Up-Sampling (5B)

- - •

Copyright (c) 2009, 2010, 2011 Young W. Lim.

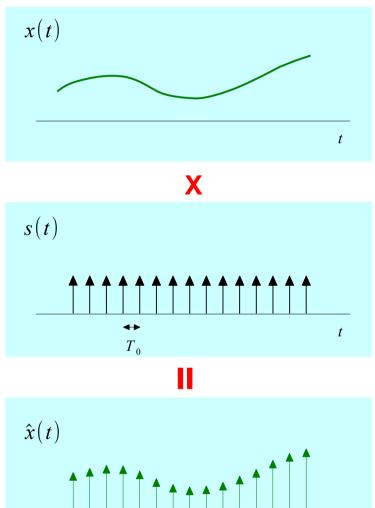
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/8/12

Spectrum Replication (1)



$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT_0) \,\delta(t-nT_0)$$

$$s(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT_0)$$

$$= \frac{1}{T_0} \sum_{m=-\infty}^{+\infty} e^{+j2\pi m f_s t}$$

$$\hat{x}(t) = \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} x(t) e^{+j2\pi m f_s t}$$

Shift Property

$$\hat{X}(f) = \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} X(f - m f_s)$$

5B Up-Sampling

↔

 T_0

t

Young Won Lim 11/8/12

Spectrum Replication (2)

$$S(f) = \frac{1}{T} \sum_{m=-\infty}^{+\infty} \delta(f - m f_s)$$

Convolution in Frequency

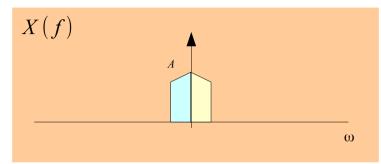
$$\hat{X}(f) = X(f) * S(f)$$

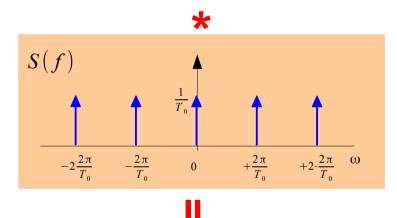
$$= \int_{-\infty}^{+\infty} X(f - f') S(f') df'$$

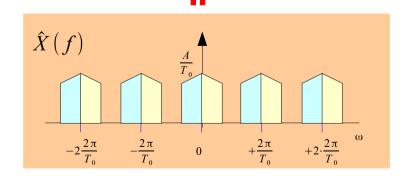
$$= \frac{1}{T_0} \sum_{m=-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(f-f') \delta(f'-mf_s) df'$$

