Extraction	Sums of Squ	ared Loadings	Rotation
		% of			% of		
Factor	Total	Variance	Cumulative %	Total	Variance	Cumulative %	Total
1	9.355	62.366	62.366	9.094	60.628	60.628	7.801
2	1.532	10.216	72.583	1.294	8.625	69.253	7.261
3	.933	6.220	78.802	.635	4.232	73.485	5.732
4	.467	3.113	81.915	The F	-\/	المصمم	
5	.378	2.519	84.434	ine E	EVs ra	ngea	
6	.344	2.295	86.729	betwe	en .1	6 and 9.	35.
7	.305	2.032	88.761	T 6			-1
8	.285	1.902	90.663	I WO I	actors	satisfie	a
9	.262	1.745	92.408	Kaise	r's cri	terion (E	:\/\$ >
10	.229	1.525	93.933			,	
11	.219	1.459	95.392	1) bu	t the ti	nird EV	ıs .93
12	.201	1.340	96.732	and it	also:	appears	to he
13	.184	1.227	97.959				נט טפ
14	.159	1.059	99.018	a use	ful fac	ctor.	
15	.147	982	100.000				

Scree plot

- A line graph of EVs.
- Depicts amount of variance explained by each factor.
- Cut-off: Look for where additional factors fail to add appreciably to the cumulative explained variance.
- 1st factor explains the most variance.
- Last factor explains the least amount of variance.

How many factors? A subjective process ... Seek to explain maximum variance using fewest factors, considering: 1. Theory – what is predicted/expected? 2. Eigen Values > 1? (Kaiser's criterion) 3. Scree Plot – where does it drop off? 4. Interpretability of last factor? 5. Try several different solutions? (consider FA type, rotation, # of factors) 6. Factors must be able to be meaningfully interpreted & make theoretical sense? 61 How many factors? • Aim for 50-75% of variance explained by 1/4 to 1/3 as many factors as variables/items. Stop extracting factors when they no longer represent useful/meaningful clusters of variables. Keep checking/clarifying the meaning of each factor - make sure to examine the wording of each item.

Initial solution: Unrotated factor structure

- Factor loadings (FLs) indicate relative importance of each item to each factor.
 - In the initial solution, each factor tries "selfishly" to grab maximum unexplained variance.
 - –All variables will tend to load strongly on the 1st factor

4	•	•
Ų	0	

Initial solution - Unrotated factor structure

- Factors are weighted combinations of variables
- A factor matrix shows variables in rows and factors in columns

Factor Matrix								
Factors								
1	2		k					
	1	Fe	Factors					

Initial solution - Unrotated factor structure

1st factor extracted:

- Best possible line of best fit through the original variables
- Seeks to explain lion's share of all variance
- A single factor, best summary of the variance in the whole set of items

65

Initial solution - Unrotated factor structure

- Each subsequent factor tries to explain the maximum amount of remaining unexplained variance.
- Second factor is orthogonal to first factor - seeks to maximise its own eigen value (i.e., tries to gobble up as much of the remaining unexplained variance as possible)

Vectors (Lines of best fit)

67

Initial solution: Unrotated factor structure

- Seldom see a simple unrotated factor structure
- Many variables load on 2 or more factors
- Some variables may not load highly on any factors (check: low communality)
- Until the FLs are rotated, they are difficult to interpret.
- Rotation of the FL matrix helps to find a more interpretable factor structure.

68

Two basic types of factor rotation

Orthogonal (SPSS Varimax)

Oblique (SPSS Oblimin)

Two basic types of factor rotation

- Orthogonal minimises factor covariation, produces factors which are uncorrelated
- 2. Oblimin allows factors to covary, allows correlations between factors

70

Why rotate a factor loading matrix?

- After rotation, the vectors (lines of best fit) are rearranged to optimally go through clusters of shared variance
- Then the FLs and the factor they represent can be more readily interpreted

71

Orthogonal vs. oblique rotations

- Consider purpose of factor analysis
- If in doubt, try both
- Consider interpretability
- Look at correlations between factors in oblique solution
 - if >.3 then go with oblique rotation (>10% shared variance between factors)

Int	ern	reta	hil	litv
1116	CI D	ıcıa	NI	IILV

- It is dangerous to be driven by factor loadings only – think carefully - be guided by theory and common sense in selecting factor structure.
- You must be able to understand and interpret a factor if you're going to extract it.

