Bandpass Sampling (2B)

- •
- •

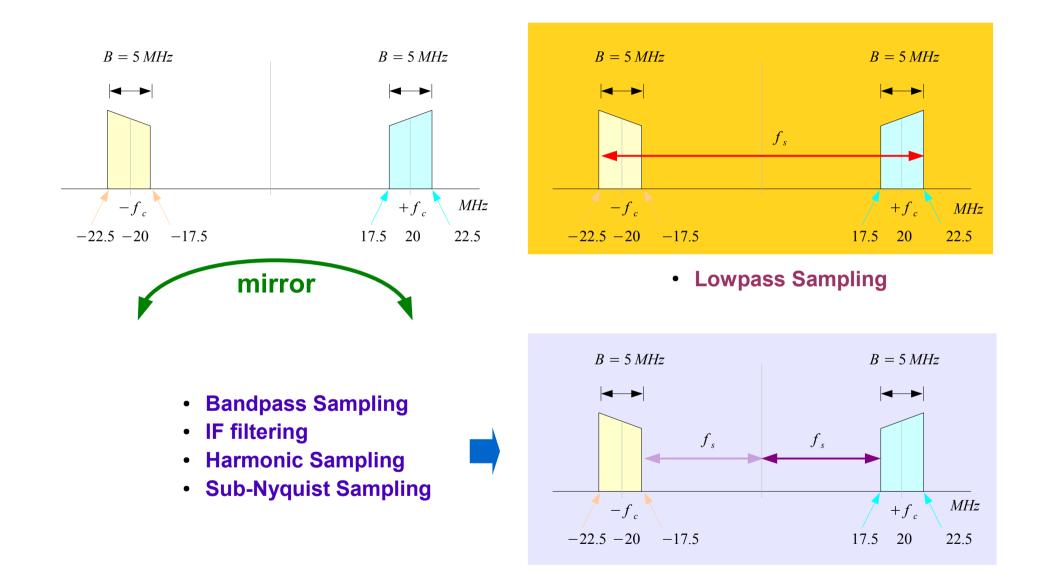
Copyright (c) 2009 - 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

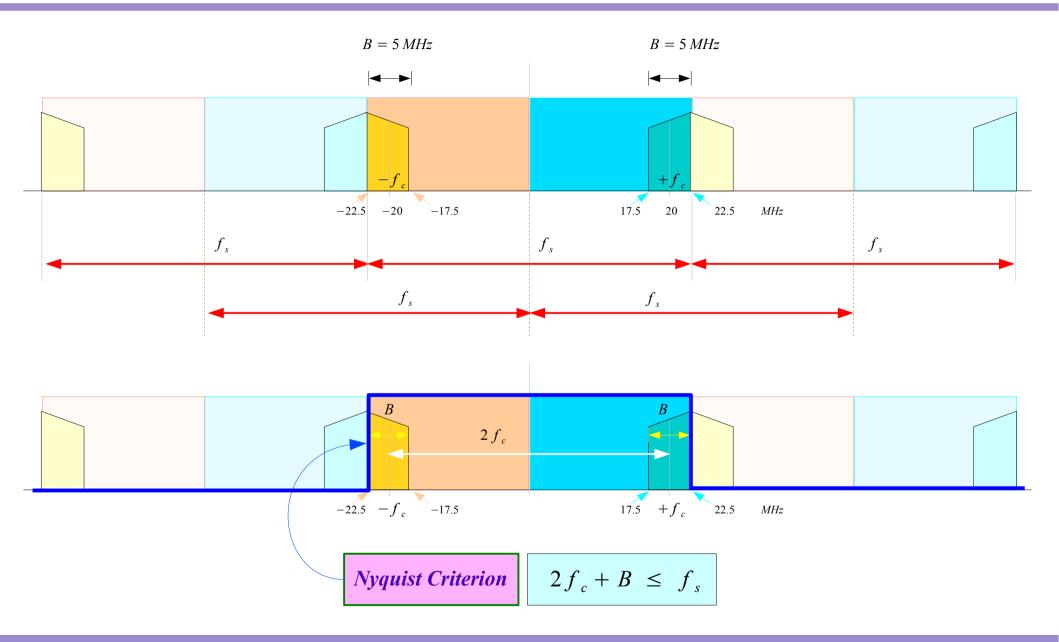
Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Band-limited Signal



