Lesson 11: Antennas

Preparation for Amateur Radio Technician Class Exam

Copyright © Winters² 2004 Version 1.0

Topics

Antenna

- ► 1/2 wave Dipole antenna
- ► ¼ wave Vertical antenna
- Antenna polarization
- Antenna location
- Beam antennas
- Test Equipment
- Exam Questions for this section

≻ Chapter 8 – 8.19-8.40

A Quick Review!

Frequencies and Wavelengths

- Remember: Frequency and wavelength are related by this formula:
 - Speed of light (m/s) = frequency (Hz) X wavelength (m)

>1 Meter \cong 37 inches

f

Antennas

- You must have an antenna for your radio to operate
 - The antenna is used by both the transmitter and receiver
- Current travels between the radio and antenna through a transmission line (or feed line)
- Antennas transmit and receive in particular directions, based on the design of the antenna
 - The antenna gain is greatest in the same direction that the antenna puts out the greatest power

- Basically, just a wire whose length is ½ of the wavelength of the frequency you are working with
 - Copper or copper clad steel wires are common
 - Most energy from a dipole is sent 90 degrees from the antenna wire
 - If your antenna is strung east to west, your best gain will be north and south of you
 - Gain is OK certainly better than a "rubber duck"!

1/2 wave dipole

- ➤ What would be the length, to the nearest inch, of a half-wavelength dipole antenna that is resonant at 147 MHz?
 - 300/147 = 2.04 meter wavelength
 - 2.04 / 2 = 1.02 meter $\frac{1}{2}$ wavelength
 - 1.02 * 37 ≅ 37 inches

1/2 wave dipole

- ➢ How long should you make a half-wavelength dipole antenna for 223 MHz (measured to the nearest inch)?
 - 300/223 = 1.35 meter wavelength
 - 1.35 / 2 = 0.67 meter $\frac{1}{2}$ wavelength
 - 0.67 * 37 ≅ 25 inches

Multi-band dipole

A dipole with additional wires for additional frequencies

There is just one feed line

- Basically, just a wire whose length is ¼ of the wavelength of the frequency you are working with, attached to ground radials or a ground plane
 - Most energy from a dipole is sent 90 degrees from the antenna wire
 - Gain is better than a dipole

- Popular car antennas for HTs because the car body serves as the ground plane
 - To avoid RF to the passengers, mount the antenna on the roof of the car if possible
- The small antenna that comes with the radio is fondly called the "rubber duck"
 - It is fairly inefficient, so many hams replace it with a ¼ wave vertical telescoping or flexible antenna

- How long should you make a quarterwavelength vertical antenna for 146 MHz (measured to the nearest inch)?
 - 300/146 = 2.05 meter wavelength
 - 2.05 / 4 = 0.5 meter ¹/₄ wavelength
 - 0.5 * 37 ≅ 19 inches

- How long should you make a quarterwavelength vertical antenna for 440 MHz (measured to the nearest inch)?
 - 300/440 = 0.68 meter wavelength
 - 0.68 / 4 = 0.17 meter ¹/₄ wavelength
 - 0.17 * 37 ≅ 6 inches

Loading Coil

- If you are working a frequencies with long wavelengths, your antenna may get too long to handle
 - You can reduce the length of the antenna without changing its frequency by adding a loading coil to the antenna

Antenna Polarization

- Polarization is the direction of the electrical lines of force from an antenna
 - An antenna parallel to the Earth's surface is horizontally polarized
 - So a ¹/₂ wave dipole is ??? polarized
 - An antenna perpendicular to the Earth's surface is vertically polarized
 - So a ¹/₄ wave vertical is ??? polarized

Antenna Polarization

- For best communication, the transmitting and receiving antennas should have the same polarization
 - Because vertical antennas are so popular (handhelds, car mount) most repeater antennas are vertically polarized
 - Most weak-signal SSB and CW work is done with horizontal polarization
 - Satellites use circular polarization