$$\hat{X}(f) = \frac{1}{T_0} \sum_{n=-\infty}^{+\infty} X(f - m f_s)$$

Frequency Domain

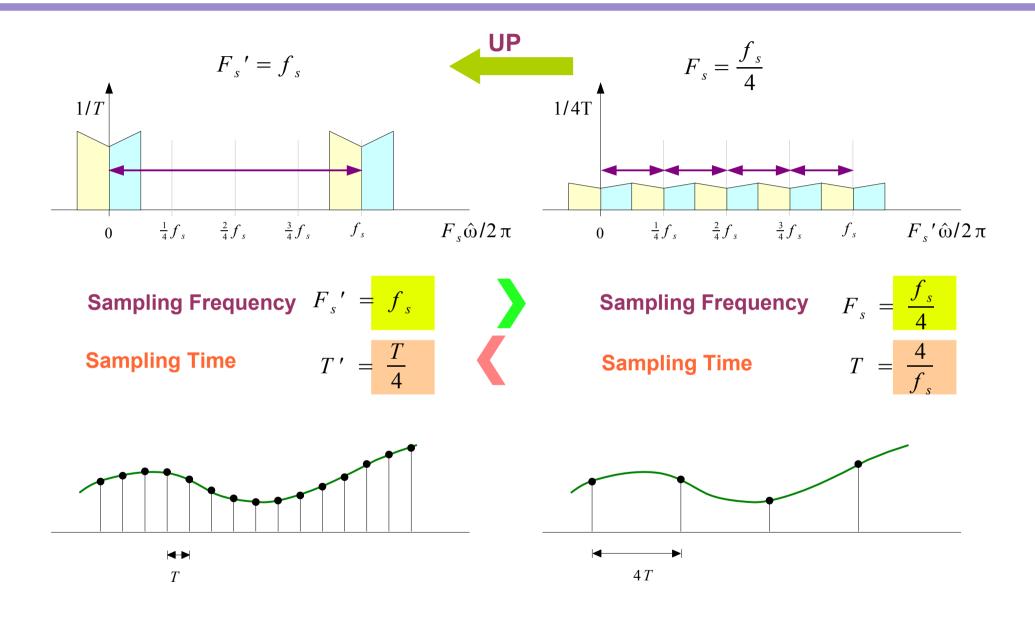




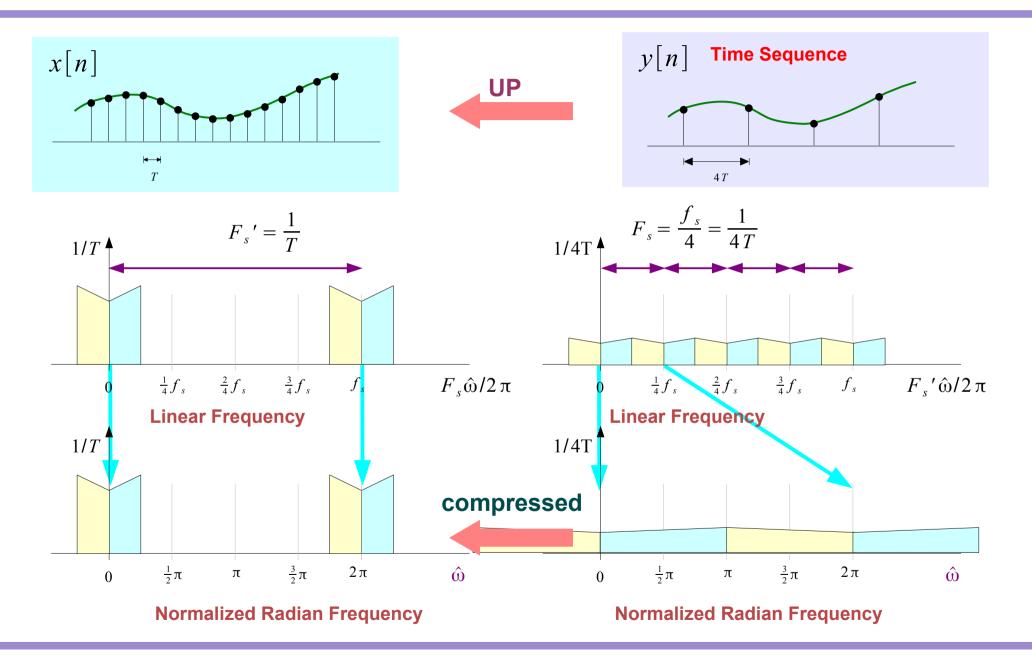


4

Increasing Sampling Frequency



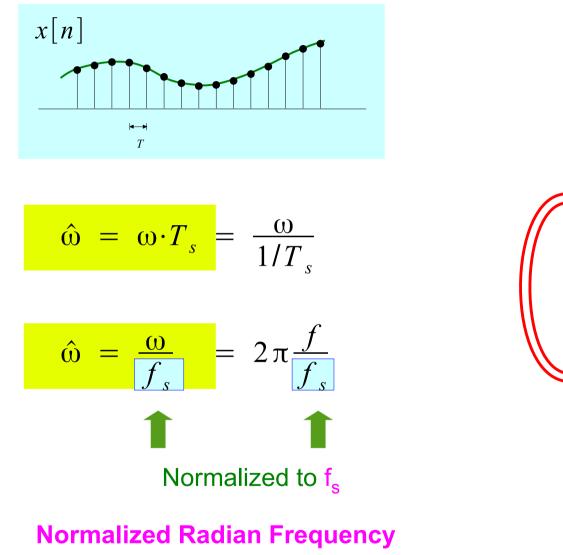
Fine Sequence & Spectrum