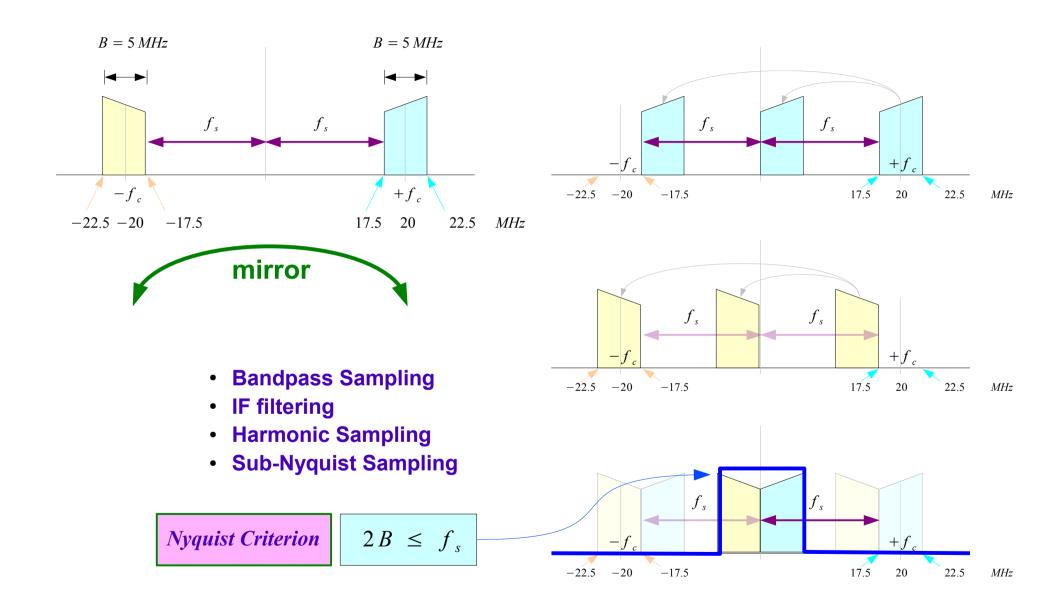
Low-pass Signal Sampling



4

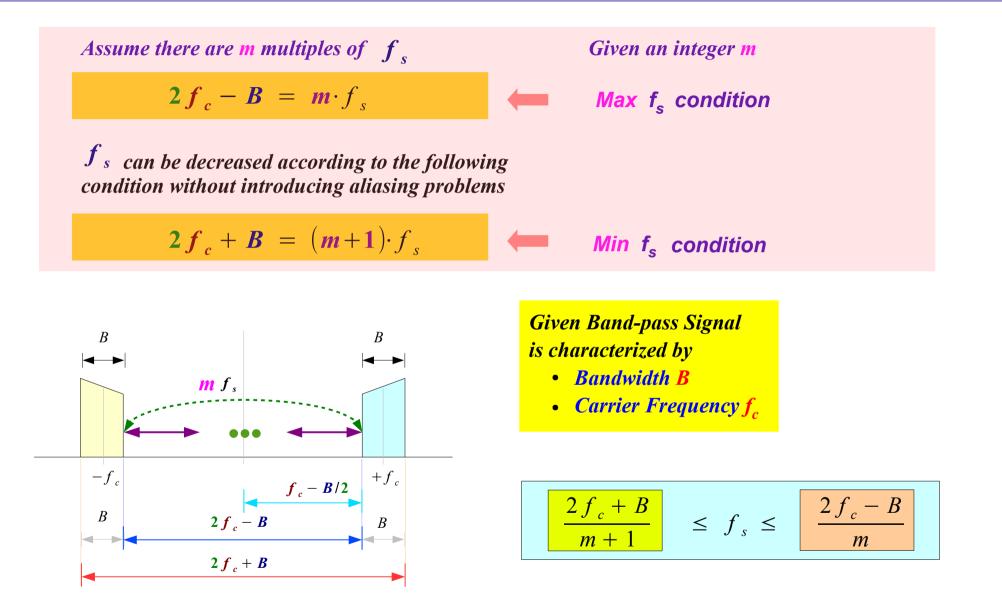
2B Bandpass Sampling

Band-pass Signal Sampling



5

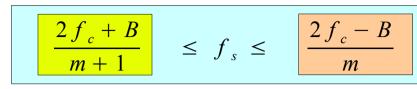
Sampling Frequency f_s (1)



6

2B Bandpass Sampling

Sampling Frequency f_s (2)



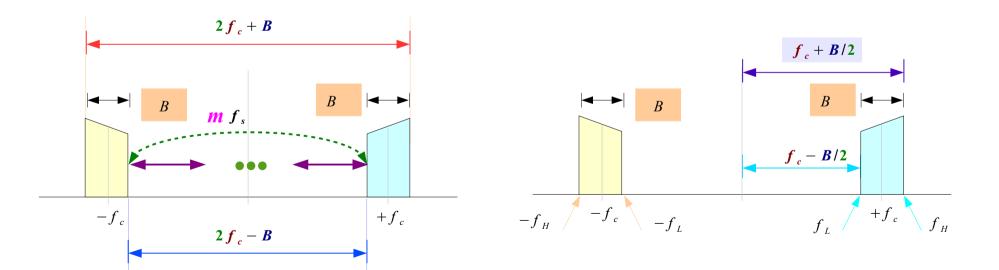
Given Band-pass Signal is characterized by

- Bandwidth B
- Carrier Frequency f_c

Normalization by **B**

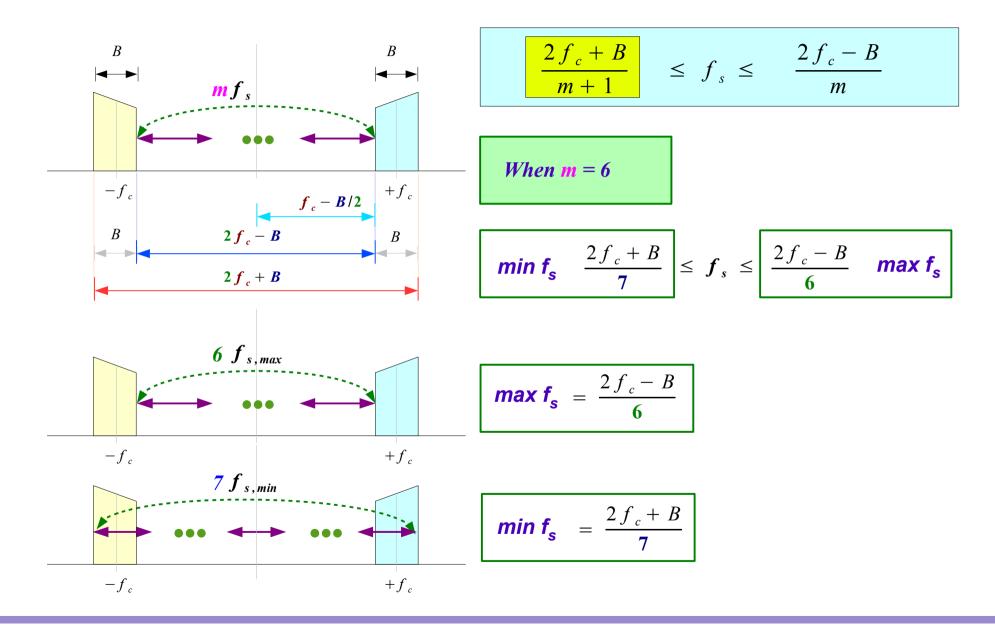
$$\frac{2f_c + B}{(m+1)B} \leq \frac{f_s}{B} \leq \frac{2f_c - B}{mB}$$
$$\frac{2f_H}{(m+1)B} \leq \frac{f_s}{B} \leq \frac{2f_L}{mB}$$

