$[>$ restart $:$ assume $(n$, integer $) ;$ rounding $=$ simple $:$
Solve: $\nabla^{2} u=0$ with $u(0, y)=y-\pi, u(1, y)=0$ and $u_{y}(x, 0)=x$ and $u_{y}(x, \pi)=x$
Find the solution $u(x, y)=u_{1}(x, y)+u_{2}(x, y)$ as a two part problem.

$$
\begin{aligned}
& \nabla^{2} u_{1}(x, y)=0 \quad \text { with } u_{1}(0, y)=0, u_{1}(1, y)=0 \text { and } u_{y}(x, 0)=x \text { and } u_{y}(x, \pi)=x \\
& \nabla^{2} u_{2}(x, y)=0 \quad \text { with } u_{2}(0, y)=y-\pi, u_{2}(1, y)=0 \text { and } u_{y}(x, 0)=0 \text { and } u_{y}(x, \pi)=0
\end{aligned}
$$

1) Solve $\nabla^{2} u_{1}(x, y)=0$ with $u_{1}(0, y)=0, u_{1}(1, y)=0$ and $u_{y}(x, 0)=x$ and $u_{y}(x, \pi)=x$.
I. $u_{1}=X(x) \cdot Y(y)$ substituted into $\quad \nabla^{2} u_{1}(x, y)=0$ leads to $\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0$ and $\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=$ constant now the constant may be positive, zero or negative.

Ia. For the positive and zero cases the solutions that result are trivial solutions.
For the case of a negative Constant. $\quad X^{\prime \prime}+\lambda^{2} X=0$ with $X(0)=0, X(2)=0$ $\stackrel{5}{-}$
$>$ dsolve $\left(\left[\operatorname{diff}(X(x), x, x)+\lambda^{2} \cdot X(x)=0, X(0)=0\right], X(x)\right)$

$$
\begin{equation*}
X(x)={ }_{-} C 1 \sin (\lambda x) \tag{1}
\end{equation*}
$$

The only nonzero solution is $\lambda_{n}=n \cdot \pi$

$$
\begin{align*}
& {\left[\begin{array}{ll}
\text { Lambda }:=n \cdot \mathrm{Pi} & \\
& \\
& X_{n}(x)=\sin \left(\lambda_{n} \cdot x\right) \\
& \\
& \mathrm{X}:=\mathrm{x} \rightarrow \sin (\text { lambda } \cdot x)
\end{array}\right.} \\
& \tag{2}
\end{align*}
$$

To solve for the $Y(y)$, solve $Y^{\prime \prime}-\lambda_{n}^{2} Y=0$

$$
\left[\begin{array}{r}
>\text { dsolve }\left(\operatorname{diff}(Y(y), y, y)-\lambda^{2} \cdot Y(y)=0, Y(y)\right) ; \text { convert }(\%, \text { trigh }) \\
Y(y)={ }_{-} C 1 \mathrm{e}^{n \sim \pi y}+_{-} C 2 \mathrm{e}^{-n \sim \pi y}
\end{array} \quad \begin{array}{r}
\\
Y(y)=\left(__{-} C 1+_{-} C 2\right) \cosh (n \sim \pi y)+\left(__{-} C 1-_{-} C 2\right) \sinh (n \sim \pi y) \tag{4}
\end{array}\right.
$$

Written as a hyperbolic function $Y_{n}=a_{n} \cdot \cosh \left(\lambda_{n} y\right)+b_{n} \sinh \left(\lambda_{n} \cdot y\right)$
$\lceil>Y:=y \rightarrow a n \cdot \cosh ($ lambda $\cdot y)+b n \cdot \sinh ($ lambda $\cdot y)$

$$
\begin{gather*}
Y:=y \rightarrow a n \cosh (\lambda y)+b n \sinh (\lambda y) \tag{5}\\
u_{1}(x, y)=\sum_{n=1}^{\infty} X_{n}(x) \cdot Y_{n}(y) \\
u_{1}(x, y)=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot\left(a_{n} \cdot \cosh \left(\lambda_{n} \cdot y\right)+b_{n} \cdot \sinh \left(\lambda_{n} \cdot y\right)\right)
\end{gather*}
$$

Use the two boundary conditions $u 1_{y}(x, 0)=x$ and $u 1_{y}(x, \pi)=x$ to find the two constants a_{n}, b_{n}.

