General Vector Space (3A)

Young Won Lim 11/26/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/26/12

Vector Space

V: non-empty set of objects				
defined operations:	addition scalar multiplication	u + v <i>k</i> u		
if the following axioms are satisfied for all object u , v , w and all scalar k , m \checkmark \checkmark \lor				
1. if u and v are objects in V , then $\mathbf{u} + \mathbf{v}$ is in V 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ 4. $0 + \mathbf{u} = \mathbf{u} + 0 = \mathbf{u}$ (zero vector) 5. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = 0$ 6. if <i>k</i> is any scalar and u is objects in V , then <i>k</i> u is in V 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ 9. $k(m\mathbf{u}) = (km)\mathbf{u}$ 10. $1(\mathbf{u}) = \mathbf{u}$				

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then u + v is in W

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace Test (1)

a subset W of a vector space V

If the subset W is itself a vector space

the subset W is a subspace of V

axioms not inherited by $\ensuremath{\mathsf{W}}$

1. if **u** and **v** are objects in W, then u + v is in W 2. u + v = v + u3. u + (v + w) = (u + v) + w4. 0 + u = u + 0 = u (zero vector) 5. u + (-u) = (-u) + (u) = 06. if *k* is any scalar and **u** is objects in W, then *k***u** is in W 7. k(u + v) = ku + kv8. (k + m)u = ku + mu9. k(mu) = (km)u10. 1(u) = u

Subspace Test (2)

a subset W of a vector space V

if $\mathbf{u}, \mathbf{v} \in \mathbf{W}$, then $\mathbf{u} + \mathbf{v} \in \mathbf{W}$ if k: a scalar, $\mathbf{u} \in \mathbf{W}$, then $k\mathbf{u} \in \mathbf{W}$

the subset W is a **subspace** of V

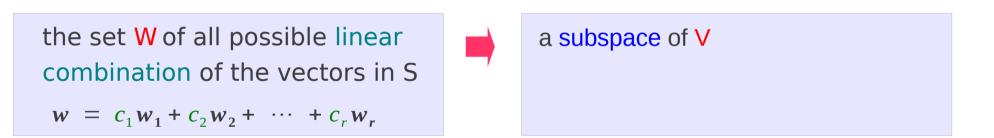
1. if u and v are objects in W, then u + v is in W 2. u + v = v + u3. u + (v + w) = (u + v) + w4. 0 + u = u + 0 = u (zero vector) 5. u + (-u) = (-u) + (u) = 06. if k is any scalar and u is objects in W, then ku is in W 7. k(u + v) = ku + kv8. (k + m)u = ku + mu9. k(mu) = (km)u10. 1(u) = u

Building Subspaces

if W_1, W_2, \dots, W_n are subspaces of a vector space of V

the intersection of these subspaces are also a subspace of ${\sf V}$

 $S = \{w_{1,}w_{2,} \cdots, w_{r}\}$ a nonempty set of a vector space V



the set W of is the smallest subspace of V that contains *all of the vectors* in S any other subspace that contains those vectors contains W`

Spanning Set

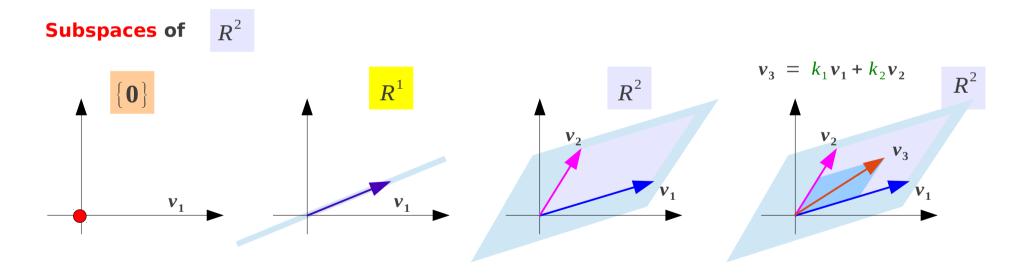
 $S_1 = \{v_1, v_2, \cdots, v_r\}$ a nonempty set of a vector space V $S_2 = \{w_1, w_2, \cdots, w_k\}$ a nonempty set of a vector space V

$$span\{v_{1}, v_{2}, \cdots, v_{r}\} = span\{w_{1}, w_{2}, \cdots, w_{k}\}$$

each vector in S_1 is a linear combination of the vectors in S_2 each vector in S_2 is a linear combination of the vectors in S_1