Antenna Location

Because higher antennas have better range, many people locate their antennas on top of a tower, on a roof top, or up in a tree

≻Tower safety

- Wear a hard hat and safety glasses if you are on the ground helping someone work on an antenna tower to protect your head from something dropped from the tower
- The person climbing the tower should wear a safety belt and safety glasses
- Be careful of using a leather climbing belt, because if the leather is old, it may be brittle and could break unexpectedly

>Before climbing a tower:

- Tell someone that you will be up on the tower
- Bring a variety of tools with you to minimize your trips up and down the tower
- Inspect the tower before climbing to become aware of any antennas or other obstacles that you may need to step around

>Before climbing a guyed tower:

- Tell someone that you will be up on the tower
- Inspect the tower for cracks or loose bolts
- Inspect the guy wires for frayed cable, loose cable clamps, loose turnbuckles or loose guy anchors

- When using a bow and arrow or slingshot and weight to shoot an antenna-support line over a tree, ensure that:
 - The line is strong enough to withstand the shock of shooting the weight
 - The arrow or weight has a safe flight path if the line breaks
 - The bow and arrow or slingshot is in good working condition

> Watch out for power lines!

- Be sure your antenna and feed line are well clear of any power lines
- Make sure your antenna tower is well away from overhead power lines

Beam Antennas

- Beam antennas are directional, and are frequently used on higher frequency bands
- Beam antennas provide gain in the direction they are pointed, and reduce interference from other directions
 - If a beam antenna has a 3 dB gain over a dipole antenna, it means that the beam antenna has double the radiated power of the dipole
- Two popular kinds of beam antennas are:
 - Yagi
 - Cubical Quad

Yagi

- Is combed of 3 or more elements connected to a boom
 - At a minimum you will have one of each:
 - Reflector
 - Driven element
 - Director
 - Some people add more directors to their Yagis, but still have one reflector and one driven element
 - The length of the boom determines the gain you get from your antenna

Yagi

The driven element is typically ½ wavelength

- The director is slightly shorter than the driven element
- The reflector is slightly longer than the driven element
- Only the driven element is connected to the feed line

Cubical Quad

- A cubical quad antenna has 2 or more elements in the shape of loops
- Each loop is a square of wire with a total length of about one wavelength
 - So each side of the square is about ¹/₄ wavelength
- One element is the driven element, the other can be either a reflector or director

Cubical Quad

➤ When the feed line is connected to a horizontal side of the driven element loop, the antenna is horizontally polarized

➤ When the feed line is connected to a vertical side of the driven element loop, the antenna is vertically polarized

>Avoiding current

 Handling electrical equipment one handed helps prevent you from becoming a path for current

> Soldering

- Wear safety glasses
- Work in a well-ventilated area
- Make sure no one can touch the soldering iron tip for at least 10 minutes after it is turned off

> Voltmeter

- Measures voltage, the electro-motive force
- It is a meter with resistors in series
- When you switch to higher voltage, more resistance is added to the series
- Connect in parallel to the circuit under test

Meter A is measuring voltage

- Ammeter or Ampmeter
 - Measures current
 - It is a meter with resistors in parallel
 - When you switch to higher current, more resistors are added in parallel to give the current more paths to follow
 - Connect in series to the circuit under test

Meter B is measuring current

One way to find power used by resistor R is multiply the value of R by the square of the current reading on meter B

> Ohmmeter

- Measures resistance
- Connect in across the circuit under test
- Do not measure resistance in a circuit that has power applied to it

> Multimeters

- Combines a voltmeter, ammeter, and ohmmeter
- Be careful as to which setting you use and how you connect the meter to the circuit
 - For example, if you connect the meter to a circuit that has power to measure voltage, then switch it to the ohmmeter, you could burn out the movingneedle movement

