Signals & Variables (2A)

Inertial & Transport Delay Models

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Inertial Delay

Inertial & Transport

Transport Delay

Inertial & Transport

4

Inertial Delay & Transport Delay

Multiple Assignments to the Same Target

Multiple Sequential Assignments

Inertial & Transport Delay Model (1)

Inertial Delay

The	e simulo	ation time of a new event			
	Before the time of an old one				
	New one <u>overwrites</u> After the time of an old one				
	For the same value				
	Both are kept				
		For different values			
		New one overwrites			

t 2 < t1		New one <u>overwrites</u>	
t1 < t2	v1 = v2	Both are <u>kept</u>	
	$v1 \neq v2$	New one <u>overwrites</u>	

Transport Delay

The simulation time of a **new event**

Before the time of an old one

New one <u>overwrites</u>

After the time of an old one

New one is <u>appended</u>

t2 < t1	New one <u>overwrites</u>
t1 < t2	New one is <u>appended</u>

Inertial & Transport Delay Model (2)

Inertial Delay

Inertial & Transport Delay Model (3)

Transport Delay

Inertial & Transport

3

1

0

2

5

6

7

8 ns

4

Inertial Delay (1)

Multiple Sequential Ass	signments						
process ()		t2 < t1				······	
begin				befor	е.		
X2 <= '1' aft X2 <= '0' aft end process;	er 5 ns; er 3 ns;	0 1 2	Nev 3 4	y one <u>ov</u> 5 6	erwrii 7	⁸ ns	
process () begin		t1 < t2 v1 ≠ v2		► after			2020
X2 <- '1' aft	or 2 ns			Ne	w one	e <u>overv</u>	<u>vrites</u>
X2 <= 1 and $X2 <= '0'$ after the set of	er 5 ns;						
		0 1 2	3 4	5 6	7	⁸ ns	

Inertial Delay (2)

Multiple Sequential Assignments	
process ()	t2 < t1
begin $X2 \iff '1' \text{ after 5 } ns;$ $X2 \iff '1' \text{ after 3 } ns;$ end process;	<i>New one <u>overwrites</u></i>
process () begin	t1 < t2 v1 = v2
X2 <= '0' after 3 ns; X2 <= '0' after 5 ns; end process;	Both are kept 0 1 2 3 4 5 6 7 8 ns

Transport Delay (1)

Transport Delay (2)

Inertial Delay

Multiple Sequential Assignments – Inertial Delay

t2 < t1v1 = v2New one overwrites $v1 \neq v2$ New one overwritest1 < t2v1 = v2Both are kept $v1 \neq v2$ New one overwrites

Transport Delay

Multiple Sequential Assignments – Transport Delay

*t*2 < *t*1 *New stat <u>overwrites</u>*

*t*1 < *t*2 *New stat is <u>appended</u>*

Initial Value

Multiple Concurrent Assignments – Transport Delay

architecture arch of entity ent is
signal test : STD_LOGIC := '0';
begin
test <= transport '1' after 3 ns;</pre>

test <= transport '0' after 5 ns;

end *arch*;

architecture arch of entity ent is
signal test : STD_LOGIC := 'Z';
begin
 test <= transport '1' after 3 ns;
 test <= transport '0' after 5 ns;
end arch;</pre>

Default Value:

'O' is a default value for any driver

test <= transport '0', '1' after 3 ns; test <= transport '0', '0' after 5 ns;</pre>

After 3 ns, there are actually <u>two</u> active drivers; One which drives '0' The other which drives '1'.

0 at 0 ns X at 3 ns X at 5 ns

test <= transport 'Z', '1' after 3 ns; test <= transport 'Z', '0' after 5 ns; Z at 0 ns 1 at 3 ns

X at 5 ns

Multiple Concurrent Assignments

Resolution Function

Inertial Delay

Multiple Concurrent Assignments

Inertial & Transport

Transport Delay

Multiple Concurrent Assignments

function

end process;

0

1

2

3

5

4

6

7

8

ns

Inertial Delay

Multiple Concurrent Assignments

X2 <= A afte X2 <= A afte	r 3 ns; Wire-or r 5 ns; resolution
process ()	function
begin	
• • •	
end process;	

Transport Delay

Multiple Concurrent Assignments

X2 <= A after 3 ns; X2 <= B after 5 ns; process () begin	Wire-or resolution function
••• end process;	

References

- [1] http://en.wikipedia.org/
- [2] J. V. Spiegel, VHDL Tutorial, http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
- [3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL
- [4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems
- [5] D. Smith, HDL Chip Design
- [6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
- [7] VHDL Tutorial VHDL onlinewww.vhdl-online.de/tutorial/
- [8] compgroups.net