Lesson 11: Antennas

Preparation for Amateur Radio Technician Class

Exam

Topics

$>$ Antenna

$>1 / 2$ wave Dipole antenna
$>1 / 4$ wave Vertical antenna
$>$ Antenna polarization
$>$ Antenna location
> Beam antennas
$>$ Test Equipment
>Exam Questions for this section

Reading

>Chapter 8 - 8.19-8.40

A Quick Review!

Frequencies and Wavelengths

>Remember: Frequency and wavelength are related by this formula:

- Speed of light (m / s) = frequency $(\mathrm{Hz}) \mathrm{X}$ wavelength (m)
- C = f λ
>1 Meter $\cong 37$ inches

Antennas

$>$ You must have an antenna for your radio to operate

- The antenna is used by both the transmitter and receiver
$>$ Current travels between the radio and antenna through a transmission line (or feed line)
$>$ Antennas transmit and receive in particular directions, based on the design of the antenna
- The antenna gain is greatest in the same direction that the antenna puts out the greatest power

$1 / 2$ wave dipole

$>$ Basically, just a wire whose length is $1 / 2$ of the wavelength of the frequency you are working with

- Copper or copper clad steel wires are common
- Most energy from a dipole is sent 90 degrees from the antenna wire
- If your antenna is strung east to west, your best gain will be north and south of you
- Gain is OK - certainly better than a "rubber duck"!
insulator

Feed line to the radio

½ wave dipole

$>$ What would be the length, to the nearest inch, of a half-wavelength dipole antenna that is resonant at 147 MHz ?

- 300/147 = 2.04 meter wavelength
- 2.04 / $2=1.02$ meter $1 / 2$ wavelength
- 1.02 * $37 \cong 37$ inches

$1 / 2$ wave dipole

$>$ How long should you make a half-wavelength dipole antenna for 223 MHz (measured to the nearest inch)?

- 300/223 = 1.35 meter wavelength
- $1.35 / 2=0.67$ meter $1 ⁄ 2$ wavelength
- 0.67 * $37 \cong 25$ inches

Multi-band dipole

$>$ A dipole with additional wires for additional frequencies

- There is just one feed line

$1 / 4$ wave vertical

$>$ Basically, just a wire whose length is $1 / 4$ of the wavelength of the frequency you are working with, attached to ground radials or a ground plane

- Most energy from a dipole is sent 90 degrees from the antenna wire
- Gain is better than a dipole
¼ wavelength wire

1/4 wave vertical

>Popular car antennas for HTs because the car body serves as the ground plane

- To avoid RF to the passengers, mount the antenna on the roof of the car if possible
$>$ The small antenna that comes with the radio is fondly called the "rubber duck"
- It is fairly inefficient, so many hams replace it with a $1 / 4$ wave vertical telescoping or flexible antenna

$1 / 4$ wave vertical

$>$ How long should you make a quarterwavelength vertical antenna for 146 MHz (measured to the nearest inch)?

- 300/146 = 2.05 meter wavelength
- 2.05 / 4 = 0.5 meter $1 / 4$ wavelength
- 0.5 * $37 \cong 19$ inches

$1 / 4$ wave vertical

$>$ How long should you make a quarterwavelength vertical antenna for 440 MHz (measured to the nearest inch)?

- 300/440 = 0.68 meter wavelength
- 0.68 / $4=0.17$ meter $1 ⁄ 4$ wavelength
- 0.17 * $37 \cong 6$ inches

Loading Coil

$>$ If you are working a frequencies with long wavelengths, your antenna may get too long to handle

- You can reduce the length of the antenna without changing its frequency by adding a loading coil to the antenna

Antenna Polarization

$>$ Polarization is the direction of the electrical lines of force from an antenna

- An antenna parallel to the Earth's surface is horizontally polarized
- So a $1 / 2$ wave dipole is ??? polarized
- An antenna perpendicular to the Earth's surface is vertically polarized
- So a $1 / 4$ wave vertical is ??? polarized

Antenna Polarization

$>$ For best communication, the transmitting and receiving antennas should have the same polarization