Dummy Antenna or Dummy Load

- A large resistor that replaces your antenna so you can test your system without actually sending a signal
- Converts RF energy from the transmitter to heat
- Has a constant 50 ohm load
- Be sure it can handle the power output from your transmitter
 - A 100 watt transmitter should be connected to a dummy antenna that will handle at least 100 watts

Signal Generator

 Produces a stable, low-level signal that can be set to a desired frequency Exam Questions

The following slides contain questions from the exam pool that are covered in this section of the notes

- ➤ T8D03 What would be the length, to the nearest inch, of a half-wavelength dipole antenna that is resonant at 147 MHz?
 - A. 19 inches
 - B. 37 inches
 - C. 55 inches
 - D. 74 inches

- T8D04 How long should you make a halfwavelength dipole antenna for 223 MHz (measured to the nearest inch)?
 - A. 112 inches
 - B. 50 inches
 - C. 25 inches
 - D. 12 inches

- T8D15 If the ends of a half-wavelength dipole antenna (mounted at least a half- wavelength high) point east and west, which way would the antenna send out radio energy?
 - A. Equally in all directions
 - B. Mostly up and down
 - C. Mostly north and south
 - D. Mostly east and west

T8D20 What is one advantage to using a multiband antenna?

- A. You can operate on several bands with a single feed line
- B. Multiband antennas always have high gain
- C. You can transmit on several frequencies simultaneously
- D. Multiband antennas offer poor harmonic suppression

- ➤ T8D01 Which of the following will improve the operation of a hand-held radio inside a vehicle?
 - A. Shielding around the battery pack
 - B. A good ground to the belt clip
 - C. An external antenna on the roof
 - D. An audio amplifier

- T8D02 Which is true of "rubber duck" antennas for hand-held transceivers?
 - A. The shorter they are, the better they perform
 - B. They are much less efficient than a quarterwavelength telescopic antenna
 - C. They offer the highest amount of gain possible for any hand-held transceiver antenna
 - D. They have a good long-distance communications range

- T8D05 How long should you make a quarterwavelength vertical antenna for 146 MHz (measured to the nearest inch)?
 - A. 112 inches
 - B. 50 inches
 - C. 19 inches
 - D. 12 inches

- T8D06 How long should you make a quarterwavelength vertical antenna for 440 MHz (measured to the nearest inch)?
 - A. 12 inches
 - B. 9 inches
 - C. 6 inches
 - D. 3 inches

- T8D21 What could be done to reduce the physical length of an antenna without changing its resonant frequency?
 - A. Attach a balun at the feed point
 - B. Add series capacitance at the feed point
 - C. Use thinner conductors
 - D. Add a loading coil

- T8D13 What does horizontal wave polarization mean?
 - A. The magnetic lines of force of a radio wave are parallel to the Earth's surface
 - B. The electric lines of force of a radio wave are parallel to the Earth's surface
 - C. The electric lines of force of a radio wave are perpendicular to the Earth's surface
 - D. The electric and magnetic lines of force of a radio wave are perpendicular to the Earth's surface

- T8D14 What does vertical wave polarization mean?
 - A. The electric lines of force of a radio wave are parallel to the Earth's surface
 - B. The magnetic lines of force of a radio wave are perpendicular to the Earth's surface
 - C. The electric lines of force of a radio wave are perpendicular to the Earth's surface
 - D. The electric and magnetic lines of force of a radio wave are parallel to the Earth's surface

- ➤ T8D16 What electromagnetic wave polarization do most repeater antennas have in the VHF and UHF spectrum?
 - A. Horizontal
 - B. Vertical
 - C. Right-hand circular
 - D. Left-hand circular

- ➤T8D17 What electromagnetic wave polarization is used for most satellite operation?
 - A. Only horizontal
 - B. Only vertical
 - C. Circular
 - D. No polarization

- T8D18 Which antenna polarization is used most often for weak signal VHF/UHF SSB operation?
 - A. Vertical
 - B. Horizontal
 - C. Right-hand circular
 - D. Left-hand circular

