CLTI Correlation (2A)

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Correlation

How signals move relative to each other

Positively correlated the same direction

Average of product > product of averages

Negatively correlated the opposite direction

Average of product < product of averages

Uncorrelated

CrossCorrelation for Power Signals

Energy Signal

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y^*(t+\tau) dt$$
$$= \int_{-\infty}^{+\infty} x(t-\tau) y^*(t) dt$$

Energy Signal real x(t), y(t)

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t)y(t+\tau) dt$$
$$= \int_{-\infty}^{+\infty} x(t-\tau)y(t) dt$$

Power Signal

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) y^{*}(t+\tau) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t-\tau) y^{*}(t) dt$$

Power Signal real x(t), y(t)

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) y(t+\tau) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t-\tau) y(t) dt$$

Periodic Power Signal

$$R_{xy}(\tau) = \frac{1}{T} \int_{T} x(t) y(t+\tau) dt$$

Correlation and Convolution

real
$$x(t)$$
, $y(t)$

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) y(t+\tau) dt = \int_{-\infty}^{+\infty} x(t-\tau) y(t) dt$$

$$x(t)*y(t) = \int_{-\infty}^{+\infty} x(t-\tau)y(\tau) d\tau$$

$$R_{xy}(\tau) = x(-\tau) * y(\tau)$$

$$x(-t)$$
 \longrightarrow $X^*(f)$

$$R_{xy}(\tau)$$

$$R_{xy}(\tau) \longleftrightarrow X^*(f)Y(f)$$

Correlation for Periodic Power Signals

$$R_{xy}(\tau) = \frac{1}{T} \int_{T} x(t) y(t+\tau) dt$$

Periodic Power Signal

$$R_{xy}(\tau) = \frac{1}{T}[x(-\tau) * y(\tau)]$$

$$R_{xy}(\tau)$$
 CTFS $X^*[k]Y[k]$ $x[n]*y[n]$ CTFS $N_0Y[k]X[k]$

$$x(t) * y(t)$$
 CTFS $TX[k]Y[k]$

$$x[n] * y[n]$$

$$n$$
] \longleftrightarrow

$$N_0Y[k]X[k]$$

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t)y(t+\tau) dt$$

$$R_{xy}(\tau) = \frac{1}{T} \int_{T} x(t) y(t+\tau) dt$$

Correlation for Power & Energy Signals

One signal – a power signal The other – an energy signal

Use the Energy Signal Version

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t)y(t+\tau) dt$$

Autocorrelation

Energy Signal

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t)x(t+\tau) dt$$

total signal energy

$$R_{xx}(0) = \int_{-\infty}^{\infty} x^2(t) dt$$

$$R_{xx}(0) \geq R_{xx}(\tau)$$

max at zero shift

$$R_{xx}(-\tau) = \int_{-\infty}^{+\infty} x(t)x(t-\tau) dt$$

$$R_{xx}(+\tau) = \int_{-\infty}^{+\infty} x(s+\tau)x(s) ds$$

$$R_{xx}(+\tau) = \int_{-\infty}^{+\infty} x(s+\tau)x(s) ds$$

$$R_{xx}(+\tau) = \lim_{T\to\infty} \frac{1}{T} \int_{T} x(t)x(t-\tau) dt$$

$$R_{xx}(+\tau) = \lim_{T\to\infty} \frac{1}{T} \int_{T} x(s+\tau)x(s) ds$$

$$R_{yy}(\tau) = \int_{-\infty}^{+\infty} x(t-t_0)x(t-t_0+\tau) dt$$

$$R_{yy}(\tau) = \lim_{T \to \infty} \int_{-\infty}^{T} x(t-t_0)x(t-t_0+\tau) dt$$