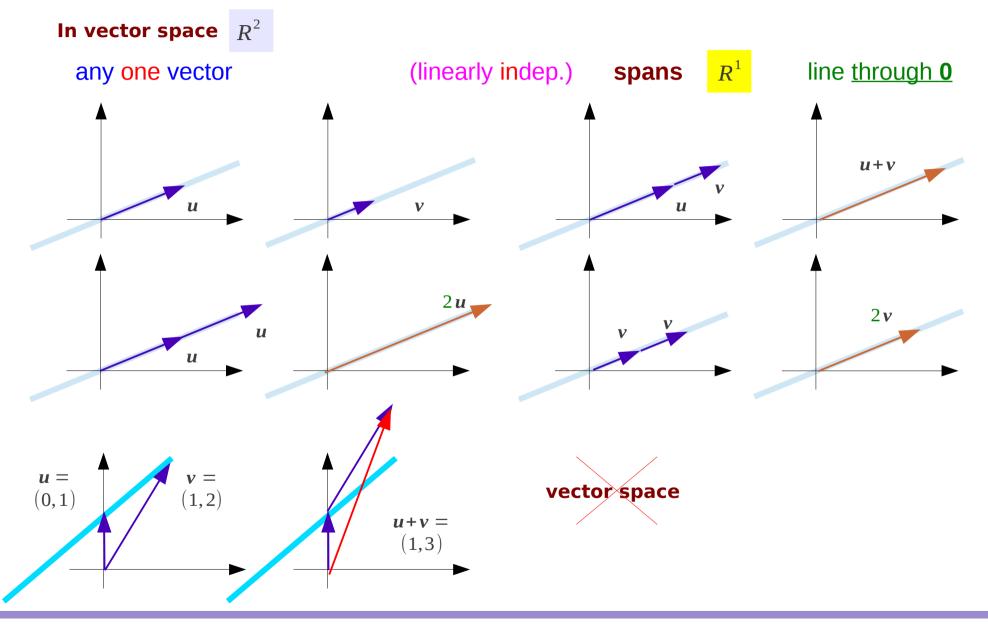
Subspace Example (1)

In vector space R^2



General (3A) Vector Space

Subspace Example (2)



General (3A) Vector Space

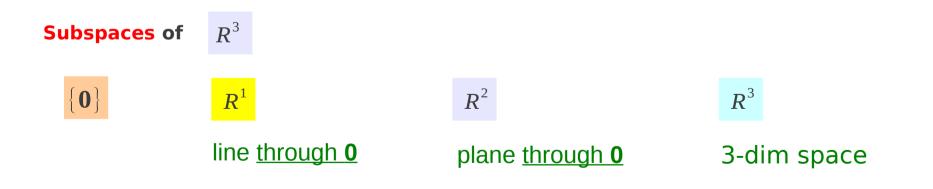
11

Young Won Lim 11/26/12

Subspace Example (3)