- TOB03 Why should you wear a hard hat and safety glasses if you are on the ground helping someone work on an antenna tower?
 - A. So you won't be hurt if the tower should accidentally fall
 - B. To keep RF energy away from your head during antenna testing
 - C. To protect your head from something dropped from the tower
 - D. So someone passing by will know that work is being done on the tower and will stay away

- TOB04 What safety factors must you consider when using a bow and arrow or slingshot and weight to shoot an antenna-support line over a tree?
 - A. You must ensure that the line is strong enough to withstand the shock of shooting the weight
 - B. You must ensure that the arrow or weight has a safe flight path if the line breaks
 - C. You must ensure that the bow and arrow or slingshot is in good working condition
 - D. All of these choices are correct

- T0B05 Which of the following is the best way to install your antenna in relation to overhead electric power lines?
 - A. Always be sure your antenna wire is higher than the power line, and crosses it at a 90-degree angle
 - B. Always be sure your antenna and feed line are well clear of any power lines
 - C. Always be sure your antenna is lower than the power line, and crosses it at a small angle
 - D. Only use vertical antennas within 100 feet of a power line

- TOB06 What should you always do before attempting to climb an antenna tower?
 - A. Turn on all radio transmitters that use the tower's antennas
 - B. Remove all tower grounding to guard against static electric shock
 - C. Put on your safety belt and safety glasses
 - D. Inform the FAA and the FCC that you are starting work on a tower

- TOB07 What is the most important safety precaution to take when putting up an antenna tower?
 - A. Install steps on your tower for safe climbing
 - B. Insulate the base of the tower to avoid lightning strikes
 - C. Ground the base of the tower to avoid lightning strikes
 - D. Look for and stay clear of any overhead electrical wires

- TOB08 What should you consider before you climb a tower with a leather climbing belt?
 - A. If the leather is old, it is probably brittle and could break unexpectedly
 - B. If the leather is old, it is very tough and is not likely to break easily
 - C. If the leather is old, it is flexible and will hold you more comfortably
 - D. An unbroken old leather belt has proven its holding strength over the years

- T0B09 What should you do before you climb a guyed tower?
 - A. Tell someone that you will be up on the tower
 - B. Inspect the tower for cracks or loose bolts
 - C. Inspect the guy wires for frayed cable, loose cable clamps, loose turnbuckles or loose guy anchors
 - D. All of these choices are correct

- TOB10 What should you do before you do any work on top of your tower?
 - A. Tell someone that you will be up on the tower
 - B. Bring a variety of tools with you to minimize your trips up and down the tower
 - C. Inspect the tower before climbing to become aware of any antennas or other obstacles that you may need to step around
 - D. All of these choices are correct

- T8D07 Which of the following factors has the greatest effect on the gain of a properly designed Yagi antenna?
 - A. The number of elements
 - B. Boom length
 - C. Element spacing
 - D. Element diameter

➤ T8D08 Approximately how long is the driven element of a Yagi antenna?

- A. 1/4 wavelength
- B. 1/3 wavelength
- C. 1/2 wavelength
- D. 1 wavelength

- ➤T8D09 In Figure T8-8, what is the name of element 2 of the Yagi antenna?
 - A. Director
 - B. Reflector
 - C. Boom
 - D. Driven element

- ➤T8D10 In Figure T8-8, what is the name of element 3 of the Yagi antenna?
 - A. Director
 - B. Reflector
 - C. Boom
 - D. Driven element

- ➤T8D11 In Figure T8-8, what is the name of element 1 of the Yagi antenna?
 - A. Director
 - B. Reflector
 - C. Boom
 - D. Driven element

≻T8D12 What is a cubical quad antenna?