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(s)x(s+\tau) ds$$

$$V(t) = x(t-t_0)$$

$$R_{xx}(\tau) = \lim_{T \to \infty} \int_{-\infty}^{T} x(s)x(s+\tau) ds$$

Power Signal

$$R_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) x(t+\tau) dt$$

average signal power

$$R_{xx}(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{+\infty} x^2(t) dt$$

$$R_{xx}(0) \geq R_{xx}(\tau)$$

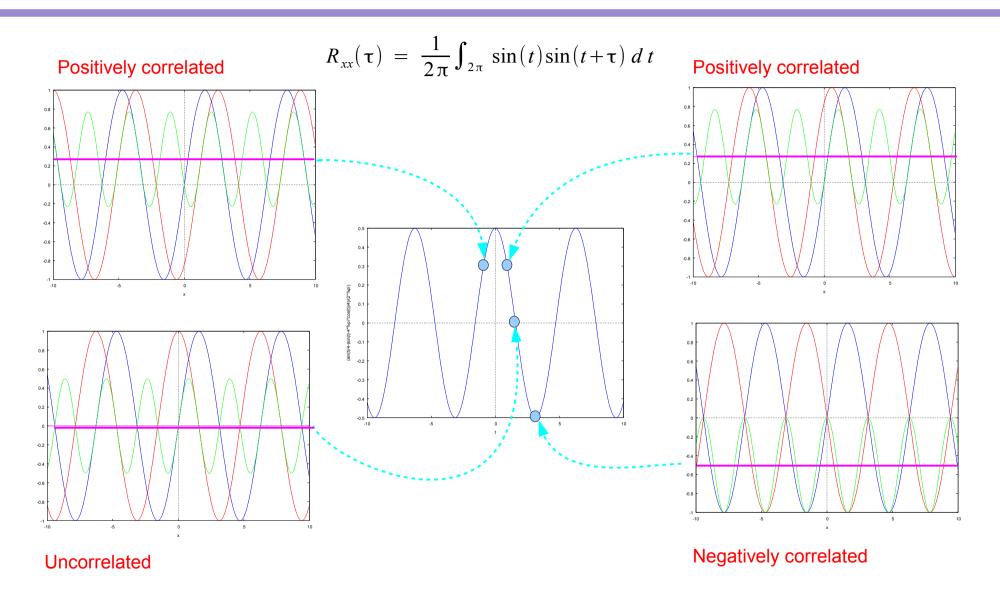
$$R_{xx}(-\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t) x(t-\tau) dt$$

$$R_{xx}(+\tau) = \lim_{T\to\infty} \frac{1}{T} \int_T x(s+\tau)x(s) ds$$

$$R_{yy}(\tau) = \lim_{T \to \infty} \int_{0}^{T} x(t-t_0)x(t-t_0+\tau) dt$$

$$R_{xx}(\tau) = \lim_{T \to \infty} \int_{-\infty}^{T} x(s)x(s+\tau) ds$$

AutoCorrelation for Power Signals



Autocorrelation of Sinusoids

 $R_{r}(\tau) = R_{r}(\tau) + R_{r}(\tau)$

$$\begin{split} x(t) &= A_1 \cos(\omega_1 t + \theta_1) \ + \ A_2 \cos(\omega_2 t + \theta_2) = x_1(t) \ + \ x_2(t) \\ x(t) x(t + \tau) &= \{A_1 \cos(\omega_1 t + \theta_1) \ + \ A_2 \cos(\omega_2 t + \theta_2)\} \ \{A_1 \cos(\omega_1 (t + \tau) + \theta_1) \ + \ A_2 \cos(\omega_2 (t + \tau) + \theta_2)\} \\ &= A_1 \cos(\omega_1 t + \theta_1) A_1 \cos(\omega_1 (t + \tau) + \theta_1) \ + \ A_2 \cos(\omega_2 t + \theta_2) A_2 \cos(\omega_2 (t + \tau) + \theta_2) \\ &+ A_1 \cos(\omega_1 t + \theta_1) A_2 \cos(\omega_2 (t + \tau) + \theta_2) \ + \ A_2 \cos(\omega_2 t + \theta_2) A_1 \cos(\omega_1 (t + \tau) + \theta_1) \\ &\int_T A_1 \cos(\omega_1 t + \theta_1) A_2 \cos(\omega_2 (t + \tau) + \theta_2) dt = 0 \\ &\int_T A_2 \cos(\omega_2 t + \theta_2) A_1 \cos(\omega_1 (t + \tau) + \theta_1) dt = 0 \\ \\ R_r(\tau) &= R_{rl}(\tau) \ + \ R_{r2}(\tau) \end{split}$$