 $f_{H} = f_{c} + B/2$ Highest frequency $f_{L} = f_{c} - B/2$ Lowest frequency



2B Bandpass Sampling

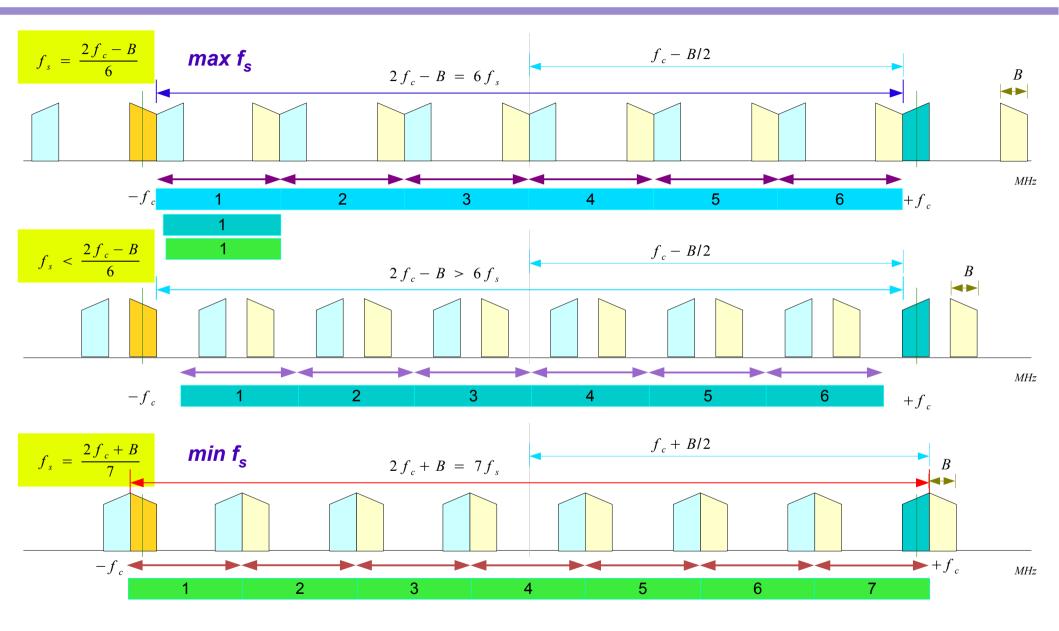
Example m=6 (1)



8

2B Bandpass Sampling

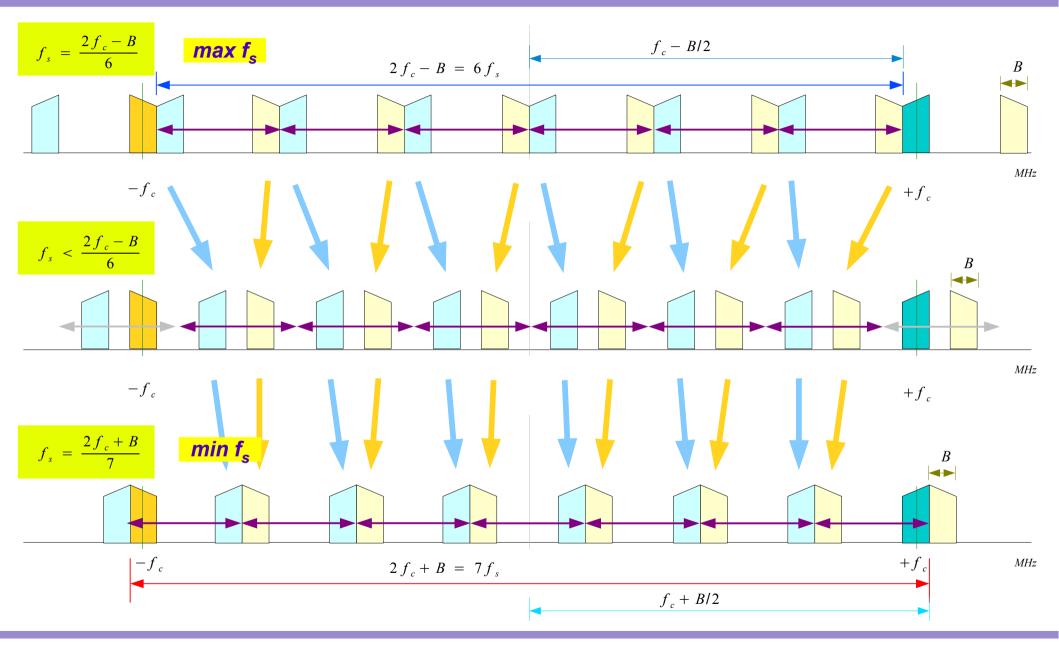
Example m=6 (2)



