Sankey Diagram

The Sankey diagram makes the different aspects of the total power loss visible. What isn't lost is used for the solar car to gain speed.

On a clear day the intensity of the sun is between $600-1000 \mathrm{~W} / \mathrm{m}^{2}$. The race is only going to take place on a sunny day. We assumed the intensity of the sun is going to be $900 \mathrm{~W} / \mathrm{m}^{2}$. Not all energy from the sun can be used because of diffuse radiation, this is $10-20 \%$ of the total radiation of the sun. So we assume the intensity to be used by our car is going to be $800 \mathrm{~W} / \mathrm{m}^{2}$.

The size of our panel is $0,04 \mathrm{~m}^{2}(=\mathrm{A})$.
$P_{\text {on sun panel }}=A^{*}$ intensity of radiaton on panel $=0,04 \mathrm{~m}^{2} * 800 \mathrm{~W} / \mathrm{m}^{2}=32 \mathrm{~W}$
$\mathrm{P}_{\text {used on eq }}=\mathrm{U}_{\text {eq }} \cdot \mathrm{I}_{\mathrm{eq}}=7,8 \mathrm{~V} \cdot 0,4034 \mathrm{~A}=3,14 \mathrm{~W} \quad$ loss of $28,86 \mathrm{~W}$

Assumed average efficiency of the motor and transmission=70\%

$$
3,14 \cdot 0,7=2,20 \mathrm{~W} \quad \text { loss of } 0,942 \mathrm{~W}
$$

Aerodynamic drag losses:
$P_{\text {aero }}=A_{\text {frontal }}{ }^{*} \mathrm{C}_{\text {drag }}{ }^{*} \mathrm{~V}^{3}{ }^{*} \rho_{\text {air }} / 2$
$A_{\text {frontal }}=$ Vehicle frontal area $\left(\mathrm{m}^{2}\right)=$ (in the part about the solar calculations the angles of the sun in the period the race takes place are calculated, if we assume we race 15:00 the sun light will have an angle of 50 degrees on the racing platform so that's probably going to be the angle of the solar panel on the vehicle ${ }^{1}$) + the frontal area of the body itself $=$
$\sin 50^{\circ} .0,04 \mathrm{~m}^{2}+0,02 \mathrm{~m}$ (width). $0,008 \mathrm{~m}$ (height of the body material) $=0,0308 \mathrm{~m}^{2}$
$C_{D}=$ coefficient of drag of vehicle $=0,5$ (cone formed)
$\mathrm{V}=$ vehicle velocity $(\mathrm{m} / \mathrm{s})=4,07 \mathrm{~m} / \mathrm{s}$ (assumed average)
$\rho_{\text {air }}=$ atmospheric density, $\mathrm{kg} / \mathrm{m}^{3}=1,1 \mathrm{~kg} / \mathrm{m}^{3}$
$P_{\text {aero loss }}=0,57 \mathrm{~W}$
$\mathrm{P}=2,2 \mathrm{~W}-0,57 \mathrm{~W}=1,63 \mathrm{~W} \quad$ loss of $0,57 \mathrm{~W}$

Rolling resistance losses:
$F_{\text {rolling }}=\mathrm{C}_{\mathrm{rr}} \mathrm{N}$
$C_{r r}=0,015 ; N=0,75^{*} 9,81=7,358 N$
$F_{\text {rolling }}=0,11037 \mathrm{~N}$
$P_{\text {loss rolling }}=0,11037 \mathrm{~N} * 4,07 \mathrm{~m} / \mathrm{s}$
$P_{\text {lost }}=0,449 \mathrm{~W}$
$P=1,63-0,449 W=1,181 \mathrm{~W}$ loss of $0,449 \mathrm{~W}$

The car would keep speeding up till right before the slope.

Power losses because of road inclination:
$P_{\text {loss }}=9,81 \mathrm{~m} / \mathrm{s} \cdot 0,75 \mathrm{~kg} \cdot \sin 3^{\circ} \cdot 4,07 \mathrm{~m} / \mathrm{s}=1,567 \mathrm{~W}$
$P=1,181 \mathrm{~W}-1,567 \mathrm{~W}=-0,386 \mathrm{~W}$

With the values, used for this sankey diagram, the car would slow down on the slope.

[^0]

[^0]: ${ }^{1}$ It's the maximum frontal area of the solar panel on that time, because the sun light could come in sideways. Then the frontal area will be smaller.