$$
\begin{align*}
& {\left[\begin{array}{l}
>f 1:=x \\
u 1_{y}(x, 0)=x=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot\left(a_{n} \cdot \lambda_{n} \cdot \sinh \left(\lambda_{n} \cdot 0\right)+b_{n} \cdot \lambda_{n} \cosh \left(\lambda_{n} \cdot 0\right)\right) \\
x=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot b_{n} \cdot \lambda_{n} \\
\int_{0}^{1} x \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x=b_{n} \cdot \lambda_{n} \int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) \cdot d x
\end{array}\right.} \\
& b_{n}=\frac{\int_{0}^{1} x \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x}{\lambda_{n} \int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) \cdot d x} \tag{6}\\
& >b n:=\frac{1}{\text { lambda }} \cdot \frac{\operatorname{int}(f 1 \cdot X(x), x=0 . .1)}{\operatorname{int}\left(X(x)^{2}, x=0 . .1\right)} ; \\
& b n:=-\frac{2(-1)^{n \sim}}{n \sim^{2} \pi^{2}}
\end{align*}
$$

Now go after the second coefficients a_{n}

$$
\left\{\begin{array}{r}
u 1_{y}(x, \pi)=x= \\
\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot\left(a_{n} \cdot \lambda_{n} \cdot \sinh \left(\lambda_{n} \cdot \pi\right)+b_{n} \cdot \lambda_{n} \cosh \left(\lambda_{n} \cdot \pi\right)\right) \\
\\
\frac{1}{\lambda_{n}} \frac{\int_{0}^{1} x \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x}{\int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) d x}=a_{n} \cdot \sinh \left(\lambda_{n} \cdot \pi\right)+b_{n} \cdot \cosh \left(\lambda_{n} \cdot \pi\right) \\
a_{n}= \\
\frac{1}{\sinh \left(\lambda_{n} \cdot \pi\right) \cdot \lambda_{n}} \frac{\int_{0}^{1} x \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x}{\int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) \cdot d x}-\frac{b_{n} \cdot \cosh \left(\lambda_{n} \cdot \pi\right)}{\sinh \left(\lambda_{n} \cdot \pi\right)}
\end{array}\right.
$$

$$
\begin{align*}
& >f 2:=x \\
& >\text { an }:=\operatorname{simplify}\left(\frac{f 2:=x}{} \begin{array}{l}
\text { lambda } \cdot \sinh (\operatorname{lambda} \cdot \mathrm{Pi}) \cdot \operatorname{int}\left(X(x)^{2}, x=0 . .1\right)
\end{array} \frac{\operatorname{int}(f 2 \cdot X(x), x=0 . .1)}{\sinh (\text { lambda } \cdot \mathrm{Pi})}\right) ; \tag{8}\\
& a n:=\frac{2(-1)^{n \sim}\left(-1+\cosh \left(n \sim \pi^{2}\right)\right)}{n \sim^{2} \pi^{2} \sinh \left(n \sim \pi^{2}\right)} \\
& {[>\operatorname{with}(\text { plots }):} \tag{9}
\end{align*}
$$

Only the first two terms of the sum are not zero maple really screws up in calculation the rest of them. These could blow up. They should actually be zero.

$$
\begin{align*}
& {[>u l:=(x, y) \rightarrow \operatorname{sum}(X(x) \cdot Y(y), n=1 . .10)} \\
& \qquad u l:=(x, y) \rightarrow \sum_{n=1}^{10} X(x) Y(y) \tag{10}\\
& > \\
& >\text { evalf }\left(u 1\left(\frac{1}{2}, y\right)\right) \tag{11}\\
& -0.2026214058 \cosh (3.141592654 y)+0.2026423672 \sinh (3.141592654 y) \\
& +0.02251581858 \cosh (9.424777962 y)-0.02251581858 \sinh (9.424777962 y) \\
& \quad-0.008105694688 \cosh (15.70796327 y)+0.008105694688 \sinh (15.70796327 y) \\
& +0.004135558514 \cosh (21.99114858 y)-0.004135558514 \sinh (21.99114858 y) \\
& -0.002501757619 \cosh (28.27433389 y)+0.002501757619 \sinh (28.27433389 y)
\end{align*}
$$

So recalculate using only a few terms.