2B Bandpass Sampling

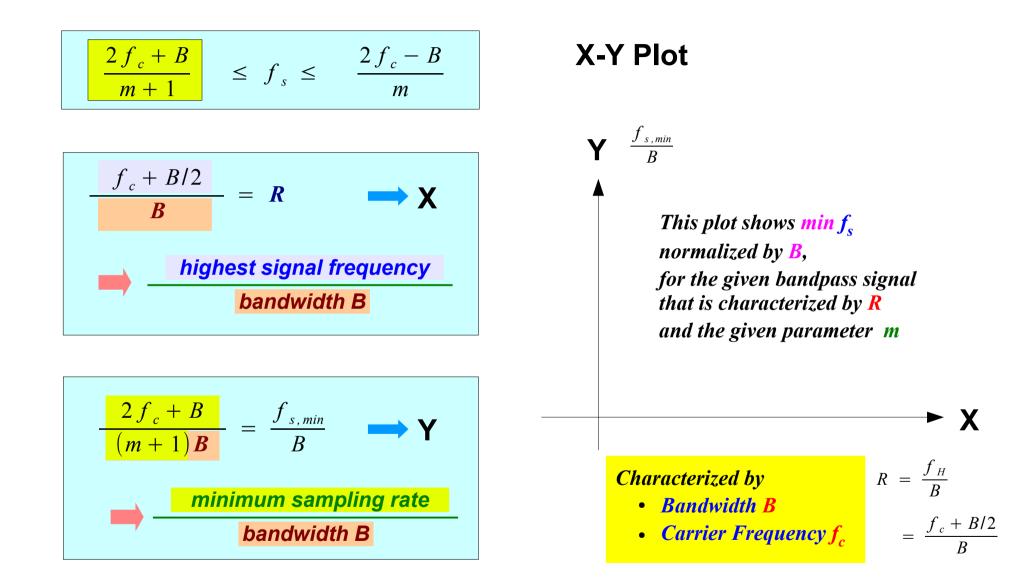
9

Example m=6 (3)

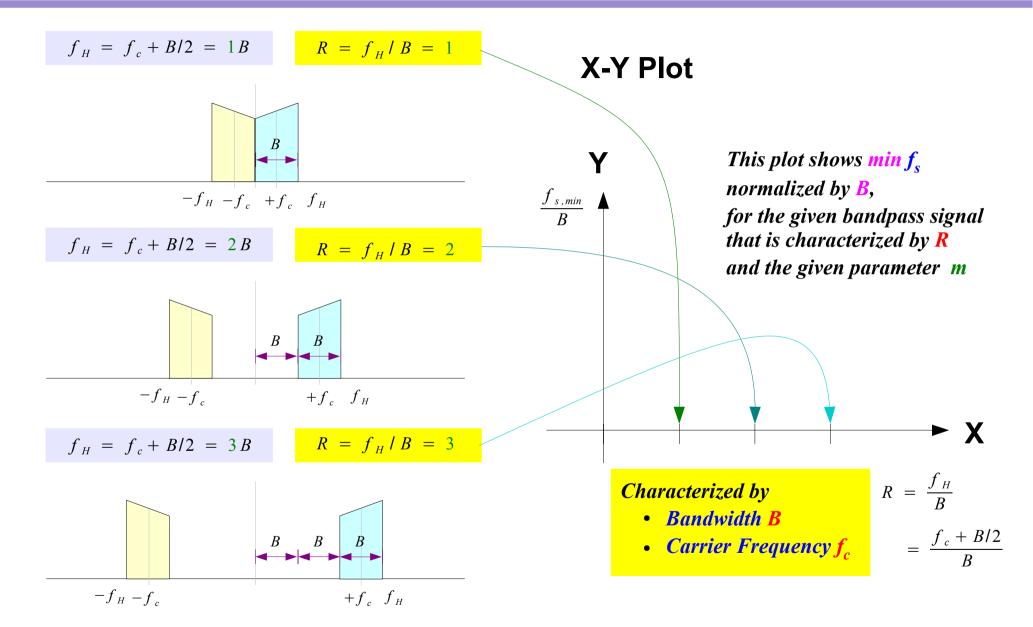


2B Bandpass Sampling

Minimum f_s Plot (1)



Minimum f_s Plot (2)



Minimum f_s Plot (3)

$$\frac{2f_c + B}{m+1} \leq f_s \leq \frac{2f_c - B}{m}$$

$$\frac{f_{H}}{B} = X \qquad \longrightarrow \qquad \frac{f_{c} + B/2}{B} = R$$

$$\frac{f_{s,min}}{B} = Y \qquad \longrightarrow \qquad \frac{2f_{c} + B}{(m+1)B} = \frac{2f_{H}}{(m+1)B}$$

$$g(m, R)$$

$$2f_{c} + B$$

$$B$$

$$-f_{H}$$

$$-f_{c}$$

$$-f_{L}$$

$$f_{L}$$

$$+f_{c}$$

$$f_{H}$$

$$g(m, R) = \frac{2}{(m+1)} \frac{f_H}{B} = \frac{2}{(m+1)} R$$

$$m = 0$$
 $g(0,R) = 2R$
 $slope = 2$
 $m = 1$
 $g(1,R) = R$
 $slope = 1$
 $m = 2$
 $g(2,R) = \frac{2}{3}R$
 $slope = 2/3$
 $m = 3$
 $g(3,R) = \frac{1}{2}R$
 $slope = 1/2$
 $m = 4$
 $g(4,R) = \frac{2}{5}R$
 $slope = 2/5$
 $m = 5$
 $g(5,R) = \frac{1}{3}R$
 $slope = 1/3$
 $m = 6$
 $g(6,R) = \frac{2}{7}R$
 $slope = 2/7$

$$m = 7$$
 $g(7, R) = \frac{1}{4}R$ $slope = 1/4$
 $m = 8$ $g(8, R) = \frac{2}{9}R$ $slope = 2/9$

Minimum f_s Plot (4)