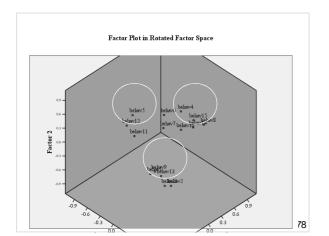
73

Interpretability

- However, watch out for 'seeing what you want to see' when evidence might suggest a different, better solution.
- There may be more than one good solution! e.g., in personality
 - -2 factor model
 - -5 factor model
 - -16 factor model

74

Factor loadings & item selection


A factor structure is most interpretable when:

- 1. Each variable loads strongly (> ±.40) on only one factor
- 2. Each factor shows 3 or more strong loadings; more loadings = greater reliability
- 3. Most loadings are either high or low, few intermediate values.
- 4. These elements give a 'simple' factor structure.

	Rotated Component Matrix							
ည		Component			1			
ш.		1	2	3				
1	PERSEVERES	.861	.158	.288	1			
×	CURIOUS	.858		.310				
E	PURPOSEFUL ACTIVITY	.806	.279	.325				
Ŧ.	CONCENTRATES	.778	.373	.237				
matrix ax	SUSTAINED ATTENTION	.770	.376	.312				
E &	PLACID	'	.863	.203				
. ≥	CALM	.259	.843	.223				
ctor n arima	RELAXED	.422	.756	.295				
⋥ '⊑	COMPLIANT	.234	.648	.526				
ບຸຫ	SELF-CONTROLLED	.398	.593	.510_				
Ę Š	RELATES-WARMLY	.328	.155	.797				
=	CONTENTED	.268	.286	.748				
ਰੂ	COOPERATIVE	.362	.258	.724				
Ō	EVEN-TEMPERED	.240	.530	.662				
ਡ	COMMUNICATIVE	.405	.396	.622				
Rotated	Extraction Method: Principa Rotation Method: Varimax	with Kaiser N	Normalization.		7 6			

Rotated factor matrix - PC Oblimin							
		Component					
			1	2	3		
	RELATES-WARMLY		.920		.153		
0 11114	CONTENTED		.845				
Sociability	COOPERATIVE		.784	108			
•	EVEN-TEMPERED		.682		338		
	COMMUNICATIVE		.596	192	168		
	PERSEVERES		1	938			
Task	CURIOUS			933	.171		
_ ***	PURPOSEFUL ACTIVITY			839			
Orientation	CONCENTRATES			831	201		
	SUSTAINED ATTENTION			788	181		
	PLACID			•	902		
Settledness	CALM			131	841		
	RELAXED			314	686		
	COMPLIANT		.471		521		
	SELF-CONTROLLED	(.400	209	433		
	Extraction Method: Principa	al Co	mponen	t Analysis.			
Rotation Method: Oblimin with Kaiser Normalization.							

How many items per factor? Bare min. = 2 Recommended min. = 3 Max. = unlimited More items: → ↑ reliability $\rightarrow \uparrow$ 'roundedness' → Law of diminishing returns • Typically = 4 to 10 is reasonable 79 How do I eliminate items? A subjective process; consider: 1. Size of main loading (min. = .4) 2. Size of cross loadings (max. = .3?) 3. Meaning of item (face validity) 4. Contribution it makes to the factor 5. Eliminate 1 variable at a time, then rerun, before deciding which/if any items to eliminate next 6. Number of items already in the factor 80 Factor loadings & item selection Comrey & Lee (1992) guideline for primary (target) factor loadings: > .70 - excellent

81

> .63 - very good

> .55 - good > .45 - fair > .32 - poor

Factor loadings & item selection	n
Cut-off for acceptable loadings:	
• Look for gap in loadings - e.g.,	
.8 .7	
.6 .3	
.2	
 But also consider whether factor can be interpreted above but not 	
below cut-off.	82
	02
Other considerations:	
Normality of items	
 Check the item descriptives. 	
 The more normally distributed the item scores, the better the 	
distribution of the composite	
scores.	
 e.g. if two items have similar Factor Loadings and Reliability analysis, 	
consider selecting items which will have the least skew and kurtosis.	
	83
Factor analysis in practice	
 To find a good solution, consider: 	
-PC/PAF	
Varimax/obliminRange of possible factor structures,	
e.g., for 2, 3, 4, 5, 6, and 7 factors	
 Thus, the researcher would normally conduct many initial EFAs before 	
deciding on a probable structure.	
	0.4