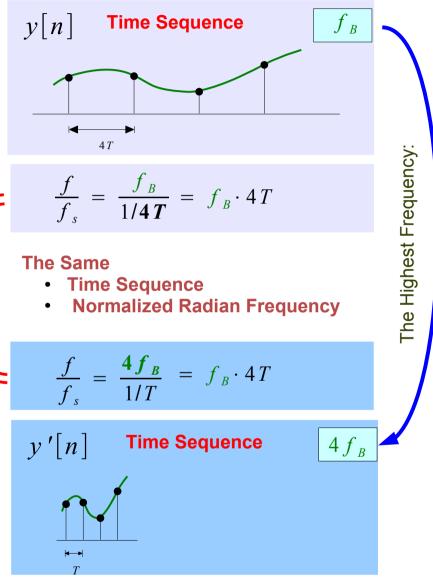


5B Up-Sampling

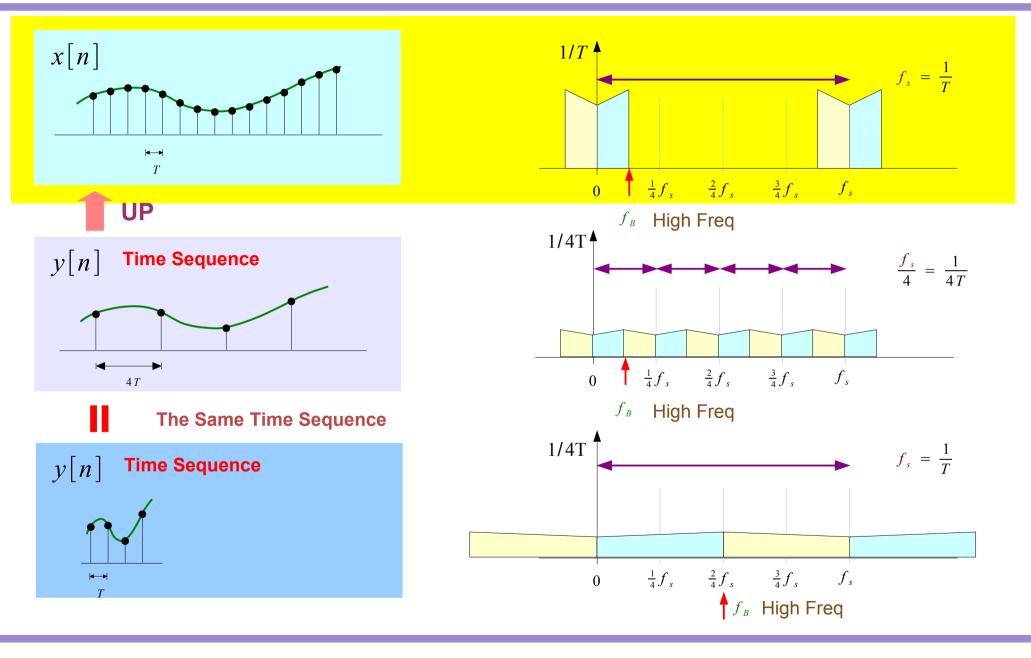
6

Normalized Radian Frequency

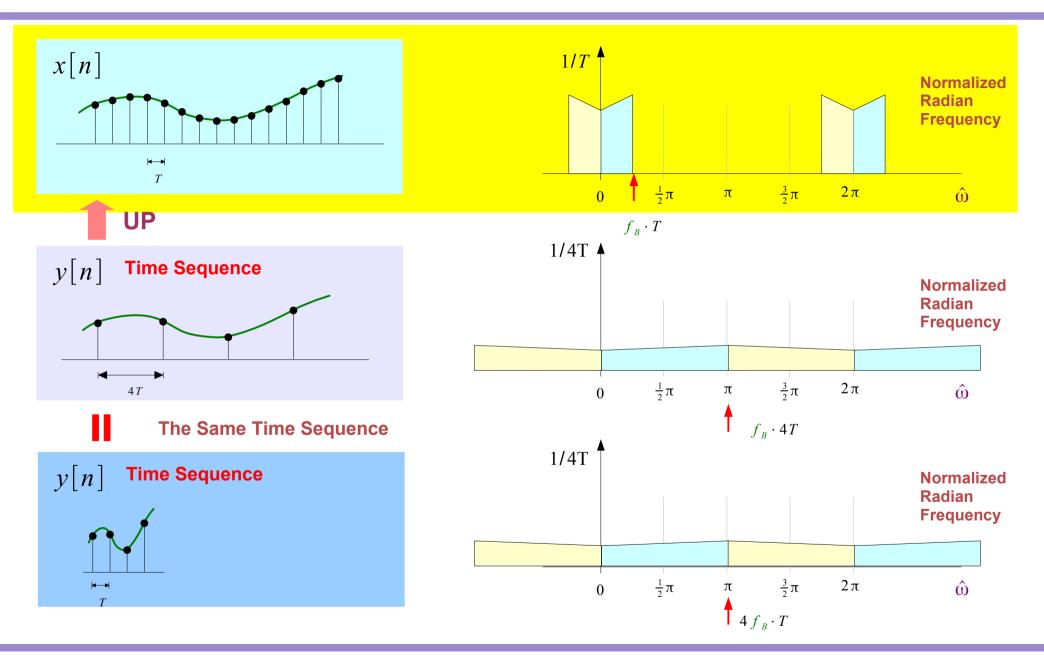




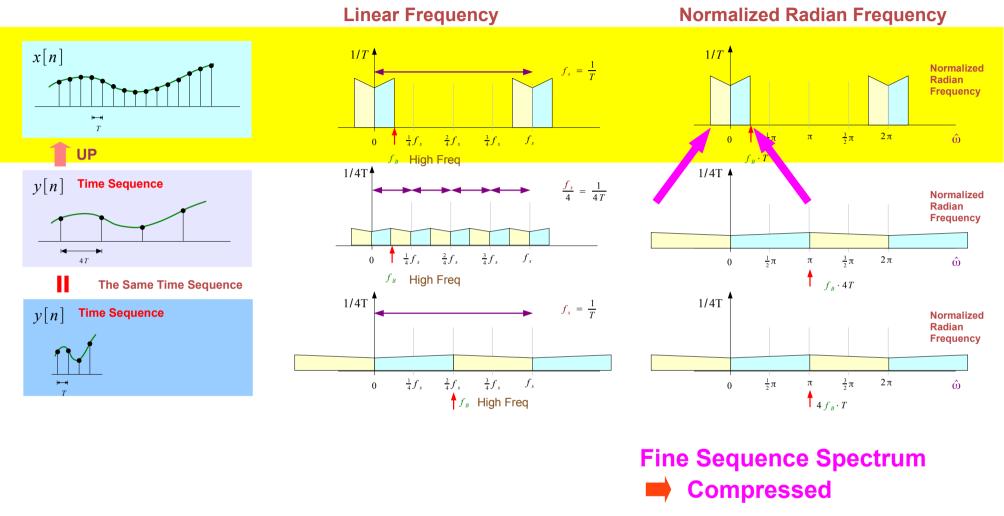
Fine Sequence Spectrum – Linear Frequency