$$g(m, R) = \frac{2}{(m+1)} \frac{f_H}{B} = \frac{2}{(m+1)} R$$

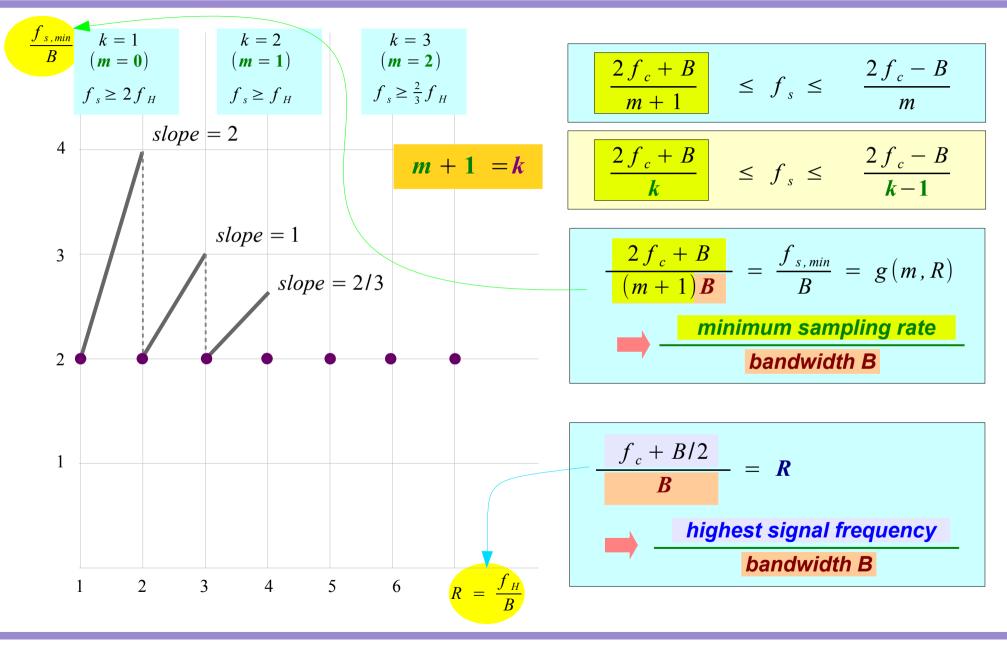
$$m = 0$$
 $g(0, R) = 2R$ $slope = 2$ $m = 1$ $g(1, R) = R$ $slope = 1$ $m = 2$ $g(2, R) = \frac{2}{3}R$ $slope = 2/3$ $m = 3$ $g(3, R) = \frac{1}{2}R$ $slope = 1/2$ $m = 4$ $g(4, R) = \frac{2}{5}R$ $slope = 2/5$ $m = 5$ $g(5, R) = \frac{1}{3}R$ $slope = 1/3$ $m = 6$ $g(6, R) = \frac{2}{7}R$ $slope = 2/7$ $m = 7$ $g(7, R) = \frac{1}{4}R$ $slope = 1/4$ $m = 8$ $g(8, R) = \frac{2}{9}R$ $slope = 2/9$

$$R = m+1$$
 \implies $g(m, m+1) = 2$

m = 0	R = 1	g(0,1) = 2
m = 0		
m = 1	R=2	g(1,2) = 2
m = 2	R=3	g(2,3) = 2
m=3	<i>R</i> = 4	g(3,4) = 2
<i>m</i> = 4	R = 5	g(4,5) = 2
<i>m</i> = 5	R = 6	g(5,6) = 2
<i>m</i> = 6	<i>R</i> = 7	g(6,7) = 2
<i>m</i> = 7	<i>R</i> = 8	g(7,8) = 2
m = 8	<i>R</i> = 9	g(8,9) = 2

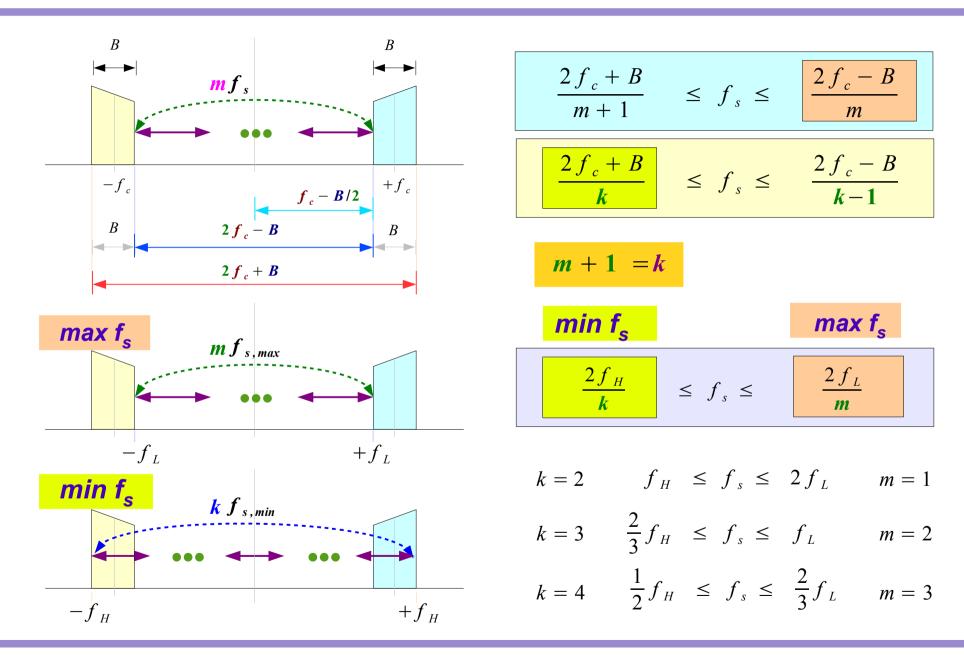
2B Bandpass Sampling

Minimum f_s Plot (5)



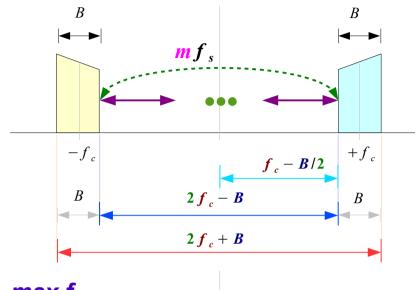
2B Bandpass Sampling

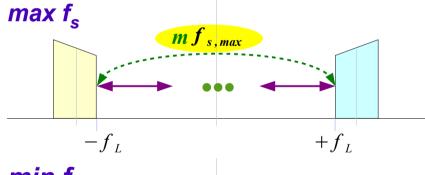
Min, Max Condition on f_s (1)