- Because vertical antennas are so popular (handhelds, car mount) most repeater antennas are vertically polarized
- Most weak-signal SSB and CW work is done with horizontal polarization
- Satellites use circular polarization

Antenna Location

$>$ Because higher antennas have better range, many people locate their antennas on top of a tower, on a roof top, or up in a tree

Installation Safety Tips

$>$ Tower safety

- Wear a hard hat and safety glasses if you are on the ground helping someone work on an antenna tower to protect your head from something dropped from the tower
- The person climbing the tower should wear a safety belt and safety glasses
- Be careful of using a leather climbing belt, because if the leather is old, it may be brittle and could break unexpectedly

Installation Safety Tips

$>$ Before climbing a tower:

- Tell someone that you will be up on the tower
- Bring a variety of tools with you to minimize your trips up and down the tower
- Inspect the tower before climbing to become aware of any antennas or other obstacles that you may need to step around

Installation Safety Tips

$>$ Before climbing a guyed tower:

- Tell someone that you will be up on the tower
- Inspect the tower for cracks or loose bolts
- Inspect the guy wires for frayed cable, loose cable clamps, loose turnbuckles or loose guy anchors

Installation Safety Tips

$>$ When using a bow and arrow or slingshot and weight to shoot an antenna-support line over a tree, ensure that:

- The line is strong enough to withstand the shock of shooting the weight
- The arrow or weight has a safe flight path if the line breaks
- The bow and arrow or slingshot is in good working condition

Installation Safety Tips

$>$ Watch out for power lines!

- Be sure your antenna and feed line are well clear of any power lines
- Make sure your antenna tower is well away from overhead power lines

Beam Antennas

$>$ Beam antennas are directional, and are frequently used on higher frequency bands
$>$ Beam antennas provide gain in the direction they are pointed, and reduce interference from other directions

- If a beam antenna has a 3 dB gain over a dipole antenna, it means that the beam antenna has double the radiated power of the dipole
$>$ Two popular kinds of beam antennas are:
- Yagi
- Cubical Quad

Yagi

$>$ Is combed of 3 or more elements connected to a boom

- At a minimum you will have one of each:
- Reflector
- Driven element
- Director
- Some people add more directors to their Yagis, but still have one reflector and one driven element
- The length of the boom determines the gain you get from your antenna

Yagi

Yagi

$>$ The driven element is typically $1 / 2$ wavelength
$>$ The director is slightly shorter than the driven element
$>$ The reflector is slightly longer than the driven element
$>$ Only the driven element is connected to the feed line

Cubical Quad

$>$ A cubical quad antenna has 2 or more elements in the shape of loops
$>$ Each loop is a square of wire with a total length of about one wavelength

- So each side of the square is about $1 / 4$ wavelength
$>$ One element is the driven element, the other can be either a reflector or director

Feed line

Cubical Quad

$>$ When the feed line is connected to a horizontal side of the driven element loop, the antenna is horizontally polarized
$>$ When the feed line is connected to a vertical side of the driven element loop, the antenna is vertically polarized

Feed line

Test Equipment

$>$ Avoiding current

- Handling electrical equipment one handed helps prevent you from becoming a path for current
$>$ Soldering
- Wear safety glasses
- Work in a well-ventilated area
- Make sure no one can touch the soldering iron tip for at least 10 minutes after it is turned off

Test Equipment

$>$ Voltmeter

- Measures voltage, the electro-motive force
- It is a meter with resistors in series
- When you switch to higher voltage, more resistance is added to the series
- Connect in parallel to the circuit under test

Meter A is measuring
voltage

Test Equipment

> Ammeter or Ampmeter

- Measures current
- It is a meter with resistors in parallel
- When you switch to higher current, more resistors are added in parallel to give the current more paths to follow
- Connect in series to the circuit under test

Meter B is measuring current
One way to find power used by resistor R is multiply the value of R by the square of the current reading on meter B

Test Equipment

Ohmmeter

- Measures resistance
- Connect in across the circuit under test
- Do not measure resistance in a circuit that has power applied to it