Fine Sequence Spectrum – Normalized Frequency

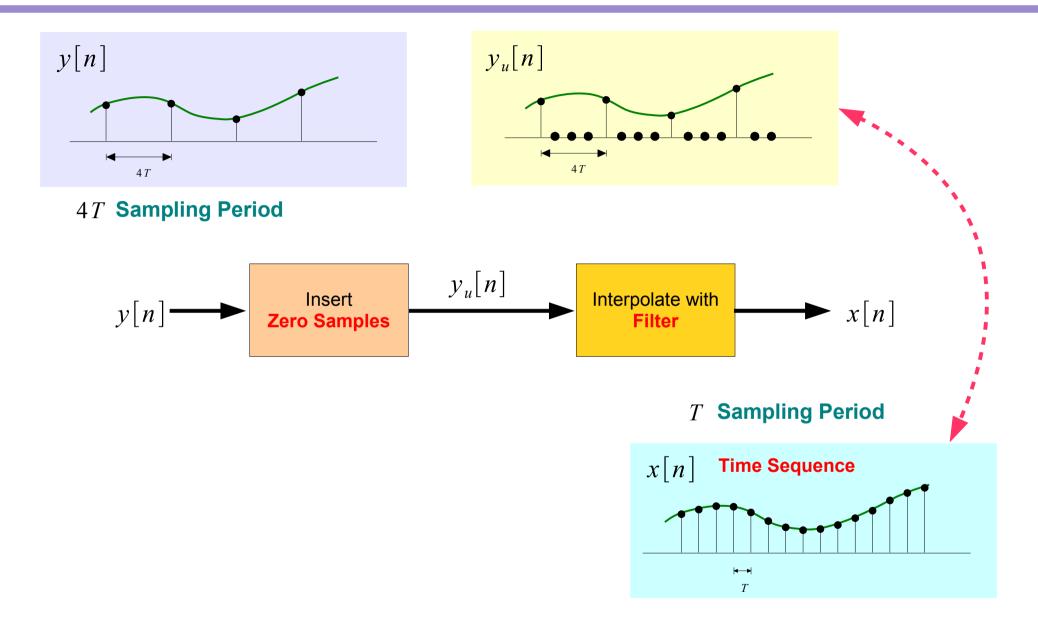


Fine Sequence Spectrum – Linear Frequency

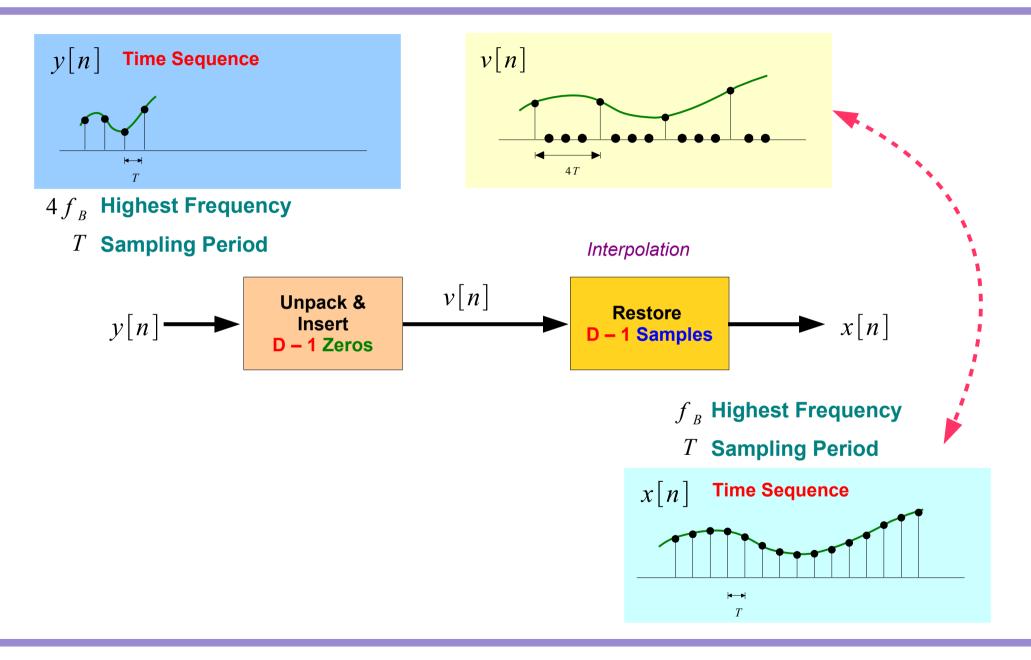


Normalized Radian Frequency

Fine Sequence Generation



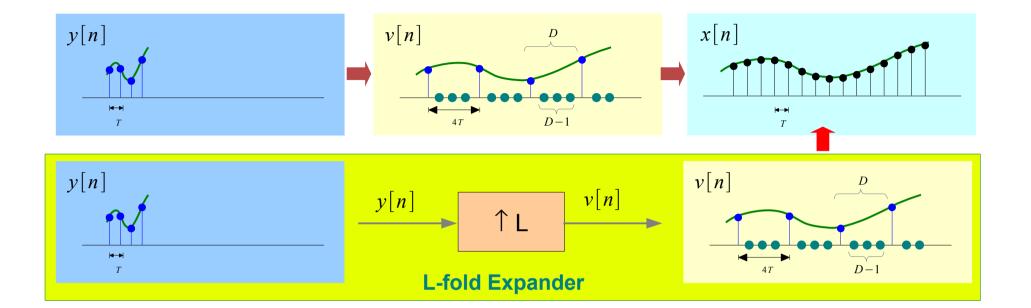
Up Sampling in Two Steps



5B Up-Sampling

Young Won Lim 11/8/12

Up-Sampling Operator

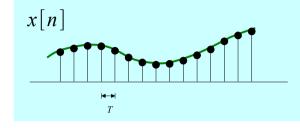


$v[n] = S_L y[n] = \begin{cases} y[n] \\ 0 \end{cases}$	$[L] \text{if } \mathbf{mod}(n / L) = 0$ otherwise		D = 2	
Increase sampling frequency by a factor of L	Decrease sampling period by a factor of 1/L	n = 0.2 = 0	v[0] = y[0]	v[1] = 0
		$n=1\cdot 2=2$ $n=2\cdot 2=4$	v[2] = y[1] v[4] = y[2]	v[3] = 0 $v[5] = 0$
		$n=3\cdot 2=6$	v[6] = y[3]	v[6] = 0

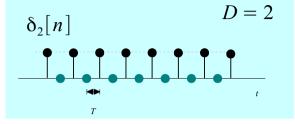
. . .

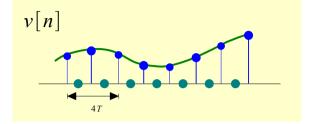
• • •

Example When D=2(1)

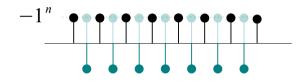


 $x[n] = e^{j\omega n}$





$\delta_2[n] = \frac{1}{2}(1 + (-1)^n)$	$v[n] = \frac{1}{2}x[n] + \frac{1}{2}e^{-j\pi n}x[n]$
$= \frac{1}{2}(1+e^{-j\pi n})$	$= \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{-j\pi n}e^{j\omega n}$