Factor analysis in practice

- Eliminate poor items one at a time, retesting the possible solutions
- Check factor structure across subgroups (e.g., gender) if there is sufficient data
- You will probably come up with a different solution from someone else!
- Check/consider reliability analysis (next lecture)

85

Example: Condom use

- The Condom Use Self-Efficacy Scale (CUSES) was administered to 447 multicultural college students (Barkley & Burns, 2000).
- PC EFA with a varimax rotation.
- Three factors were extracted:
 - 1. Appropriation
 - 2. Sexually Transmitted Diseases
 - 3. Partners' Disapproval

86

Factor loadings & item selection

Factor 1: Appropriation - acquisition and use	
of a condom ($\alpha = .76$)	FL
I feel confident in my ability to put a condom on myself or my partner	.75
I feel confident I could purchase condoms without feeling embarrassed	.65
I feel confident I could remember to carry a condom with me should I need one	.61
I feel confident I could gracefully remove and dispose of a condom after sexual intercourse	.56

Factor loadings & item selection

Factor 2: Sexually Transmitted Diseases -

I would not feel confident suggesting using condoms with a	
new partner because I would be afraid he or she would think I've had a past homosexual experience	.72
I would not feel confident suggesting using condoms with a new partner because I would be afraid he or she would think I have a sexually transmitted disease	.86
I would not feel confident suggesting using condoms with a new partner because I would be afraid he or she would think I thought they had a sexually transmitted disease	.80

Factor loadings & item selection

Factor 3: Partner's reaction - students' partners' feelings about condoms ($\alpha =$

If I were unsure of my partner's feelings about using	FL	66)
condoms I would not suggest using one .6 If my partner and I were to try to use a condom and did not succeed, I would feel embarrassed to try to use one again		20 0
succeed, I would feel embarrassed to try to use one again		
backwards or awkwardness) .5	assed to try to use one again	succeed, I would feel embarrasse (e.g. not being able to unroll cond

Summary

- 1. Introduction
- 2. Assumptions
- 3. Steps/Process

Introduction: Summary
Factor analysis is a family of
multivariate correlational data
analysis methods for summarising clusters of covariance.
FA summarises correlations
amongst items.
The common clusters (called
factors) are summary indicators of
underlying fuzzy constructs.
Assumptions: Summary
Sample size
5+ cases per variables
(ideally 20+ cases per variable)
-N > 200
 Bivariate & multivariate outliers
 Factorability of correlation matrix
(Measures of Sampling Adequacy)
 Normality enhances the solution
9
Summary: Steps / process
1. Test assumptions
2. Select type of analysis
3. Determine no. of factors
(Eigen Values, Scree plot, % variance explained)
4. Select items (check factor loadings to identify which items belong
in which factor; drop items one by one; repeat)

5. Name and define factors

7. Analyse internal reliability

8. Compute composite scores

6. Examine correlations amongst factors

Next

lecture 93

Summary: Types of FA

- PAF: Theoretical data exploration
 - -uses shared variance
- PC: Data reduction
 - -uses all variance
- Consider trying both ways
 - -Are solutions different? Why?

94

Summary: Rotation

- Orthogonal (varimax)
 - perpendicular vectors
- Oblique (oblimin)
 - angled vectors
- Consider trying both ways
 - Are solutions different? Why?

95

Summary: Factor extraction

No. of factors to extract?

- Inspect EVs
 - look for > 1 or sudden drop (inspect scree plot)
- % of variance explained
 - aim for 50 to 75%
- Interpretability / theory

_		
-		
_		
_		
-		
_		
_		
_		
-		
_		
_		
_		

References

- Barkley, T. W. Jr., & Burns, J. L. (2000). Factor analysis of the Condom Use Self-Efficacy Scale among I. Health Education Research, 15(4), 485-489.
- Ivancevic, V., Kaine, A.K., MCLindin, B.A, & Sunde, J. (2003). Factor analysis of essential facial features. In the proceedings of the 25th International Conference on Information Technology Interfaces (ITI), pp. 187-191, Cavtat, Croatia.
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-200
- Tabachnick, B. G. & Fidell, L. S. (2001). Principal components and factor analysis. In *Using multivariate statistics*. (4th ed., pp. 582 - 633). Needham Heights, MA: Allyn & Bacon.

97

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