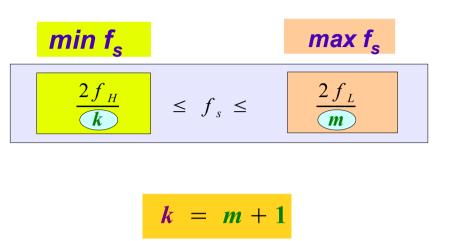
2B Bandpass Sampling

Min, Max Condition on f_s (2)









m represents how many **f**_s are in **2f**_c – **B** in **max f**_s

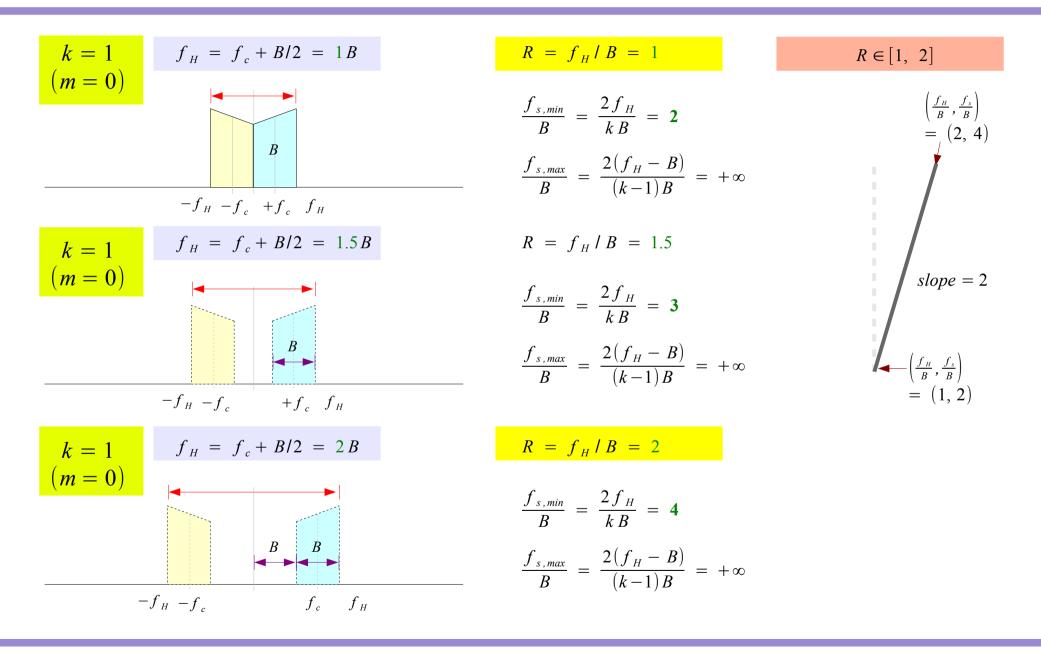
$$\max \mathbf{f_s} = \frac{2f_c - B}{m} = \frac{2f_L}{m}$$

k represents how many f_s are in $2f_c + B$ in min f_s

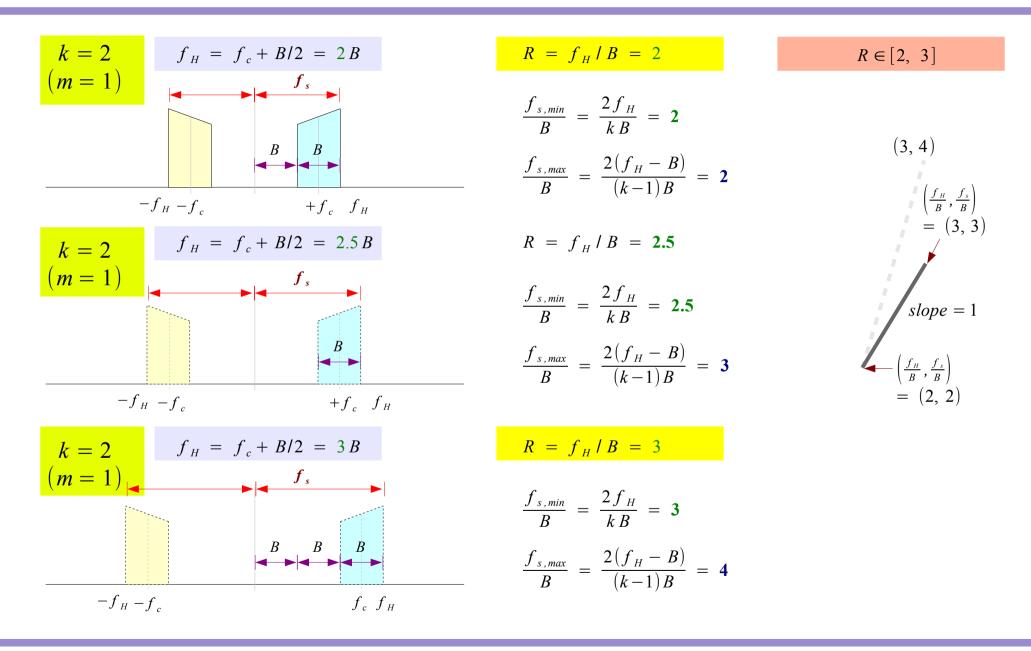
$$\min f_{\rm s} = \frac{2f_c + B}{k} = \frac{2f_H}{k}$$

2B Bandpass Sampling

Example k=1 (m=0)



