Lesson 12: Signal Propagation

Preparation for Amateur Radio Technician Class Exam

Copyright © Winters² 2004 Version 1.0

Topics

- HF Propagation
- Ground-wave
- Sky-wave
- Ionospheric regions
- VHF/UHF Propagation
- Line-of-sight
- Tropospheric Bending and Ducting
- > VHF/UHF Signals through the lonosphere
- Exam Questions for this section

Chapter 3

Propagation

- Propagation how radio waves travel
- The 4 basic ways radio waves travel (propagate) are:
 - Directly from one point to another (line-of-sight)
 - Travel along the ground (ground-wave)
 - Refract off the atmosphere (sky-wave)
 - Travel inside the atmosphere (ducting)

HF Propagation

=

- Radio waves in the HF band can travel fairly long distances due to their relatively long wavelength
- > The two major kinds of HF Propagation are:
 - Ground-wave
 - Sky-wave

Ground-wave Propagation

HF signals travel along the Earth's surface, even over hills

They follow the curvature of the Earth for distances up to 100 miles, depending on the actual frequency and the terrain

Sky-wave Propagation

- HF signals can be refracted or bent off the ionosphere
- Transmission distance is very long, depending on ionospheric conditions and frequency
 - Contacts of up to 2500 miles are possible with one skip (refraction)
 - Worldwide communication is possible with several skips (multi-hops) when conditions are right

Ionization

- The Earth's upper atmosphere (from 25 to 200 miles high) is made up of many neutral gas atoms (neither positive nor negative)
 - It is called the ionosphere
- This part of the atmosphere is affected by Ultraviolet Radiation (UV) from the sun
- The UV causes the atmosphere to become ionized (gas atoms take on a positive or negative charge)
- When the ionosphere is ionized, it refracts radio waves

Ionization

Ionization is affected by:

- Time of day mid-day is best, just before sunrise is worst
- Time of year summer is best
- Sunspot cycle the more sunspots, the more ionization; sunspot activity varies on an 11 year cycle

Bounce, Skip or Hop

- A radio wave will bounce (skip, hop) off the ionosphere at roughly the same angle that it strikes the ionosphere
 - A lower angle of entry generally means your signal will travel farther

Refraction

- The level of refraction depends on the amount of ionization
 - Higher ionization means a larger range of frequencies are refracted
- The ionosphere does not refract all frequencies the same
 - Lower frequencies refract better

MUF

- The Maximum Usable Frequency (MUF) is the highest frequency at which the ionosphere bends radio waves back to a <u>desired location</u> on Earth
 - There are different MUF depending on where you want to send a signal
 - The MUF is determined by time of day, ionospheric conditions, and source and target of communication
 - New York to Germany is a different MUF than Ashland to Germany
 - MUF from Ashland to Germany in a low sunspot cycle is lower than the MUF from Ashland to Germany in a high sunspot cycle

Critical Frequency

- The Critical Frequency is the highest frequency where radio waves transmitted straight up into the ionosphere will be reflected back down to Earth
 - Above the critical frequency, radio waves pass through the ionosphere and go out into space
- The Critical Frequency depends on ionospheric conditions

Ionospheric Regions

The ionosphere is actually made of several regions:

- D the lowest region affecting propagation
 - 35 to 60 miles above the earth
 - Ionization dissipates quickly
 - Maximum ionization at noon
 - Gone by sunset
 - Ineffective at refraction
 - Absorbs RF energy

Bottom line – this region closest to the Earth mostly interferes (rather than helps) with radio transmissions

Ionospheric Regions

- E the middle region affecting propagation
 - 60-70 miles above the earth
 - Ionization dissipates quickly
 - Maximum ionization at noon
 - Gone by sunset
 - Does some refraction, about 1250 miles for one hop
- Bottom line this region is mostly used for relatively short range hops in the daytime