- A. Four straight, parallel elements in line with each other, each approximately 1/2-electrical wavelength long
- B. Two or more parallel four-sided wire loops, each approximately one- electrical wavelength long
- C. A vertical conductor 1/4-electrical wavelength high, fed at the bottom
- D. A center-fed wire 1/2-electrical wavelength long

- T8D19 How will increasing antenna gain by 3 dB affect your signal's effective radiated power in the direction of maximum radiation?
 - A. It will cut it in half
 - B. It will not change
 - C. It will double it
 - D. It will quadruple it

T8B07

- ➤ T8B07 What minimum rating should a dummy antenna have for use with a 100-watt, singlesideband-phone transmitter?
 - A. 100 watts continuous
 - B. 141 watts continuous
 - C. 175 watts continuous
 - D. 200 watts continuous

T8B15

➤ T8B15 In Figure T8-3, if block 1 is a transceiver and block 2 is an antenna switch, what is block 3?

- A. A terminal-node switch
- B. An SWR meter
- C. A telegraph key switch
- D. A dummy antenna

- ➤ T8F01 Which instrument would you use to measure electric potential or electromotive force?
 - A. An ammeter
 - B. A voltmeter
 - C. A wavemeter
 - D. An ohmmeter

- T8F02 How is a voltmeter usually connected to a circuit under test?
 - A. In series with the circuit
 - B. In parallel with the circuit
 - C. In quadrature with the circuit
 - D. In phase with the circuit

- ➤ T8F03 What happens inside a voltmeter when you switch it from a lower to a higher voltage range?
 - A. Resistance is added in series with the meter
 - B. Resistance is added in parallel with the meter
 - C. Resistance is reduced in series with the meter
 - D. Resistance is reduced in parallel with the meter

- T8F04 How is an ammeter usually connected to a circuit under test?
 - A. In series with the circuit
 - B. In parallel with the circuit
 - C. In quadrature with the circuit
 - D. In phase with the circuit

T8F05 Which instrument would you use to measure electric current?

- A. An ohmmeter
- B. A wavemeter
- C. A voltmeter
- D. An ammeter

T8F06 What test instrument would be useful to measure DC resistance?

- A. An oscilloscope
- B. A spectrum analyzer
- C. A noise bridge
- D. An ohmmeter

- ➤ T8F07 What might damage a multimeter that uses a moving-needle meter?
 - A. Measuring a voltage much smaller than the maximum for the chosen scale
 - B. Leaving the meter in the milliamps position overnight
 - C. Measuring voltage when using the ohms setting
 - D. Not allowing it to warm up properly

- ➤ T8F08 For which of the following measurements would you normally use a multimeter?
 - A. SWR and power
 - B. Resistance, capacitance and inductance
 - C. Resistance and reactance
 - D. Voltage, current and resistance

- ➤T8F15 What safety step should you take when soldering?
 - A. Always wear safety glasses
 - B. Ensure proper ventilation
 - C. Make sure no one can touch the soldering iron tip for at least 10 minutes after it is turned off
 - D. All of these choices are correct

- ➤ T8F18 What device produces a stable, lowlevel signal that can be set to a desired frequency?
 - A. A wavemeter
 - B. A reflectometer
 - C. A signal generator
 - D. An oscilloscope

➤ T8F19 In Figure T8-9, what circuit quantity would meter B indicate?

- A. The voltage across the resistor
- B. The power consumed by the resistor
- C. The power factor of the resistor
- D. The current flowing through the resistor

➤T8F20 In Figure T8-9, what circuit quantity is meter A reading?

- A. Battery current
- B. Battery voltage
- C. Battery power
- D. Battery current polarity

- T8F21 In Figure T8-9, how would the power consumed by the resistor be calculated?
 - A. Multiply the value of the resistor times the square of the reading of meter B
 - B. Multiply the value of the resistor times the reading of meter B
 - C. Multiply the reading of meter A times the value of the resistor
 - D. Multiply the value of the resistor times the square root of the reading of meter B