$\left(e^{-j\pi}\ =\ -1 ight)$	$= \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{+j(\omega-\pi)n}$



$$V(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} \left(x[n] z^{-n} + x[n] (-z)^{-n} \right) = \frac{1}{2} X(z) + \frac{1}{2} X(-z)$$
$$V(e^{j\hat{\omega}}) = \frac{1}{2} X(e^{j\hat{\omega}}) + \frac{1}{2} X(e^{-j\pi} e^{j\hat{\omega}})$$
$$V(\hat{\omega}) = \frac{1}{2} X(\hat{\omega}) + \frac{1}{2} X(\hat{\omega} - \pi)$$

Z-Transform Analysis

$$\delta_{D}[n] = \begin{cases} 1 & \text{if } n/D \text{ is an integer} \\ 0 & \text{otherwise} \end{cases}$$

$$v[n] = \delta_{D}[n]x[n]$$

$$V[z] = \cdots + v[0]z^{0} + v[D]z^{-D} + v[2D]z^{-2D} + \cdots \qquad y[n]$$

$$V[z] = \sum_{n=-\infty}^{+\infty} v[n]z^{-n} = \sum_{m=-\infty}^{+\infty} v[mD]z^{-mD} = F(z^{D})$$

$$T \text{ Sampling Period}$$

Z-Transform Analysis

$$\delta_2[n] = \frac{1}{2}(1 + (-1)^n) = \frac{1}{2}(1 + e^{-j\pi n}) = e^{-j\pi} = -1$$

$$v[n] = \frac{1}{2}x[n] + \frac{1}{2}e^{-j\pi n}x[n] \qquad x[n] = e^{j\omega n}$$

$$v[n] = \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{-j\pi n}e^{j\omega n} = \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{+j(\omega-\pi)n}$$

