Prove that $X U(Y \cap Z)=(X U Y) \cap(X U Z)$

Definition: A set's any collection of elements for which we can always tell whether an element is in the set or not.

Definition: Given two sets X and Y, X union Y is the set of all the elements in X and all the elements in Y. We denotes this by XUY.

Definition: Given two sets X and Y, X intersect Y is the set of all the elements that are simultaneously in X and in Y . we denote this by $\mathrm{X} \cap \mathrm{Y}$.

Now to find the left side, we know that X is union to Y intersection Z . This means, that everything is in X and the elements intersecting at X and Y .

On the other right side of the equation, the elements are in the intersection of X union Y and X union to Z. If we were to make a diagram of X union Y and another diagram of X union Z, we would see that X

Union Y is everything in X and Y, similarly, X union Z is everything in X and Z. If we were to combine these two diagrams together, we see that the diagram looks exactly like the left hand equation, $\mathrm{XU}(\mathrm{Y} \cap \mathrm{Z})$
(XUY)

Z

