Idea (1A)

- Rising Clock Edge
- Falling Clock Edge

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

The Butterfly Operations

$$
\begin{aligned}
& x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{0}-\omega^{k} x_{1}
\end{aligned}
$$

The Butterfly Operations

$$
\begin{aligned}
& x_{0}^{\prime}= x_{0}+\omega^{k} x_{1} \\
& x_{1}^{\prime}= x_{0}-\omega^{k} x_{1} \\
& x_{0}^{\prime}= x_{0}+\omega^{k} x_{1} \\
& x_{0}=x_{0}^{\prime}-\omega^{k} x_{1} \\
& x_{1}^{\prime}= x_{0}-\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{1}^{\prime}-\omega^{k} x_{1}-\omega^{k} x_{1} \\
& x_{1}^{\prime}= x_{0}^{\prime}-2 \omega^{k} x_{1}
\end{aligned}
$$

The Butterfly Operations

\square

only one multiplier is needed

The Butterfly Operations

$$
\begin{gathered}
x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
x_{1}^{\prime}=x_{0}-\omega^{k} x_{1} \\
x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
x_{1}^{\prime}=x_{0}^{\prime}-2 \omega^{k} x_{1} \\
x_{0} \\
\quad x_{0}^{\prime} \\
\text { add < }
\end{gathered}
$$

Combining CORDIC architecture ?
Some background survey on CORDIC + FFT Architecture
Different level of parallelism
High fanout - mux, adder

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