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
>u l:=(x, y) \rightarrow \operatorname{sum}(X(x) \cdot Y(y), n=1 . .2) \\
u l:=(x, y) \rightarrow \sum_{n=1}^{2} X(x) Y(y)
\end{array}\right.} \\
\quad \text { At one of the boundaries }\left.\frac{\partial u_{1}}{\partial y}\right|_{y=\pi}=x
\end{array}\right] \begin{aligned}
& >u l(x, \operatorname{Pi}) \\
& \sin (\pi x)\left(-\frac{2\left(-1+\cosh \left(\pi^{2}\right)\right) \cosh \left(\pi^{2}\right)}{\pi^{2} \sinh \left(\pi^{2}\right)}+\frac{2 \sinh \left(\pi^{2}\right)}{\pi^{2}}\right) \\
& +\sin (2 \pi x)\left(\frac{1}{2} \frac{\left(-1+\cosh \left(2 \pi^{2}\right)\right) \cosh \left(2 \pi^{2}\right)}{\pi^{2} \sinh \left(2 \pi^{2}\right)}-\frac{1}{2} \frac{\sinh \left(2 \pi^{2}\right)}{\pi^{2}}\right) \tag{13}
\end{aligned}
$$

But it must also meet the zero BCs on the left and right.
$=>\operatorname{plot}(u 1(x, \mathrm{Pi}), x=0 . .1)$

Plot of solution $u_{1}(x, y)$

- $>\operatorname{plot3d}(u l(x, y), x=0 \ldots 1, y=0 \ldots$. Pi, axes $=$ box, shading $=z h u e$, title $=$ "solution for u1") solution for u1

$\stackrel{ }{5}>$
Find solution to

2) $\nabla^{2} u_{2}(x, y)=0$ with $u_{2}(0, y)=y-\pi, u_{2}(1, y)=0$ and $u_{y}(x, 0)=0$ and $u_{y}(x, \pi)=0$.
II. $u_{2}=X(x) \cdot Y(y)$ substituted into $\quad \nabla^{2} u_{2}(x, y)=0$ leads to $\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0$ and $\frac{X^{\prime \prime}}{X}=\frac{Y^{\prime \prime}}{Y}=$ constant now the constant may be positive, zero or negative.

IIa. For the positive case the result is a trivial solution.
IIb. For a zero constant $\mu^{2}=0, \quad Y^{\prime \prime}=0 \quad Y(y)=a \cdot y+b$ using BCs $Y^{\prime}(0)=0=a$ and so $Y(y)=b$ other boundary condition does not give any more information.

We need to solve for $X^{\prime \prime}=0$ also. $X=c \cdot x+d$.
The solution for constant $=0$ is $u_{2}(x, y)=X_{0} \cdot Y_{0}=b \cdot(c \cdot x+d)=c_{0} \cdot x+c_{1}$, these constants will be resolved when we find the series coefficients.

IIc. For the constant <0, negative case.

$$
\begin{align*}
& \quad Y^{\prime \prime}+\mu^{2} \cdot Y=0 \quad Y^{\prime}(0)=0 \text { and } Y^{\prime}(\pi)=0 \\
& > \\
& >\text { dsolve }\left(\left[\operatorname{diff}(Y 2(y), y, y)+\mathrm{mu}^{2} \cdot Y 2(y)=0, \mathrm{D}(Y 2)(0)=0\right], Y 2(y)\right) \\
& Y 2(y)=_C 2 \cos (\mu y)
\end{aligned} \quad \begin{aligned}
& \text { Using BCs } Y^{\prime}(\mathrm{Pi})=0 \quad Y^{\prime}(\mathrm{Pi})=0=-c_{2} \cdot \mu \sin (\mu \pi) \text { this gives us } \mu_{n}=n \tag{15}\\
& \text { The only nonzero solution is } \mu_{n}=n \\
& \hline
\end{align*}
$$

$$
\text { So we get } Y_{n}(y)=\cos \left(\mu_{n} \cdot y\right)
$$

$[>Y 2:=y \rightarrow \cos (\mathrm{mu} \cdot y)$

$$
\begin{equation*}
Y 2:=y \rightarrow \cos (\mu y) \tag{16}
\end{equation*}
$$

To solve for the $X(x)$, solve $X^{\prime}-\mu_{n}^{2} X=0$
$>$ Y2(1)

$$
\begin{align*}
& \cos (n \sim) \tag{17}\\
& >\operatorname{dsolve}\left(\operatorname{diff}(X 2(x), x, x)-\mu^{2} \cdot X 2(x)=0, X 2(x)\right) ; \text { convert }(\%, \text { trigh }) \\
& X 2(x)={ }_{-} C 1 \mathrm{e}^{-n \sim x}+{ }_{-} C 2 \mathrm{e}^{n \sim x} \\
& X 2(x)=\left(_C 1+_{-} C 2\right) \cosh (n \sim x)+\left({ }_{-} C 1+{ }_{-} C 2\right) \sinh (n \sim x) \tag{18}
\end{align*}
$$