Ionospheric Regions

- F the highest region affecting propagation
 - About 100-310 miles above the earth
 - Splits in 2 parts in the daytime
 - F1 140 miles
 - F2 200 miles
 - Ionization lingers through the night
 - Maximum ionization at noon
 - The most used region for skipping radio signals

Bottom line – The F2 region is the most used region for propagation, responsible for almost all long-distance HF communication

VHF/UHF Propagation

- VHF and UHF bands are typically used for relatively short-range communication
 - They are not as good at ground wave propagation
 - UHF radio waves do not travel by sky-wave propagation
 - It avoids interference with people doing longdistance communication on the HF bands

Line-of-sight Propagation

- Line-of-sight propagation when radio signals travel in a straight line from the transmitting antenna to the receiving antenna
 - This is the most common propagation when using repeaters or when communicating in simplex directly with another ham
 - Typically in distances much shorter than 100 miles
 - Subject to reflection off buildings, hills, and airplanes

Tropospheric Bending

- The troposphere is the region near Earth where all our weather occurs, reaching to a height of about 7 miles
- Slight refraction of VHF/UHF radio waves occurs in this region
 - It is most useful at 144 Mhz and above

Tropospheric Bending

- There is some signal loss as radio waves travel a path through the troposphere
 - The path loss increases as the frequency increases

For DX (long distance) work in VHF and UHF bands, hams typically use the weaksignal modes such as CW or SSB **Tropospheric Ducting**

- This is where radio waves get trapped in the troposphere, traveling a longer distance than normal before coming back to Earth
- In the case of a temperature inversion (warm air above cold) a "duct" can form between the temperature layers
 - Radio waves travel quite a ways in the duct before returning to Earth
 - This is most commonly seen over large bodies of water, such as oceans

Tropospheric Ducting

VHF and UHF signals can travel quite far using tropospheric ducting

- 950 miles or more over land
- 2500 miles or more over ocean

VHF/UHF Signals through lonosphere

Sporadic-E or E-skip propagation is a summer time phenomenon

When it happens, it allows propagation of the 6 meter band off the E region of the ionosphere Exam Questions

The following slides contain questions from the exam pool that are covered in this section of the notes

- ➤ T3A01 What is the name of the area of the atmosphere that makes long-distance radio communications possible by bending radio waves?
 - A. Troposphere
 - B. Stratosphere
 - C. Magnetosphere
 - D. Ionosphere

➤T3A02 Which ionospheric region is closest to the Earth?

- A. The A region
- B. The D region
- C. The E region
- D. The F region

- T3A03 Which region of the ionosphere is mainly responsible for absorbing MF/HF radio signals during the daytime?
 - A. The F2 region
 - B. The F1 region
 - C. The E region
 - D. The D region

- T3A04 Which region of the ionosphere is mainly responsible for long-distance sky-wave radio communications?
 - A. D region
 - B. E region
 - C. F1 region
 - D. F2 region

- ➤T3A05 When a signal travels along the surface of the Earth, what is this called?
 - A. Sky-wave propagation
 - B. Knife-edge diffraction
 - C. E-region propagation
 - D. Ground-wave propagation

- T3A06 What type of solar radiation is most responsible for ionization in the outer atmosphere?
 - A. Thermal
 - B. Non-ionized particle
 - C. Ultraviolet
 - D. Microwave

- ➤T3A07 What is the usual cause of sky-wave propagation?
 - A. Signals are reflected by a mountain
 - B. Signals are reflected by the Moon
 - C. Signals are bent back to Earth by the ionosphere
 - D. Signals are retransmitted by a repeater

- T3A08 What type of propagation has radio signals bounce several times between Earth and the ionosphere as they travel around the Earth?
 - A. Multiple bounce
 - B. Multi-hop
 - C. Skip
 - D. Pedersen propagation

- T3A09 What effect does the D region of the ionosphere have on lower-frequency HF signals in the daytime?
 - A. It absorbs the signals
 - B. It bends the radio waves out into space
 - C. It refracts the radio waves back to earth
 - D. It has little or no effect on 80-meter radio waves