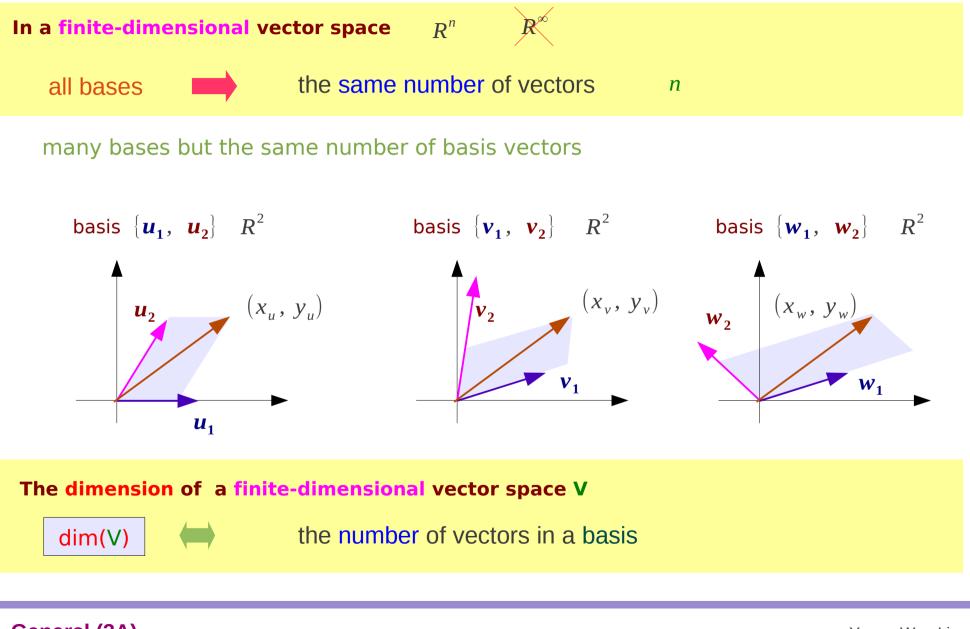
In vector space R^3

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any two non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^{3}	3-dim space
	(linearly dep.)	spans	R^3	3-dim space