Autocorrelation of Random Signals

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_k t + \theta_k)$$

$$R_x(\tau) = \sum_{k=1}^{N} R_k(\tau)$$
 autocorrelation of $a_k \cos(\omega_k t + \theta_k)$ independent of choice of θ_k random phase shift θ_k the same amplitudes a the same frequencies ω
$$x_k(t) \text{ different look}$$

$$R_k(\tau) \text{ similar look}$$
 the amplitudes a the frequencies ω can be observed in the autocorrelation $R_k(\tau)$ similar look but not exactly the same describes a signal generally, but not exactly – suitable for a random signal

Autocorrelation Examples

AWGN signal

changes rapidly with time current value has no correlation with past or future values even at very short time period random fluctuation except large peak at $\tau=0$

ASK signal: sinusoid multiplied with rectangular pulse

regardless of sin or cos, the autocorrelation is always even function cos wave multiplied by a rhombus pulse

CrossCorrelation Example (1)

$$R_{xv}(\tau) = R_{xv}(-\tau)$$

The largest peak occurs at a shift which is exactly the amount of shift Between x(t) and y(t)

The signal power of the sum depends strongly on whether two signals are correlated Positively correlated vs. uncorrelated

CrossCorrelation Example (2)

$$x_1(t) = \sin(\omega t)$$

$$x_2(t) = \sin(\omega t + \frac{\pi}{2}) = \cos(\omega t)$$

$$x_3(t) = \sin(\omega t + \frac{\pi}{4})$$

$$x_4(t) = \sin(\omega t + \pi)$$

$$R_{12}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \cos(\omega t) dt = 0$$

$$R_{13}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi/4) dt = 0.354$$

$$R_{14}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi/4) dt = -0.5$$

$$f(t) = x_1(t) + x_2(t) = \sin(\omega t) + \sin(\omega t + \frac{\pi}{2})$$

$$= \sin(\frac{(2\omega t + \pi/2)}{2})\cos(-\pi/4)$$

$$= \sin(\omega t + \frac{\pi}{4})\cos(\frac{-\pi}{4}) = 0.707 \sin(\omega t + \frac{\pi}{4})$$
sum of uncorrelated signals

 $g(t) = x_1(t) + x_3(t) = \sin(\omega t) + \sin(\omega t + \frac{\pi}{4})$ $= \sin(\frac{(2\omega t + \pi/4)}{2})\cos(-\pi/8)$ $= \sin(\omega t + \frac{\pi}{8})\cos(\frac{-\pi}{8}) = 0.924\sin(\omega t + \frac{\pi}{4})$ sum of positively correlated signals

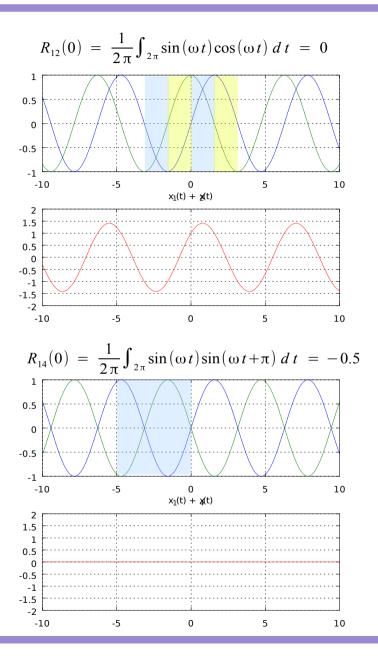
The signal power of the sum depends strongly on whether two signals are correlated

positively correlated vs. uncorrelated

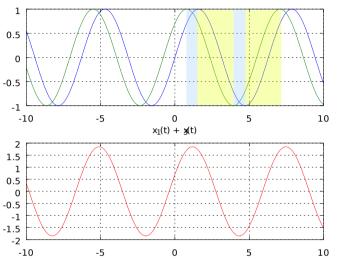
$$h(t) = x_1(t) + x_4(t) = \sin(\omega t) + \sin(\omega t + \pi)$$
$$= \sin(\omega t) - \sin(\omega t)$$
$$= 0$$

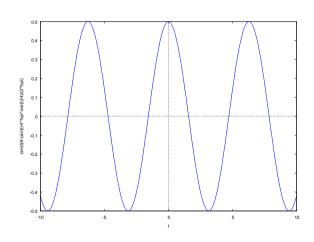
sum of negatively correlated signals

CrossCorrelation Example (3)