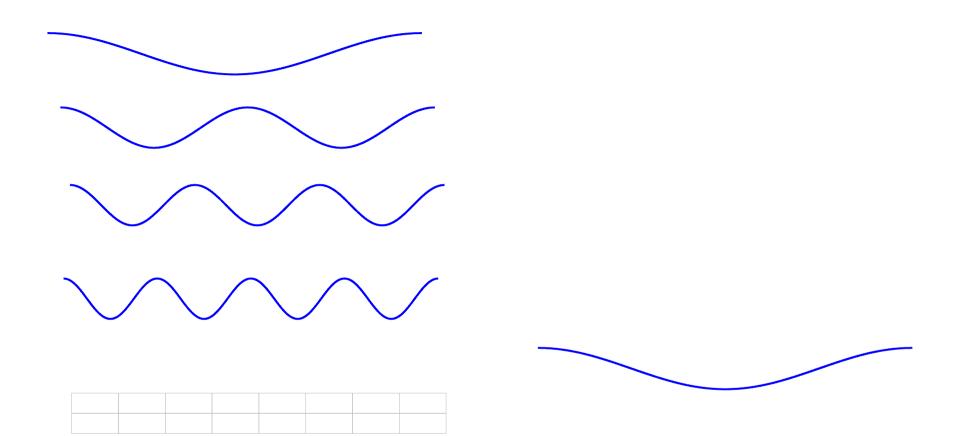
$$V(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} \left(x[n] z^{-n} + x[n] (-z)^{-n} \right) = \frac{1}{2} X(z) + \frac{1}{2} X(-z)$$

$$V(\omega) = V(e^{j\omega}) = \frac{1}{2}X(e^{j\omega}) + \frac{1}{2}X(e^{-j\pi}e^{j\omega}) = \frac{1}{2}X(\omega) + \frac{1}{2}X(\omega - \pi)$$

5B Up-Sampling

 $\left\{\begin{array}{c}1\\0\end{array}\right.$

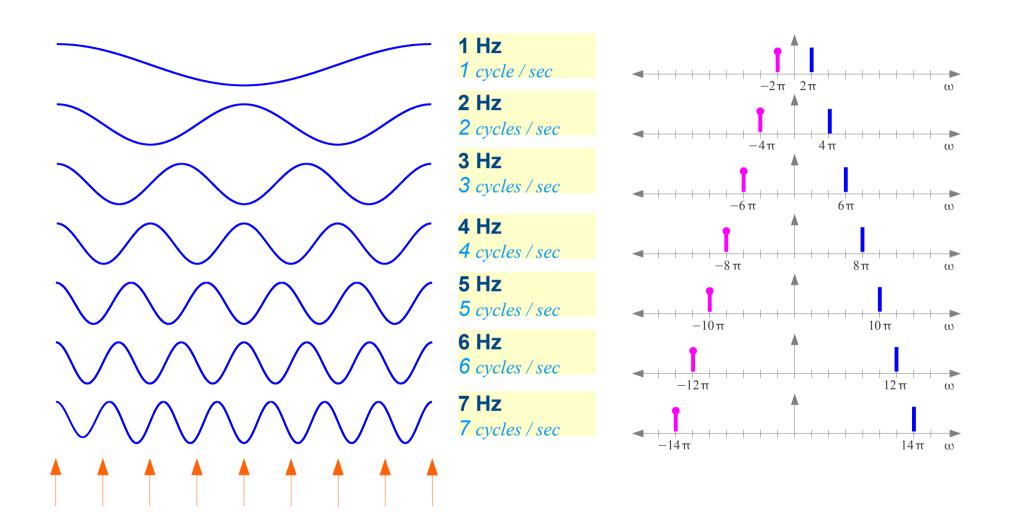
Measuring Rotation Rate



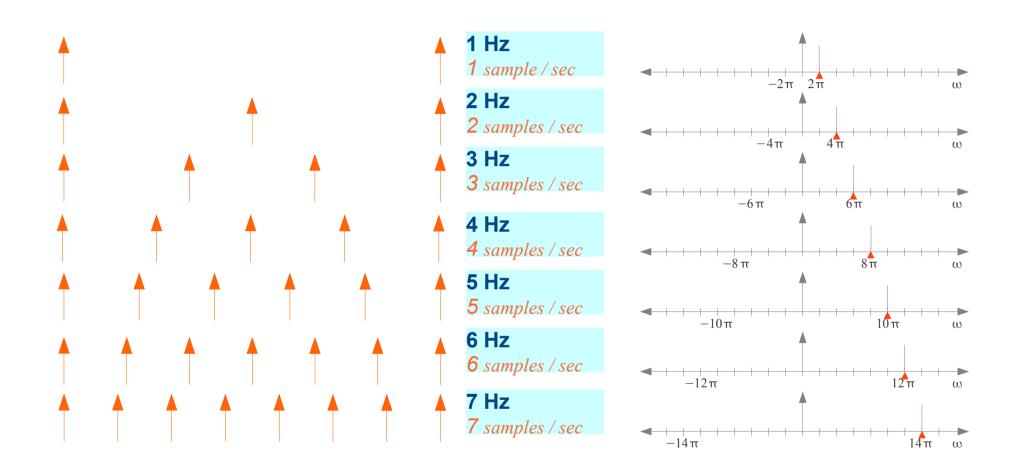
Signals with Harmonic Frequencies (1)