Test Equipment

$>$ Multimeters

- Combines a voltmeter, ammeter, and ohmmeter
- Be careful as to which setting you use and how you connect the meter to the circuit
- For example, if you connect the meter to a circuit that has power to measure voltage, then switch it to the ohmmeter, you could burn out the movingneedle movement

Test Equiment

> Dummy Antenna or Dummy Load

- A large resistor that replaces your antenna so you can test your system without actually sending a signal
- Converts RF energy from the transmitter to heat
- Has a constant 50 ohm load
- Be sure it can handle the power output from your transmitter
- A 100 watt transmitter should be connected to a dummy antenna that will handle at least 100 watts

Test Equipment

>Signal Generator

- Produces a stable, low-level signal that can be set to a desired frequency

Exam Questions

$>$ The following slides contain questions from the exam pool that are covered in this section of the notes

T8D03

$>$ T8D03 What would be the length, to the nearest inch, of a half-wavelength dipole antenna that is resonant at 147 MHz ?

- A. 19 inches
- B. 37 inches
- C. 55 inches
- D. 74 inches

T8D04

> T8D04 How long should you make a halfwavelength dipole antenna for 223 MHz (measured to the nearest inch)?

- A. 112 inches
- B. 50 inches
- C. 25 inches
- D. 12 inches

T8D15

$>$ T8D15 If the ends of a half-wavelength dipole antenna (mounted at least a half- wavelength high) point east and west, which way would the antenna send out radio energy?

- A. Equally in all directions
- B. Mostly up and down
- C. Mostly north and south
- D. Mostly east and west

T8D20

$>$ T8D20 What is one advantage to using a multiband antenna?

- A. You can operate on several bands with a single feed line
- B. Multiband antennas always have high gain
- C. You can transmit on several frequencies simultaneously
- D. Multiband antennas offer poor harmonic suppression

T8D01

$>$ T8D01 Which of the following will improve the operation of a hand-held radio inside a vehicle?

- A. Shielding around the battery pack
- B. A good ground to the belt clip
- C. An external antenna on the roof
- D. An audio amplifier

T8D02

> T8D02 Which is true of "rubber duck" antennas for hand-held transceivers?

- A. The shorter they are, the better they perform
- B. They are much less efficient than a quarterwavelength telescopic antenna
- C. They offer the highest amount of gain possible for any hand-held transceiver antenna
- D. They have a good long-distance communications range

T8D05

$>$ T8D05 How long should you make a quarterwavelength vertical antenna for 146 MHz (measured to the nearest inch)?

- A. 112 inches
- B. 50 inches
- C. 19 inches
- D. 12 inches

T8D06

$>$ T8D06 How long should you make a quarterwavelength vertical antenna for 440 MHz (measured to the nearest inch)?

- A. 12 inches
- B. 9 inches
-C. 6 inches
- D. 3 inches
$>$ T8D21 What could be done to reduce the physical length of an antenna without changing its resonant frequency?
- A. Attach a balun at the feed point
- B. Add series capacitance at the feed point
- C. Use thinner conductors
- D. Add a loading coil
> T8D13 What does horizontal wave polarization mean?
- A. The magnetic lines of force of a radio wave are parallel to the Earth's surface
- B. The electric lines of force of a radio wave are parallel to the Earth's surface
- C. The electric lines of force of a radio wave are perpendicular to the Earth's surface
- D. The electric and magnetic lines of force of a radio wave are perpendicular to the Earth's surface
$>$ T8D14 What does vertical wave polarization mean?
- A. The electric lines of force of a radio wave are parallel to the Earth's surface
- B. The magnetic lines of force of a radio wave are perpendicular to the Earth's surface
- C. The electric lines of force of a radio wave are perpendicular to the Earth's surface
- D. The electric and magnetic lines of force of a radio wave are parallel to the Earth's surface

T8D16

> T8D16 What electromagnetic wave polarization do most repeater antennas have in the VHF and UHF spectrum?

- A. Horizontal
- B. Vertical
- C. Right-hand circular
- D. Left-hand circular

T8D17

$>$ T8D17 What electromagnetic wave polarization is used for most satellite operation?