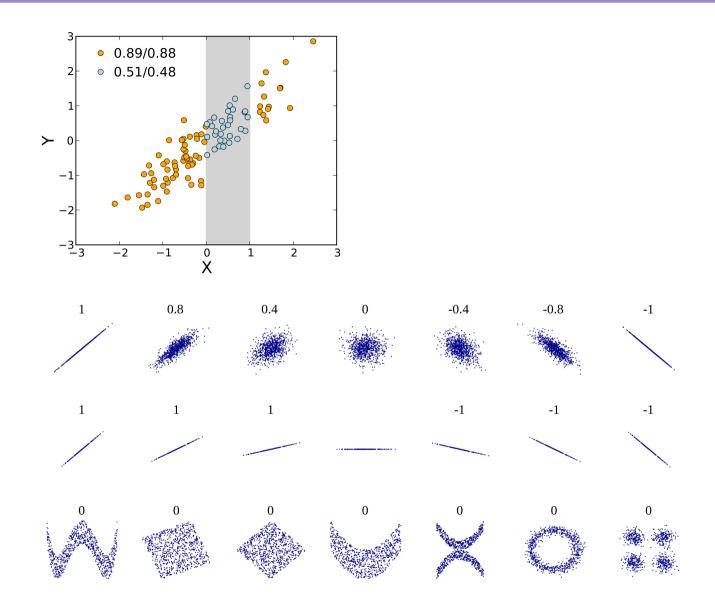


$$R_{13}(0) = \frac{1}{2\pi} \int_{2\pi} \sin(\omega t) \sin(\omega t + \pi/4) dt = 0.354$$





Pearson's product-moment coefficient



ESD (Energy Spectral Density)

Parseval's theorem

$$E_x = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$
$$|X(f)|^2 = \Psi_x(f) \qquad \text{Energy Spectral Density}$$

Real x(t) Even, Non-negative, Real $\Psi_x(f)$

$$E_x = 2 \int_0^{+\infty} \Psi_x(f) df$$

Positively correlated vs. uncorrelated

ESD and Band-pass Filtering

$$E_{y} = 2 \int_{0}^{+\infty} \Psi_{y}(f) df = 2 \int_{0}^{+\infty} |Y(f)|^{2} df = 2 \int_{0}^{+\infty} |H(f)X(f)|^{2} df$$

$$E_{y} = 2 \int_{0}^{+\infty} |H(f)|^{2} \Psi_{x}(f) df = 2 \int_{f_{L}}^{f_{H}} \Psi_{x}(f) df$$

$$\Psi_{y}(f) = |H(f)|^{2} \Psi_{x}(f) = H(f)H^{*}(f)\Psi_{x}(f)$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

ESD and Autocorrelation

$$R_x(t)$$
 $\Psi_x(f)$

$$\Psi_x(f) = |X(f)|^2$$

$$R_x(t)$$
 $X^*(f)X(f)$

$$R_{x}(t) = x(-t)*x(t) = \int_{-\infty}^{+\infty} x(-\tau)x(t-\tau) d\tau$$

$$R_{x}(t) = \int_{-\infty}^{+\infty} x(\tau)x(\tau+t) d\tau$$

$$R_{x}(t) = \int_{-\infty}^{+\infty} x(\tau) x(\tau+t) d\tau$$

Power Spectral Density (PSD)

The ESD of a truncated version of x(t)

$$x_{T}(t) x(t) |t| < \frac{T}{2} rect\left(\frac{t}{T}\right)x(t)$$

$$\Psi_{x_T}(f) = |X_T(f)|^2 \qquad X_T(f) = \int_{-\infty}^{+\infty} x_T(\tau) e^{-2\pi f t} dt = \int_{-T/2}^{+T/2} x_T(\tau) e^{-2\pi f t} dt$$

Average Signal Power

$$G_{X_T}(f) = \frac{\Psi_{X_T}}{T} = \frac{1}{T} |X_T(f)|^2$$

$$G_{x}(f) = \lim_{T \to \infty} G_{X_{T}}(f) = \lim_{T \to \infty} \frac{1}{T} |X_{T}(f)|^{2}$$

The power of a finite signal power signal in a bandwidth $f_L = f_H$

$$2\int_{f_L}^{f_H}G(f)df$$

PSD and Band-pass Filtering

$$G_{v}(f) = |H(f)|^{2}G_{x}(f) = H(f)H^{*}(f)G_{x}(f)$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

References

- [1] http://en.wikipedia.org/
- [2] M.J. Roberts, Signals and Systems,