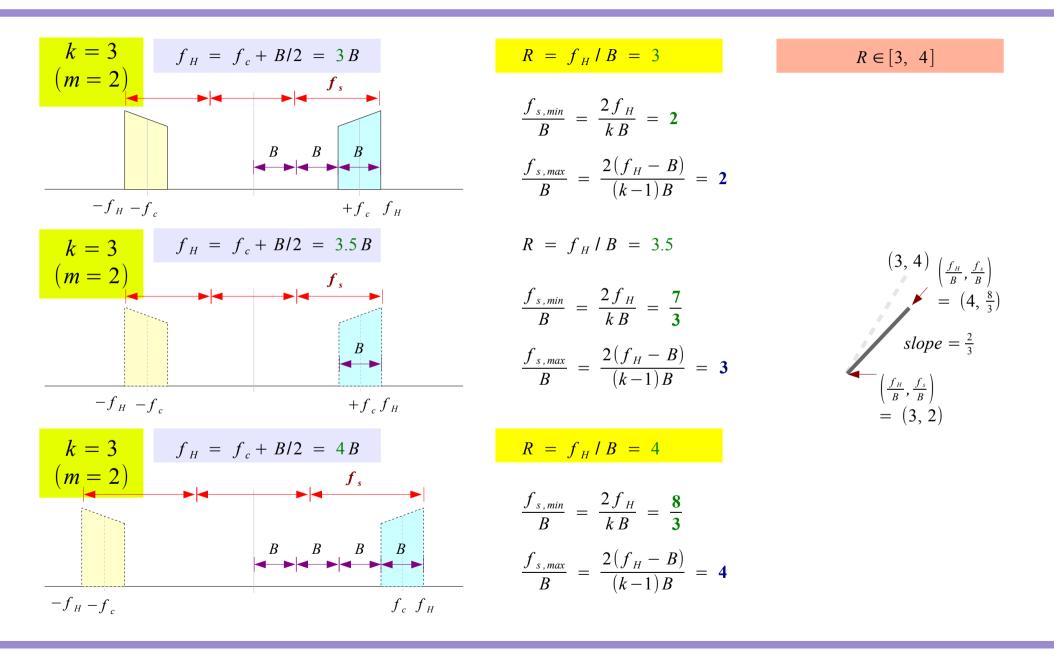
Example k=2 (m=1)



2B Bandpass Sampling

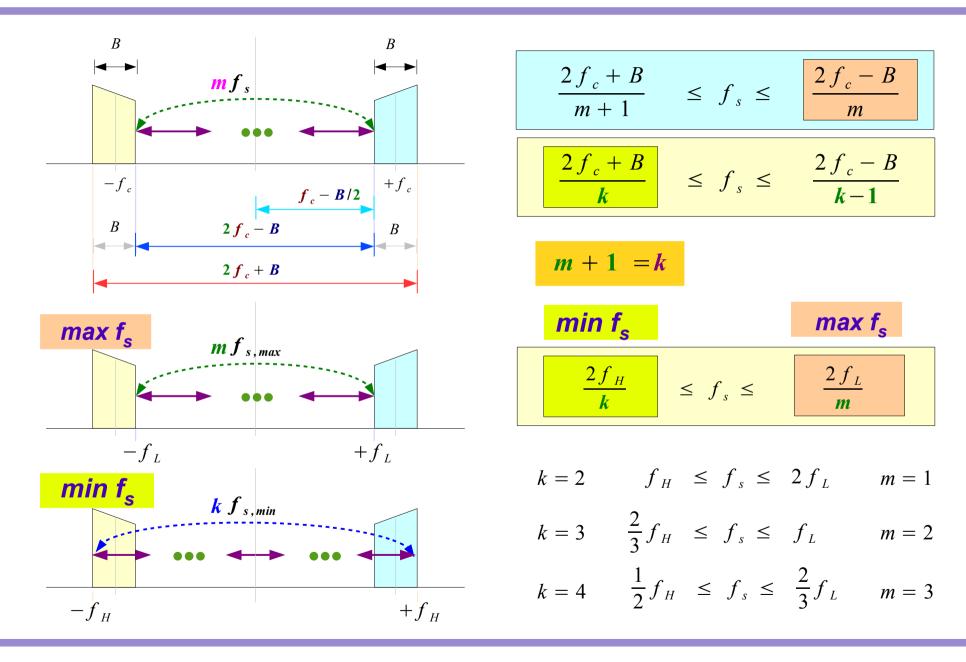
19

Example k=3 (m=2)



2B Bandpass Sampling

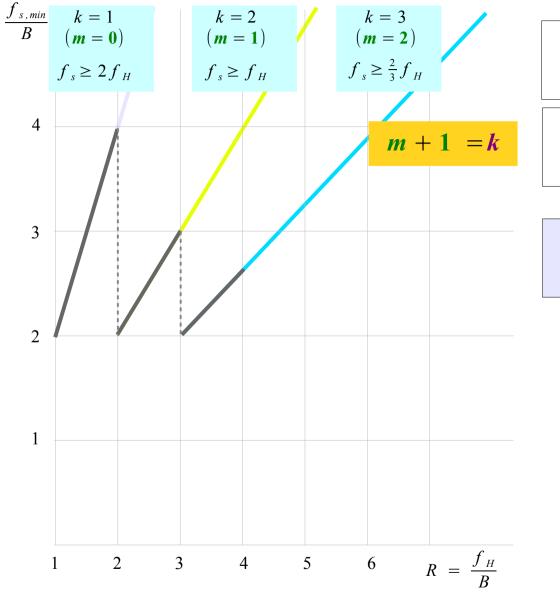
Min, Max Condition on f_s (2)



2B Bandpass Sampling

21

Min Max f_s Plot (1)