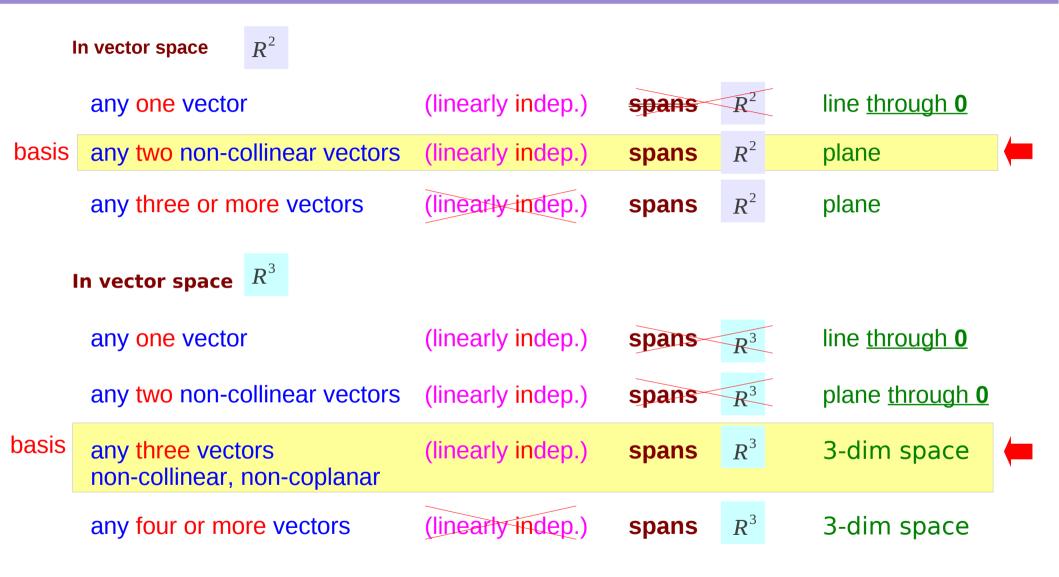


Genera	d ((3A)
Vector	S	pace

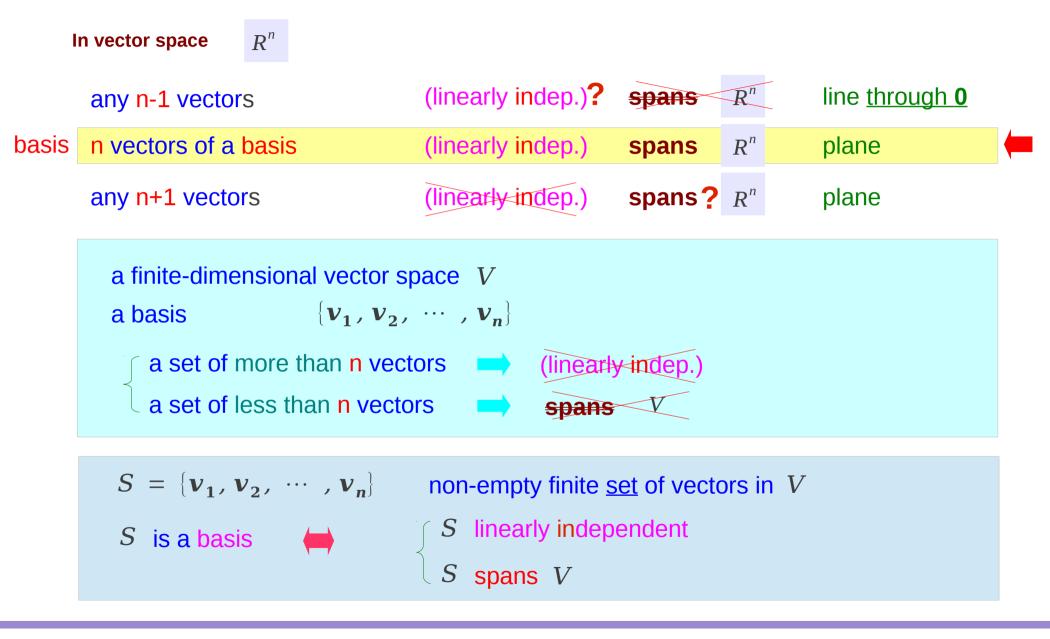
Dimension



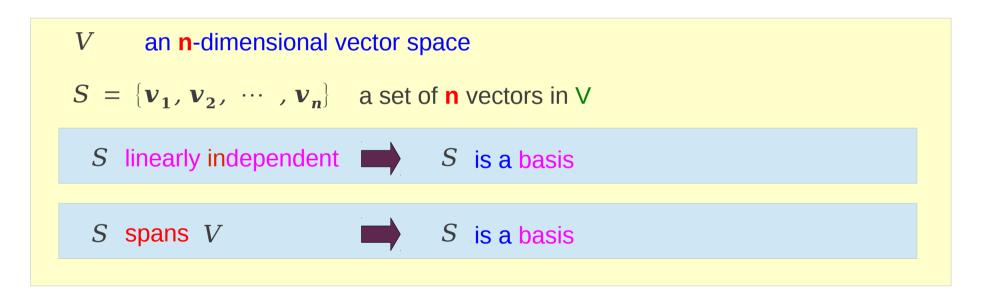
Dimension of a Basis (1)



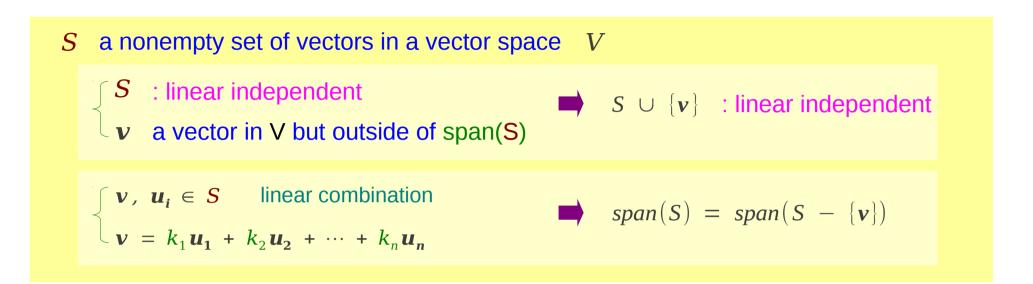
Dimension of a Basis (2)