Written as a hyperbolic function $X_{n}=a_{n} \cdot \cosh \left(\mu_{n} x\right)+b_{n} \sinh \left(\mu_{n} \cdot x\right)$
$>X 2:=x \rightarrow a 2 n \cdot \cosh (\mathrm{mu} \cdot x)+b 2 n \cdot \sinh (\mathrm{mu} \cdot x)$
$X 2:=x \rightarrow a 2 n \cosh (\mu x)+b 2 n \sinh (\mu x)$

$$
\begin{align*}
& >X 2(1) \\
& a 2 n \cosh (n \sim)+b 2 n \sinh (n \sim) \tag{20}\\
& u_{2}(x, y)=X_{0}(x) \cdot Y_{0}(y)+\sum_{n=1}^{\infty} X_{n}(x) \cdot Y_{n}(y) \\
& u_{2}(x, y)=c_{0} \cdot x+c_{1}+\sum_{n=1}^{\infty} \cos \left(\mu_{n} \cdot y\right) \cdot\left(a_{n} \cdot \cosh \left(\mu_{n} \cdot x\right)+b_{n} \cdot \sinh \left(\mu_{n} \cdot x\right)\right)
\end{align*}
$$

Use the two boundary conditions $u 2(0, y)=y-\pi$ and $u 1(1, y)=0$ to find the two constants a_{n}, b_{n}.
$>f 1:=y-\pi$

$$
\begin{equation*}
u 2(0, \mathrm{y})=y-\pi=c_{1}+\sum_{n=1}^{\infty} \cos \left(\mu_{n} \cdot y\right) \cdot\left(a_{n} \cdot \cosh \left(\mu_{n} \cdot 0\right)+b_{n} \cdot \sinh \left(\mu_{n} \cdot 0\right)\right) \tag{21}
\end{equation*}
$$

Multiply each side by orthogonal function for $\cos \left(\mu_{0} \cdot y\right)=1$ where $\mu_{0}=n=0$ and integrate over interval (0, Pi)

$$
\begin{gather*}
\int_{0}^{\pi}(y-\pi) \cdot 1 \mathrm{~d} y=c_{1} \cdot \int_{0}^{\pi} 1^{2} \cdot d y \\
c_{1}=\frac{\int_{0}^{\pi}(y-\pi) \cdot 1 \mathrm{~d} y}{\pi}=-\frac{\pi}{2} \quad \text { this gives the function } c_{0} \cdot x+c_{1}=c_{0} \cdot x-\frac{\pi}{2} \\
>c 1:=\frac{\operatorname{int}(f 1 \cdot 1, y=0 . . \mathrm{Pi})}{\operatorname{Pi}} \\
=\quad c 1:=-\frac{1}{2} \pi \tag{22}\\
u_{2}(1, y)=0=c_{0} \cdot 1-\frac{\pi}{2}+\sum_{n=1}^{\infty} \cos \left(\mu_{n} \cdot y\right) \cdot\left(a_{n} \cdot \cosh \left(\mu_{n} \cdot 1\right)+b_{n} \cdot \sinh \left(\mu_{n} \cdot 1\right)\right)
\end{gather*}
$$

Again Multiply both sides by $\cos \left(\mu_{0} \cdot y\right)=1$ where $\mu_{0}=n=0$ and integrate over interval $(0, \mathrm{Pi})$

$$
\begin{aligned}
& 0=c_{0} \cdot \int_{0}^{\pi} 1^{2} \cdot d y-\frac{\pi}{2} \int_{0}^{\pi} 1 d y \\
& c_{0}=\frac{\pi}{2} \quad \text { this gives the first term in the series as } c_{0} \cdot x+c_{1}=\frac{\pi}{2}(x-1)
\end{aligned}
$$

$$
\begin{align*}
>c 0:=\frac{\mathrm{Pi}}{2} ; c 1:=-\frac{\mathrm{Pi}}{2} ; & \\
& c 0 \\
& :=\frac{1}{2} \pi \tag{23}\\
c l & :=-\frac{1}{2} \pi
\end{align*}
$$