	1 Hz 1 cycle / sec	$\cos(1 \cdot 2\pi t) = \frac{e^{+j(1 \cdot 2\pi)t} + e^{-j(1 \cdot 2\pi)t}}{2}$
	2 Hz 2 cycles / sec	$\cos(2 \cdot 2\pi t) = \frac{e^{+j(2 \cdot 2\pi)t} + e^{-j(2 \cdot 2\pi)t}}{2}$
	3 Hz 3 cycles / sec	$\cos(3 \cdot 2\pi t) = \frac{e^{+j(3 \cdot 2\pi)t} + e^{-j(3 \cdot 2\pi)t}}{2}$
	4 Hz 4 cycles / sec	$\cos(4 \cdot 2\pi t) = \frac{e^{+j(4 \cdot 2\pi)t} + e^{-j(4 \cdot 2\pi)t}}{2}$
	5 Hz 5 cycles / sec	$\cos(5 \cdot 2\pi t) = \frac{e^{+j(5 \cdot 2\pi)t} + e^{-j(5 \cdot 2\pi)t}}{2}$
	6 Hz 6 cycles / sec	$\cos(6\cdot 2\pi t) = \frac{e^{+j(6\cdot 2\pi)t} + e^{-j(6\cdot 2\pi)t}}{2}$
	7 Hz 7 cycles / sec	$\cos(7 \cdot 2\pi t) = \frac{e^{+j(7 \cdot 2\pi)t} + e^{-j(7 \cdot 2\pi)t}}{2}$
$\uparrow \uparrow \uparrow$		

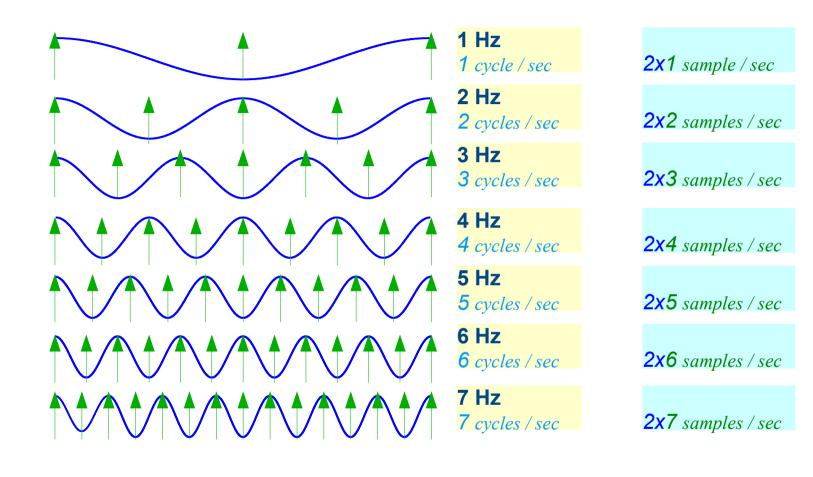
Signals with Harmonic Frequencies (2)



