Introduction to Systems of Linear Equations

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Linear Equations

$$
\begin{aligned}
& \text { 2-dim } \quad \text { Line equation } \\
& a x+b y=c \quad(\mathrm{a}, \mathrm{~b} \text { not both } 0)
\end{aligned}
$$

3-dim \quad Plane equation
$a x+b y+c z=d \quad(\mathrm{a}, \mathrm{b}, \mathrm{c}$ not both 0$)$
n-dim \quad Hyper-Plane equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \quad\left(a_{1} \text { not both } 0\right)
$$

| $(\mathrm{n}=2)$ |
| :--- | :--- |
| $(\mathrm{n}=3)$ |$\quad a_{1} x_{1}+a_{2} x_{2}=b \quad a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=b \quad \square \quad a x+b y=c \quad$| $a x+b y+c z=d$ |
| :--- |

Homogeneous Linear Equations

$$
\begin{aligned}
& \text { 2-dim } \quad \text { Line equation } \\
& a x+b y=0 \quad(\mathrm{a}, \mathrm{~b} \text { not both } 0)
\end{aligned}
$$

3-dim \quad Plane equation

$$
a x+b y+c z=0 \quad(a, b, c \text { not both } 0)
$$

n-dim \quad Hyper-Plane equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0 \quad\left(a_{i} \text { not both } 0\right)
$$

| $(\mathrm{n}=2)$ |
| :--- | :--- |
| $(\mathrm{n}=3)$ |$\quad a_{1} x_{1}+a_{2} x_{2}=0 \quad a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0 \quad \square \quad a x+b y=0, \quad a x+b y+c z=0$

Linear Systems

System of Linear Equation
$($ Eq 1$) \Rightarrow a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$
$\left(\right.$ Eq 2) $\Rightarrow a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
$\left.(\mathrm{Eq} \mathrm{m}) \square a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots \quad+a_{m n} x_{n}=b_{m}\right)$
n unknowns

Linear Systems of 2 Unknowns

$\left(\right.$ Eq 1) $\Rightarrow a_{11} x_{1}+a_{12} x_{2}=b_{1}$
$\left(\right.$ Eq 2) $\Rightarrow a_{21} x_{1}+a_{22} x_{2}=b_{2}$

One solution
(Eq 1=2)

Too many solutions

No solution

Linear Systems of 2 Unknowns

$$
\left\{\begin{array}{c}
x-y=1 \\
2 x+y=6 \\
2 x-2 y=2 \\
2 x+y=6 \\
-3 y=-4 \\
\left(\frac{7}{3}, \frac{4}{3}\right)
\end{array}\right.
$$

$\left\{\begin{array}{c}4 x-2 y=1 \\ 16 x-8 y=4\end{array}\right.$
$4 x-2 y=1$
$4 x-2 y=1$
$0=0$
$\left\{\begin{array}{c}x+y=4 \\ 3 x+3 y=6\end{array}\right.$
$x+y=4$
$x+y=2$
$0>2$

One solution

Too many solutions
(Eq 1=2)

(Eq 1)
(Eq 2)
No solution

Linear Systems of 3 Unknowns

(Eq 1)
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
$($ Eq 2$) \mapsto a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}$

Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& {\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right]\left(\begin{array}{l}
x_{1}
\end{array}\right)=\left(\begin{array}{l}
b_{1}
\end{array}\right]} \\
& \sum_{\substack{\text { row index } \\
\text { col index } \\
\text { mxn Matrix }}}^{\substack{n \\
\text { row index } \\
\text { nx1 Vector } \\
x_{1 j}}}
\end{aligned}
$$

Linear Equations

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

Linear Equations

Storing Magnetic Energy

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

