Background (1A)

Copyright (c) 2010, 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Complex Multiplication

Given Complex Value

$$
C=I_{c}+j Q_{c}
$$

Rotated Complex Value

$$
C^{\prime}=I_{c}{ }^{\prime}+j Q_{c}{ }^{\prime}
$$

Rotation Value

$$
R=I_{r}+j Q_{r}
$$

$$
\begin{aligned}
C^{\prime} & =C \quad R \\
I_{c}^{\prime}+j Q_{c}^{\prime} & =\left(I_{c}+j Q_{c}\right) \cdot\left(I_{r}+j Q_{r}\right) \\
& =\left(I_{c} I_{r}-Q_{c} Q_{r}\right)+j\left(Q_{c} I_{r}+I_{c} Q_{r}\right)
\end{aligned}
$$

Adding / Subtracting Phase

To add R' phase to C

To sub R' phase to C

$C^{\prime}=C \quad . \quad R$

$$
\begin{aligned}
I_{c}^{\prime}+j Q_{c}^{\prime} & =\left(I_{c}+j Q_{c}\right) \cdot\left(I_{r}+j Q_{r}\right) \\
& =\left(I_{c} I_{r}-Q_{c} Q_{r}\right)+j\left(Q_{c} I_{r}+I_{c} Q_{r}\right)
\end{aligned}
$$

$$
C^{\prime}=C \quad \cdot \quad R^{*}
$$

$$
I_{c}{ }^{\prime}+j Q_{c}{ }^{\prime}=\left(I_{c}+j Q_{c}\right) \cdot\left(I_{r}-j Q_{r}\right)
$$

$$
=\left(I_{c} I_{r}+Q_{c} Q_{r}\right)+j\left(Q_{c} I_{r}-I_{c} Q_{r}\right)
$$

Adding / Subtracting 90 Degrees

To add R' phase to C

To sub R' phase to C

$C^{\prime}=C \quad . \quad R$

$$
\begin{aligned}
I_{c}{ }^{\prime}+j Q_{c}^{\prime} & =\left(I_{c}+j Q_{c}\right) \cdot(0+j) \\
& =\left(-Q_{c}\right)+j\left(I_{c}\right)
\end{aligned}
$$

$$
C^{\prime}=C \quad \cdot \quad R^{*}
$$

$$
I_{c}{ }^{\prime}+j Q_{c}{ }^{\prime}=\left(I_{c}+j Q_{c}\right) \cdot(0-j)
$$

$$
=\left(Q_{c}\right)+j\left(-I_{c}\right)
$$

Adding / Subtracting atan(K)

To add R' phase to C

I_{c}	$j Q_{c}$
	Δ
1	ΔK

To sub R' phase to C

$C^{\prime}=C \quad . \quad R$

$$
\begin{aligned}
I_{c}{ }^{\prime}+j Q_{c}^{\prime} & =\left(I_{c}+j Q_{c}\right) \cdot(1+j K) \\
& =\left(I_{c}-K Q_{c}\right)+j\left(Q_{c}+K I_{c}\right) \\
& =\left(I_{c}-2^{-L} Q_{c}\right)+j\left(Q_{c}+2^{-L} I_{c}\right)
\end{aligned}
$$

$$
C^{\prime}=C \quad \cdot R^{*}
$$

$$
I_{c}^{\prime}+j Q_{c}^{\prime}=\left(I_{c}+j Q_{c}\right) \cdot(1-j K)
$$

$$
=\left(I_{c}+K Q_{c}\right)+j\left(Q_{c}-K I_{c}\right)
$$

$$
=\left(I_{c}+2^{-L} Q_{c}\right)+j\left(Q_{c}-2^{-L} I_{c}\right)
$$

$$
K=\frac{1}{2^{L}}, \quad L=0,1,2, \cdots
$$

$$
\begin{aligned}
& K=\frac{1}{2^{L}}, \quad L=0,1,2, \cdots
\end{aligned}
$$

1A Background

1A Background

1A Background

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
[4] CORDIC FAQ, www.dspguru.com