- ➤T3A11 When a signal is returned to Earth by the ionosphere, what is this called?
 - A. Sky-wave propagation
 - B. Earth-Moon-Earth propagation
 - C. Ground-wave propagation
 - D. Tropospheric propagation

- ➤T3A12 How does the range of sky-wave propagation compare to ground-wave propagation?
 - A. It is much shorter
 - B. It is much longer
 - C. It is about the same
 - D. It depends on the weather

- T3B07 How does the number of sunspots relate to the amount of ionization in the ionosphere?
 - A. The more sunspots there are, the greater the ionization
 - B. The more sunspots there are, the less the ionization
 - C. Unless there are sunspots, the ionization is zero
 - D. Sunspots do not affect the ionosphere

≻T3B08 How long is an average sunspot cycle?

- A. 2 years
- B. 5 years
- C. 11 years
- D. 17 years

- ➤ T3B11 What is the condition of the ionosphere above a particular area of the Earth just before local sunrise?
 - A. Atmospheric attenuation is at a maximum
 - B. The D region is above the E region
 - C. The E region is above the F region
 - D. Ionization is at a minimum

- T3B12 What happens to signals that take off vertically from the antenna and are higher in frequency than the critical frequency?
 - A. They pass through the ionosphere
 - B. They are absorbed by the ionosphere
 - C. Their frequency is changed by the ionosphere to be below the maximum usable frequency
 - D. They are reflected back to their source

- T3B13 In relation to sky-wave propagation, what does the term "maximum usable frequency" (MUF) mean?
 - A. The highest frequency signal that will reach its intended destination
 - B. The lowest frequency signal that will reach its intended destination
 - C. The highest frequency signal that is most absorbed by the ionosphere
 - D. The lowest frequency signal that is most absorbed by the ionosphere

- ➤T3A10 How does the signal loss for a given path through the troposphere vary with frequency?
 - A. There is no relationship
 - B. The path loss decreases as the frequency increases
 - C. The path loss increases as the frequency increases
 - D. There is no path loss at all

- ➤T3B01 When a signal travels in a straight line from one antenna to another, what is this called?
 - A. Line-of-sight propagation
 - B. Straight line propagation
 - C. Knife-edge diffraction
 - D. Tunnel ducting

- T3B02 What can happen to VHF or UHF signals going towards a metal-framed building?
 - A. They will go around the building
 - B. They can be bent by the ionosphere
 - C. They can be reflected by the building
 - D. They can be polarized by the building's mass

➤T3B03 Ducting occurs in which region of the atmosphere?

- A. F2
- B. Ecosphere
- C. Troposphere
- D. Stratosphere

- T3B04 What causes VHF radio waves to be propagated several hundred miles over oceans?
 - A. A polar air mass
 - B. A widespread temperature inversion
 - C. An overcast of cirriform clouds
 - D. A high-pressure zone

- T3B05 In which of the following frequency ranges does sky-wave propagation least often occur?
 - A. LF
 - B. UHF
 - C. HF
 - D. VHF

- T3B06 Why should local amateur communications use VHF and UHF frequencies instead of HF frequencies?
 - A. To minimize interference on HF bands capable of longdistance communication
 - B. Because greater output power is permitted on VHF and UHF
 - C. Because HF transmissions are not propagated locally
 - D. Because signals are louder on VHF and UHF frequencies

- T3B09 Which of the following frequency bands is most likely to experience summertime sporadic-E propagation?
 - A. 23 centimeters
 - B. 6 meters
 - C. 70 centimeters
 - D. 1.25 meters

- T3B10 Which of the following emission modes are considered to be weak-signal modes and have the greatest potential for DX contacts?
 - A. Single sideband and CW
 - B. Packet radio and RTTY
 - C. Frequency modulation
 - D. Amateur television