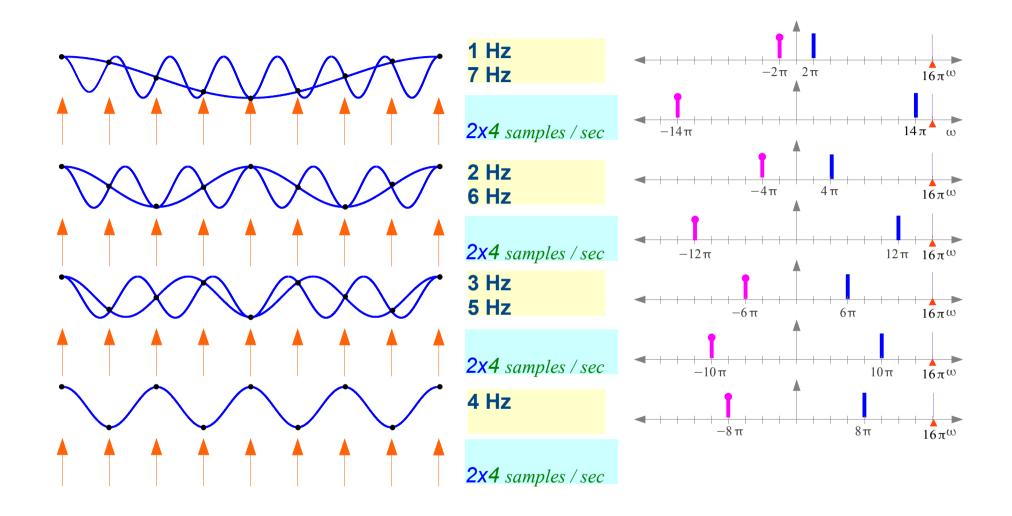
Sampling Frequency



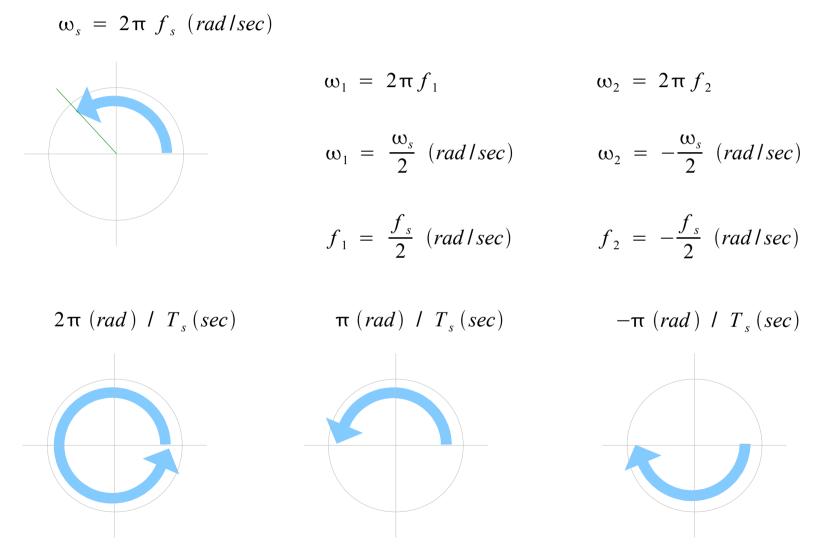
Nyquist Frequency



Aliasing



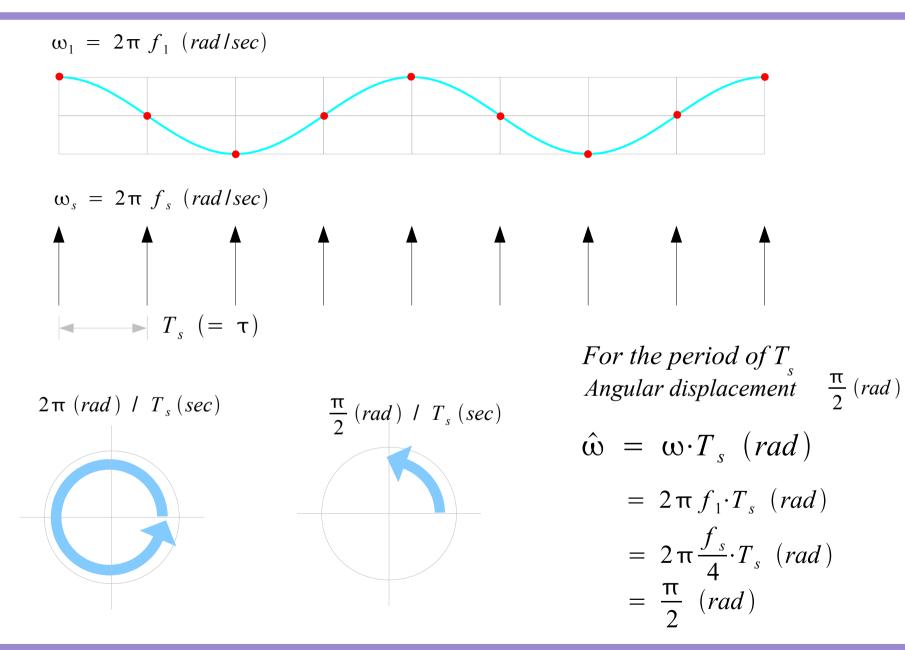
Sampling



5B Up-Sampling

Young Won Lim 11/8/12

Sampling



Angular Frequencies in Sampling

continuous-time signals

Signal Frequency

$$f_0 = \frac{1}{T_0}$$

Signal Angular Frequency

$$\omega_0 = 2\pi f_0 (rad/sec)$$

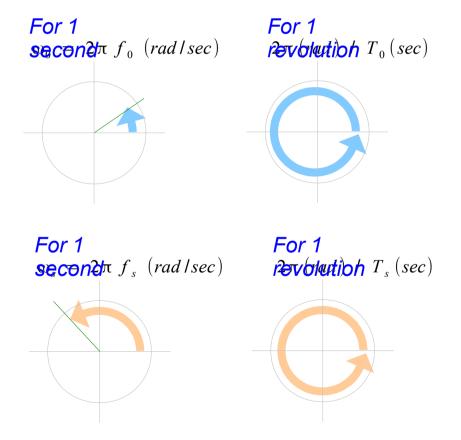
sampling sequence

Sampling Frequency

$$f_s = \frac{1}{T_s}$$

Sampling Angular Frequency

$$\omega_s = 2\pi f_s (rad lsec)$$



References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
- [4] R. Cristi, "Modern Digital Signal Processing"