- A. Only horizontal
- B. Only vertical
- C. Circular
- D. No polarization
$>$ T8D18 Which antenna polarization is used most often for weak signal VHF/UHF SSB operation?
- A. Vertical
- B. Horizontal
- C. Right-hand circular
- D. Left-hand circular

T0B03

> T0B03 Why should you wear a hard hat and safety glasses if you are on the ground helping someone work on an antenna tower?

- A. So you won't be hurt if the tower should accidentally fall
- B. To keep RF energy away from your head during antenna testing
- C. To protect your head from something dropped from the tower
- D. So someone passing by will know that work is being done on the tower and will stay away

T0B04

$>$ T0B04 What safety factors must you consider when using a bow and arrow or slingshot and weight to shoot an antenna-support line over a tree?

- A. You must ensure that the line is strong enough to withstand the shock of shooting the weight
- B. You must ensure that the arrow or weight has a safe flight path if the line breaks
- C. You must ensure that the bow and arrow or slingshot is in good working condition
- D. All of these choices are correct

T0B05

> T0B05 Which of the following is the best way to install your antenna in relation to overhead electric power lines?

- A. Always be sure your antenna wire is higher than the power line, and crosses it at a 90-degree angle
- B. Always be sure your antenna and feed line are well clear of any power lines
- C. Always be sure your antenna is lower than the power line, and crosses it at a small angle
- D. Only use vertical antennas within 100 feet of a power line

T0B06

> T0B06 What should you always do before attempting to climb an antenna tower?

- A. Turn on all radio transmitters that use the tower's antennas
- B. Remove all tower grounding to guard against static electric shock
- C. Put on your safety belt and safety glasses
- D. Inform the FAA and the FCC that you are starting work on a tower

T0B07

$>$ T0B07 What is the most important safety precaution to take when putting up an antenna tower?

- A. Install steps on your tower for safe climbing
- B. Insulate the base of the tower to avoid lightning strikes
- C. Ground the base of the tower to avoid lightning strikes
- D. Look for and stay clear of any overhead electrical wires
$>$ T0B08 What should you consider before you climb a tower with a leather climbing belt?
- A. If the leather is old, it is probably brittle and could break unexpectedly
- B. If the leather is old, it is very tough and is not likely to break easily
- C. If the leather is old, it is flexible and will hold you more comfortably
- D. An unbroken old leather belt has proven its holding strength over the years

T0B09

> T0B09 What should you do before you climb a guyed tower?

- A. Tell someone that you will be up on the tower
- B. Inspect the tower for cracks or loose bolts
- C. Inspect the guy wires for frayed cable, loose cable clamps, loose turnbuckles or loose guy anchors
- D. All of these choices are correct

TOB10

$>$ T0B10 What should you do before you do any work on top of your tower?

- A. Tell someone that you will be up on the tower
- B. Bring a variety of tools with you to minimize your trips up and down the tower
- C. Inspect the tower before climbing to become aware of any antennas or other obstacles that you may need to step around
- D. All of these choices are correct

T8D07

$>$ T8D07 Which of the following factors has the greatest effect on the gain of a properly designed Yagi antenna?

- A. The number of elements
- B. Boom length
- C. Element spacing
- D. Element diameter

T8D08

$>$ T8D08 Approximately how long is the driven element of a Yagi antenna?

- A. $1 / 4$ wavelength
- B. $1 / 3$ wavelength
- C. $1 / 2$ wavelength
- D. 1 wavelength

T8D09

$>$ T8D09 In Figure T8-8, what is the name of element 2 of the Yagi antenna?

- A. Director
- B. Reflector
- C. Boom
- D. Driven element

T8D10

$>$ T8D10 In Figure T8-8, what is the name of element 3 of the Yagi antenna?

- A. Director
- B. Reflector
- C. Boom
- D. Driven element

T8D11

$>$ T8D11 In Figure T8-8, what is the name of element 1 of the Yagi antenna?