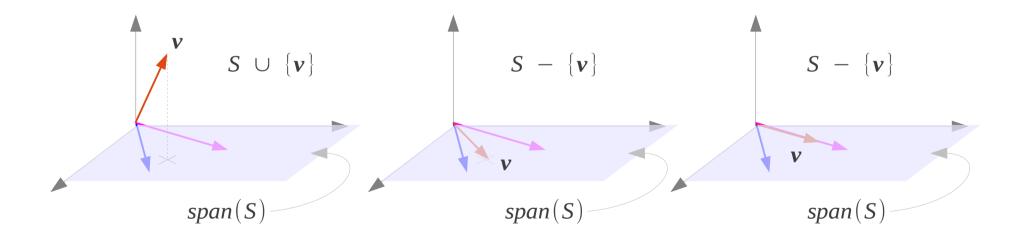


Basis Test



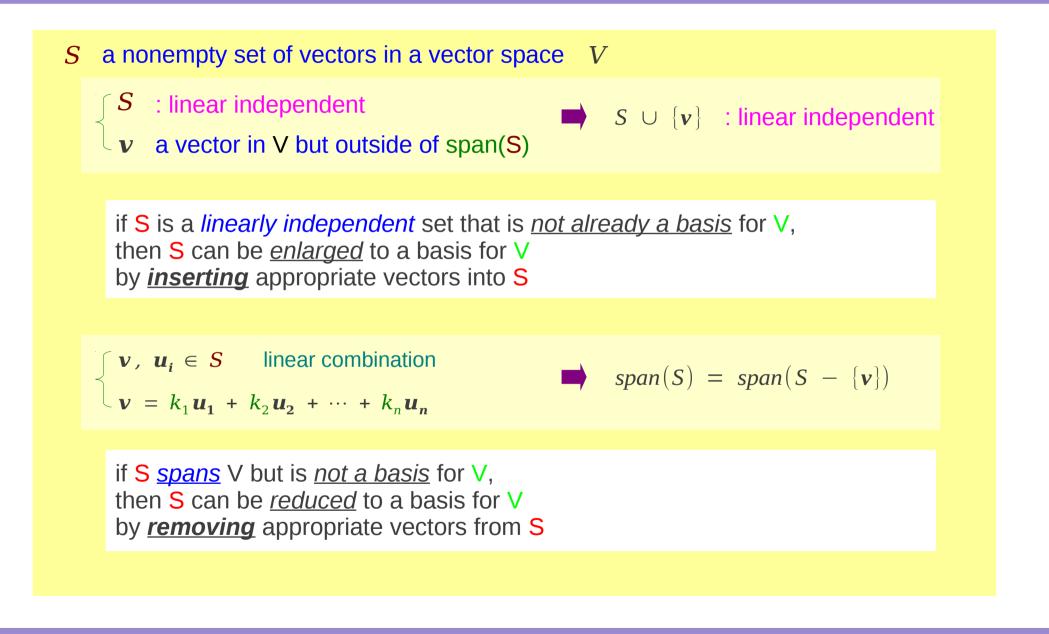
Plus / Minus Theorem





General	(3A)
Vector S	pace

Finding a Basis



Vectors in a Vector Space

S a nonempty set of vectors in a vector space V

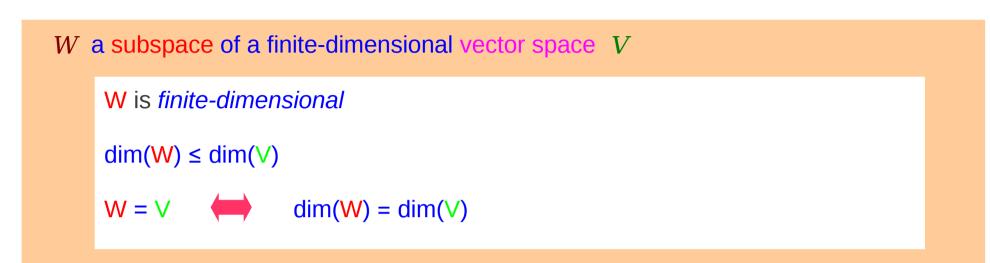
if **S** is a *linearly independent* set that is <u>not already a basis</u> for V, then **S** can be <u>enlarged</u> to a basis for V by <u>inserting</u> appropriate vectors into **S**

Every <u>linearly independent</u> set in a subspace is either a **basis** for that subspace or can be **extended to a basis** for it

if S <u>spans</u> V but is <u>not a basis</u> for V, then S can be <u>reduced</u> to a basis for V by <u>**removing**</u> appropriate vectors from S

Every <u>spanning set</u> for a subspace is either a **basis** for that subspace or has a **basis as a subset**

Dimension of a Subspace



Vector Space Examples

