BJT Bias

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Common Base (1)

Electron Flow

Current Flow

Common Base (2)

Current Flow

Common Emitter (1)

Electron Flow

Current Flow

Common Emitter (2)

Electron Flow

Current Flow

Common Emitter (2)

Current Flow

Maintain Magnetic Field

Initial

Final

No Energy in magnetic field

Induced EMF

Storing Magnetic Energy V_{+}

Dissipate Magnetic Energy

Pulse

i_{L}

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

v_{L}

$$
\omega \uparrow \quad v_{L} \downarrow \quad x_{L} \uparrow
$$

Phasor

Sinusoid (Sine Waves)
$A \cos (\omega t+\theta)$
$\begin{cases}\text { Amplitude } & A \\ \text { Angular Frequency } & \omega \\ \text { Angular Frequency } & \theta\end{cases}$

1. Representation using Euler's Formula

$$
A \cos (\omega t+\theta)=\frac{A}{2} \cdot e^{+i(\omega t+\theta)}+\frac{A}{2} \cdot e^{-i(\omega t+\theta)}
$$

2. Representation using Real Part

$$
\begin{aligned}
A \cos (\omega t+\theta) & =\operatorname{Re}\left\{A e^{i(\omega t+\theta)}\right\}=\operatorname{Re}\left\{A e^{i \theta} \cdot e^{i \omega t}\right\} \\
& \Rightarrow A e^{i \theta} \cdot e^{i \omega t} \\
& \Rightarrow A e^{i \theta} \\
& \Rightarrow A \Varangle \theta
\end{aligned}
$$

Phase Lags and Leads

$$
\begin{array}{lll}
\frac{d}{d x} f(x)=\cos (x) & \text { leads } & f(x)=\sin (x) \\
\frac{d}{d x} f(x)=-\sin (x) & \text { leads } & f(x)=\cos (x) \\
\int f(x) d x=-\cos (x)+C & \text { lags } & f(x)=\sin (x) \\
\int f(x) d x=\sin (x)+C & \text { lags } & f(x)=\cos (x)
\end{array}
$$

$$
\begin{array}{lllll}
\frac{d}{d x} f(x) & \text { leads } & f(x) & \text { by } \frac{\pi}{2} \\
\int f(x) d x & \text { lags } & f(x) & \text { by } \frac{\pi}{2}
\end{array}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