- A. Director
- B. Reflector
- C. Boom
- D. Driven element
$>$ T8D12 What is a cubical quad antenna?
- A. Four straight, parallel elements in line with each other, each approximately $1 / 2$-electrical wavelength long
- B. Two or more parallel four-sided wire loops, each approximately one- electrical wavelength long
- C. A vertical conductor $1 / 4$-electrical wavelength high, fed at the bottom
- D. A center-fed wire $1 / 2$-electrical wavelength long
$>$ T8D19 How will increasing antenna gain by 3 dB affect your signal's effective radiated power in the direction of maximum radiation?
- A. It will cut it in half
- B. It will not change
- C. It will double it
- D. It will quadruple it

T8B07

$>$ T8B07 What minimum rating should a dummy antenna have for use with a 100-watt, single-sideband-phone transmitter?

- A. 100 watts continuous
- B. 141 watts continuous
- C. 175 watts continuous
- D. 200 watts continuous

T8B15

$>$ T8B15 In Figure T8-3, if block 1 is a transceiver and block 2 is an antenna switch, what is block 3 ?

- A. A terminal-node switch
- B. An SWR meter
- C. A telegraph key switch
- D. A dummy antenna
$>$ T8F01 Which instrument would you use to measure electric potential or electromotive force?
- A. An ammeter
- B. A voltmeter
- C. A wavemeter
- D. An ohmmeter
$>$ T8F02 How is a voltmeter usually connected to a circuit under test?
- A. In series with the circuit
- B. In parallel with the circuit
- C. In quadrature with the circuit
- D. In phase with the circuit
> T8F03 What happens inside a voltmeter when you switch it from a lower to a higher voltage range?
- A. Resistance is added in series with the meter
- B. Resistance is added in parallel with the meter
- C. Resistance is reduced in series with the meter
- D. Resistance is reduced in parallel with the meter
$>$ T8F04 How is an ammeter usually connected to a circuit under test?
- A. In series with the circuit
- B. In parallel with the circuit
- C. In quadrature with the circuit
- D. In phase with the circuit
$>$ T8F05 Which instrument would you use to measure electric current?
- A. An ohmmeter
- B. A wavemeter
- C. A voltmeter
- D. An ammeter

T8F06

$>$ T8F06 What test instrument would be useful to measure DC resistance?

- A. An oscilloscope
- B. A spectrum analyzer
- C. A noise bridge
- D. An ohmmeter
$>$ T8F07 What might damage a multimeter that uses a moving-needle meter?
- A. Measuring a voltage much smaller than the maximum for the chosen scale
- B. Leaving the meter in the milliamps position overnight
- C. Measuring voltage when using the ohms setting
- D. Not allowing it to warm up properly
$>$ T8F08 For which of the following measurements would you normally use a multimeter?
- A. SWR and power
- B. Resistance, capacitance and inductance
- C. Resistance and reactance
- D. Voltage, current and resistance
> T8F15 What safety step should you take when soldering?
- A. Always wear safety glasses
- B. Ensure proper ventilation
- C. Make sure no one can touch the soldering iron tip for at least 10 minutes after it is turned off
- D. All of these choices are correct

T8F18

$>$ T8F18 What device produces a stable, lowlevel signal that can be set to a desired frequency?

- A. A wavemeter
- B. A reflectometer
- C. A signal generator
- D. An oscilloscope
$>$ T8F19 In Figure T8-9, what circuit quantity would meter B indicate?
- A. The voltage across the resistor
- B. The power consumed by the resistor
- C. The power factor of the resistor
- D. The current flowing through the resistor

T8F20

$>$ T8F20 In Figure T8-9, what circuit quantity is meter A reading?

- A. Battery current
- B. Battery voltage
- C. Battery power
- D. Battery current polarity
$>$ T8F21 In Figure T8-9, how would the power consumed by the resistor be calculated?
- A. Multiply the value of the resistor times the square of the reading of meter B
- B. Multiply the value of the resistor times the reading of meter B
- C. Multiply the reading of meter A times the value of the resistor
- D. Multiply the value of the resistor times the square root of the reading of meter B