{ 0 }	
R^n	
${m M}_{mn}$	mxn matrix
$F(-\infty,+\infty)$	real-valued functions in the interval $(-\infty, +\infty)$
$C(-\infty,+\infty)$	real-valued continuous functions in the interval $(-\infty, +\infty)$
$C^1(-\infty,+\infty)$	real-valued continuously differentiable functions in $(-\infty, +\infty)$
${P}_{\infty}$	$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$

the solution space Ax = 0 in **n** unknowns R^n

Real-Valued Functions (1)

V the set of real-valued functions

defined at every x in $(-\infty, +\infty)$

$$u = u(x)$$

 $v = v(x)$
 $u+v = u(x)+v(x)$
 $ku = ku(x)$

```
1. if u and v are objects in V, then u + v is in V

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in V, then ku is in V

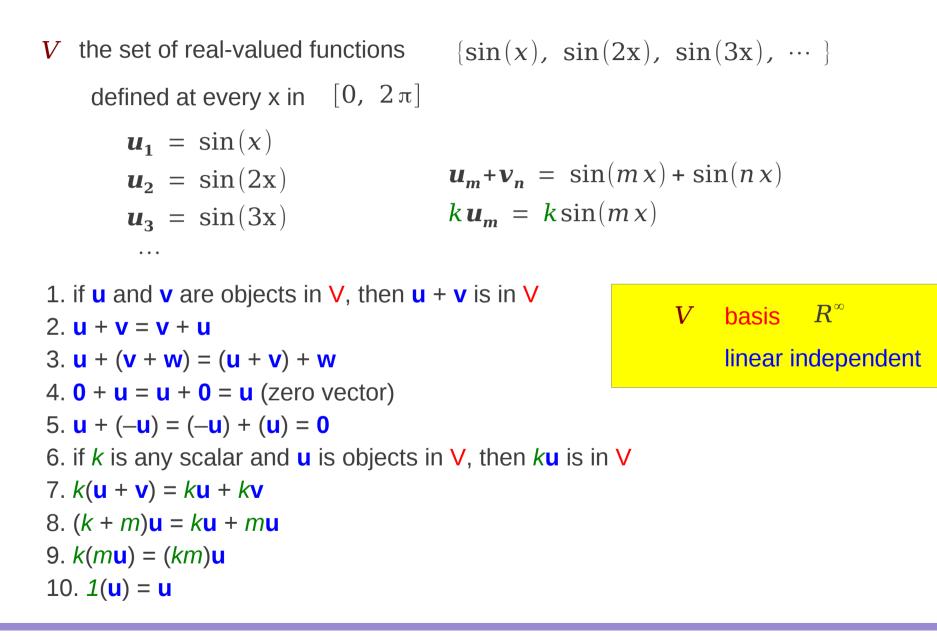
7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Real-Valued Functions (2)



References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,