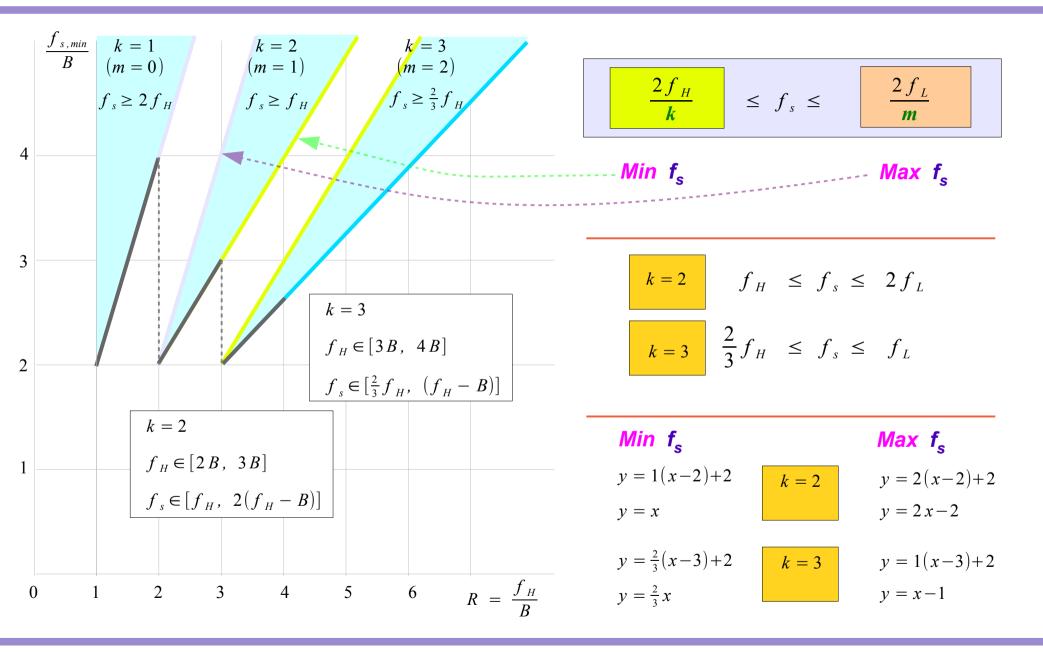
$$\frac{2f_c + B}{m+1} \leq f_s \leq \frac{2f_c - B}{m}$$

$$\frac{2f_c + B}{k} \leq f_s \leq \frac{2f_c - B}{k-1}$$

$$\frac{2f_{H}}{k} \leq f_{s} \leq \frac{2f_{L}}{m}$$

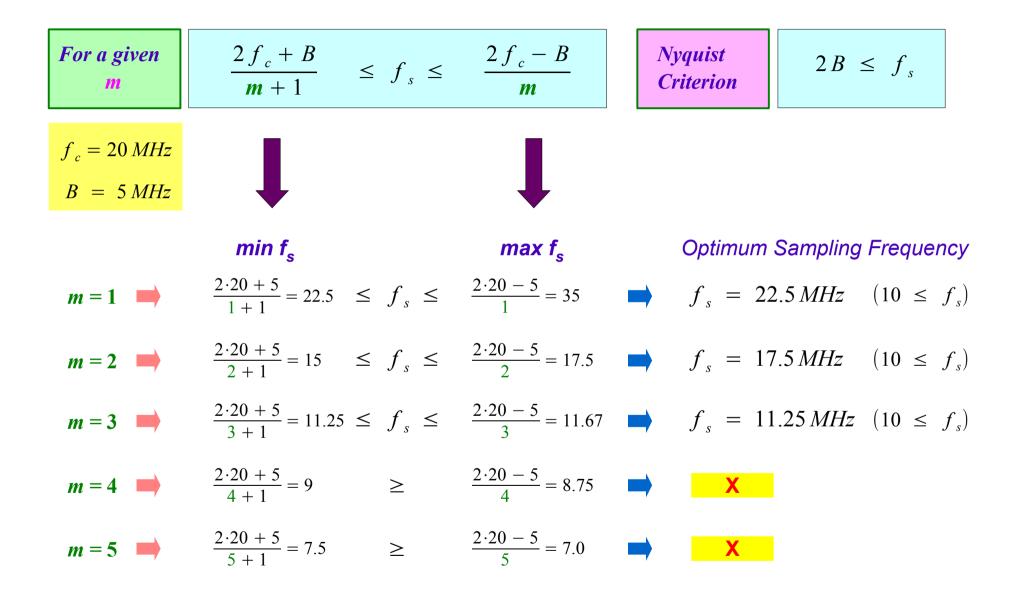
2B Bandpass Sampling

Min Max f_s Plot (2)



2B Bandpass Sampling

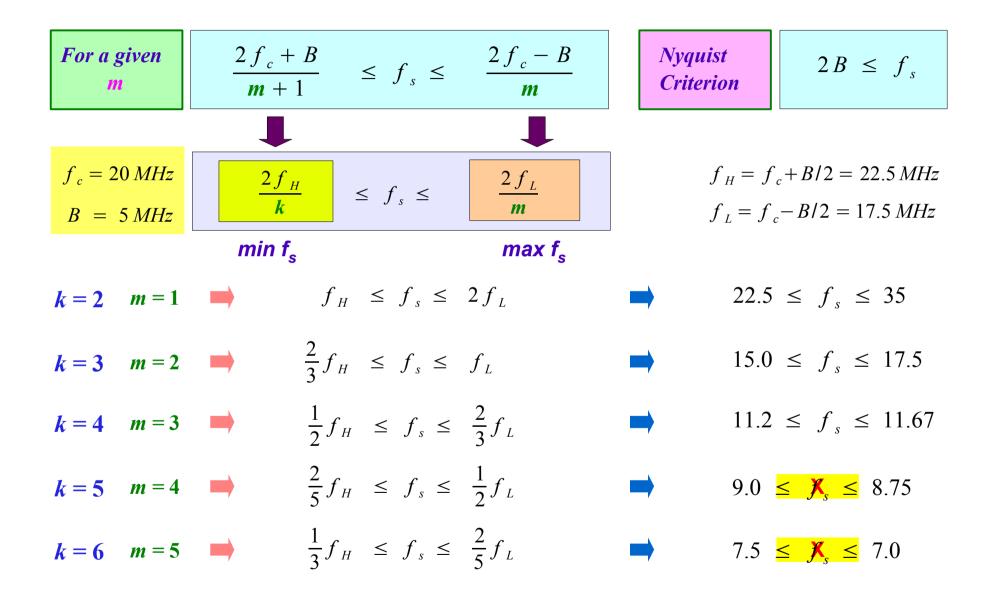
Range of f_s (1)



2B Bandpass Sampling

24

Range of f_s (2)



2B Bandpass Sampling

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
- [4] R. G. Lyons, Understanding Digital Signal Processing, 1997