For the other coefficients

$$
\begin{align*}
& \quad y-\pi=\sum_{n=1}^{\infty} \cos \left(\mu_{n} \cdot y\right) \cdot a_{n} \\
& {\left[\begin{array}{r}
a_{n}=\frac{\int_{0}^{\pi}(y-\pi) \cdot \cos \left(\mu_{n} \cdot y\right) \mathrm{d} y}{\int_{0}^{\pi} \cos ^{2}\left(\mu_{n} \cdot y\right) \cdot d y} \\
>a 2 n:=\frac{\operatorname{int}(\mathrm{fl} \cdot \mathrm{Y} 2(\mathrm{y}), y=0 . . \mathrm{Pi})}{\operatorname{int}\left(\mathrm{Y} 2(\mathrm{y})^{2}, y=0 \ldots \mathrm{Pi}\right)} ; \operatorname{simplify}(\%) ; \\
a 2 n:=\frac{2\left(-1+(-1)^{n \sim}\right)}{n \sim^{2} \pi}
\end{array}\right.} \\
& \frac{2\left(-1+(-1)^{n \sim}\right)}{n \sim^{2} \pi}
\end{align*}
$$

$\left[\right.$ Now go after the second coefficients b_{n}

$$
\left[\begin{array}{c}
u 2(1, y)=0=\sum_{n=1}^{\infty} \cos \left(\mu_{n} \cdot y\right) \cdot\left(a_{n} \cdot \cosh \left(\mu_{n} \cdot 1\right)+b_{n} \cdot \sinh \left(\mu_{n} \cdot 1\right)\right) \\
0=a_{n} \cdot \cosh \left(\mu_{n} \cdot 1\right)+b_{n} \cdot \sinh \left(\mu_{n} \cdot 1\right) \\
b_{n}=-\frac{a_{n} \cdot \cosh \left(\mu_{n} \cdot 1\right)}{\sinh \left(\mu_{n} \cdot 1\right)}
\end{array}\right.
$$

$$
\left[>b 2 n:=-\frac{a 2 n \cdot \cosh (\mathrm{mu})}{\sinh (\mathrm{mu})}\right.
$$

$$
\begin{equation*}
b 2 n:=-\frac{2\left(-1+(-1)^{n \sim}\right) \cosh (n \sim)}{n \sim^{2} \pi \sinh (n \sim)} \tag{25}
\end{equation*}
$$

$$
\lceil>u 2:=(x, y) \rightarrow c 1+c 0 \cdot x+\operatorname{sum}(Y 2(y) \cdot X 2(x), n=1 . .20)
$$

$$
\begin{equation*}
u 2:=(x, y) \rightarrow c 1+c 0 x+\sum_{n=1}^{20} Y 2(y) X 2(x) \tag{26}
\end{equation*}
$$

$$
\left[\begin{array}{l}
\text { \#u2 }:=(x, y) \rightarrow c 1+c 0 \cdot x+\operatorname{sum}(\cos (m u \cdot y) \cdot(a 2 n \cdot \cosh (\operatorname{mu} \cdot x)+b 2 n \cdot \sinh (m u \cdot x)), n=1 \\
\quad . .20)
\end{array}\right.
$$

$$
\begin{align*}
& u_{2}(0, y)=y-\pi \text { this is the diagonal line below, } u_{2}(1, y)=0 \text { is the horizontal line equal to zero. } \\
& {\left[>\operatorname{evalf}\left(u 2\left(\frac{1}{2}, \frac{1}{2}\right)\right)\right.} \\
& \begin{array}{c}
-1.278922912 \\
\hline>\operatorname{plot}([u 2(0, y), u 2(1, y)], y=0 . . \mathrm{Pi}, \text { color }=[\text { red, green, blue }], \text { thickness }=[1,5,10])
\end{array} \\
& \text { Solution } u_{2}(x, y) \\
& =>\operatorname{plot} 3 d(u 2(x, y), x=0 . .1, y=0 \text {..Pi, axes }=\text { normal, shading }=z h u e) \\
& =\mathrm{u}(\mathrm{x}, \mathrm{y})=u_{1}+u_{2} \\
& >u:=(x, y) \rightarrow u 1(x, y)+u 2(x, y) \text {; } \\
& u:=(x, y) \rightarrow u 1(x, y)+u 2(x, y) \tag{28}\\
& \lceil>\operatorname{plot} 3 d(u(x, y), x=0 . .1, y=0 . . \mathrm{Pi}, \text { axes }=\text { normal, shading }=z h u e)
\end{align*}
$$

Value of the solution at $u(0.5,0.75)$
$[>\operatorname{evalf}(u(0.5,0.75))$

