
In this lecture we deal with closure operations which depend only on the
torsor which the forcing algebra defines, so they only depend on the cohomo-
logy class of the forcing data inside the syzygy bundle. Our main example
is tight closure, a theory developed by Hochster and Huneke, and related
closure operations like solid closure and plus closure.

Tight closure and solid closure

Let R be a noetherian domain of positive characteristic, let

F : R −→ R, f 7−→ fp,

be the Frobenius homomorphism, and

F e : R −→ R, f 7−→ f q, q = pe ,

its eth iteration. Let I be an ideal and set

I [q] = extended ideal of I under F e

Then define the tight closure of I to be the ideal

I∗ := {f ∈ R : there exists z 6= 0 such that zf q ∈ I [q] for all q = pe} .
The element f defines the cohomology class c ∈ H1(D(I), Syz (f1, . . . , fn)).
Suppose that R is normal and that I has height at least 2 (think of a local
normal domain of dimension at least 2 and an m-primary ideal I). Then the
eth Frobenius pull-back of the cohomology class is

F e∗(c) ∈ H1(D(I), F e∗(Syz (f1, . . . , fn)) ∼= H1(D(I), Syz (f q
1 , . . . , f

q
n))

(q = pe) and this is the cohomology class corresponding to f q. By the height
assumption, zF e(c) = 0 if and only if zf q ∈ (f q

1 , . . . , f
q
n), and if this holds for

all e then f ∈ I∗ by definition. This shows already that tight closure under
the given conditions does only depend on the cohomology class. This is also
a consequence of the following theorem of Hochster which gives a characte-
rization of tight closure in terms of forcing algebra and local cohomology.

Theorem 4.1. Let R be a normal excellent local domain with maximal ideal
m over a field of positive characteristic. Let f1, . . . , fn generate an m-primary
ideal I and let f be another element in R. Then f ∈ I∗ if and only if

Hdim(R)
m (B) 6= 0 ,

where B = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) denotes the forcing algebra
of these elements.

If the dimension d is at least two, then

Hd
m(R) −→ Hd

m(B) ∼= Hd
mB(B) ∼= Hd−1(D(mB),OB) .

This means that we have to look at the cohomological properties of the
complement of the exceptional fiber over the closed point, i.e. the torsor
given by these data. If the dimension is two, then we have to look whether
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the first cohomology of the structure sheaf vanishes. This is true (by Serre’s
cohomological criterion for affineness) if and only if the open subset D(mB)
is an affine scheme (the spectrum of a ring). The right hand side of this
equivalence - the non-vanishing of the top-dimensional local cohomology -
is independent of any characteristic assumption, and can be taken as the
basis for the definition of another closure operation, called solid closure. So
the theorem above says that in positive characteristic tight closure and solid
closure coincide. There is also a definition of tight closure for algebras over a
field of characteristic 0 by reduction to positive characteristic. An important
property of tight closure is that it is trivial for regular rings, i.e. I∗ = I
for every ideal I. This rests upon Kunz’s theorem saying that the Frobenius
homomorphism for regular rings is flat. This property implies the following
cohomological property of torsors.

Corollary 4.2. Let (R,m) denote a regular local ring of dimension d and of
positive characteristic, let I = (f1, . . . , fn) be an m-primary ideal and f ∈ R
an element with f 6∈ I. Let B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) be the
corresponding forcing algebra. Then for the extended ideal mB we have

Hd
mB(B) = Hd−1(D(mB),OB) = 0.

Proof. This follows from Theorem 4.1 and f 6∈ I∗. �

In dimension two this is true in every (even mixed) characteristic.

Theorem 4.3. Let (R,m) denote a two-dimensional regular local ring, let
I = (f1, . . . , fn) be an m-primary ideal and f ∈ R an element with f 6∈ I.
Let B = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) be the corresponding forcing
algebra. Then for the extended ideal mB we have

H2
mB(B) = H1(D(mB),OB) = 0.

In particular, the open subset T = D(mB) is an affine scheme if and only if
f 6∈ I.

The main point for the proof of this result is that for f 6∈ I, the natural
mapping

H1(U,OX) −→ H1(T,OT )

is not injective by a Matlis duality argument. Since the local cohomology of
a regular ring is explicitely known, this map annihilates some cohomology
class of the form 1

fg
where f, g are parameters. But then it annihilates the

complete local cohomology module and then T is an affine scheme. For non-
regular two-dimensional rings it is a difficult question in general to decide
whether a torsor is affine or not. A satisfactory answer is only known in
the normal twodimensional graded case over a field, which we will deal with
in the final lecture. In higher dimension in characteristic zero it is not true
that a regular ring is solidly closed (meaning that every ideal equals its solid
closure), as was shown by the following example of Paul Roberts.
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Example 4.4. Let K be a field of characteristic 0 and let

B = K[X, Y, Z][U, V,W ]/(X2U + Y 2V + Z2W −X3Y 3Z3) .

Then the ideal a = (X, Y, Z)B has the property that H3
a (B) 6= 0. This means

that in R = K[X, Y, Z] the element X3Y 3Z3 belongs to the solid closure of
the ideal (X2, Y 2, Z2), and hence the threedimensional polynomial ring is not
solidly closed.

This example was the motivation for the introduction of parasolid closure,
which has all the good properties of solid closure but which is also trivial for
regular rings.

Affineness and superheight

One can show that for an open affine subset U ⊆ X the closed complement
Y = X \ U must be of pure codimension one (U must be the complement
of the support of an effective divisor). In a regular or (locally Q)- factorial
domain the complement of every divisor is affine, since the divisor can be
described (at least locally geometrically) by one equation. But it is easy
to give examples to show that this is not true for normal threedimensional
domains. The following example is a standardexample for this phenomenon
and is in fact given by a forcing algebra.

Example 4.5. Let K be a field and consider the ring

R = K[x, y, u, v]/(xu− yv) .

The ideal p = (x, y) is a prime ideal in R of height one. Hence the open subset
U = D(x, y) is the complement of an irreducible hypersurface. However, U
is not affine. For this we consider the closed subscheme

A2
K
∼= Z = V (u, v) ⊆ Spec (R)

and

Z ∩ U ⊆ U .

If U were affine, then also the closed subscheme Z ∩U ∼= A2
K \{(0, 0)} would

be affine, but this is not true, since the complement of the punctured plane
has codimension 2.

The argument employed in this example rests on the following definition and
the next theorem.

Definition 4.6. Let R be a noetherian commutative ring and let I ⊆ R be
an ideal. The (noetherian) superheight is the supremum

sup (ht (IS) : S is a notherian R− algebra) .

Theorem 4.7. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal and U = D(I) ⊆ X = Spec (R). Then the following are equivalent.
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(1) U is an affine scheme.
(2) I has superheight ≤ 1 and Γ(U,OX) is a finitely generated R-algebra.

It is not true at all that the ring of global sections of an open subset U of
the spectrum X of a noetherian ring is of finite type over this ring. This
is not even true if X is an affine variety. This problem is directly related
to Hilbert’s fourteenth problem, which has a negative answer. We will later
present examples where U has superheight one, yet is not affine, hence its
ring of global sections is not finitely generated. If R is a two-dimensional local
ring with parameters f, g and if B is the forcing algebra for some m-primary
ideal, then the ring of global sections of the torsor is just

Γ(D(mB),OB) = Bf ∩Bg.

Plus closure

The above mentioned (finite) superheight condition is also related to another
closure operation, the plus closure. For an ideal I ⊆ R in a domain R define

I+ = {f ∈ R : there exists a finite domain extension R ⊆ T such that f ∈ IT} .

Equivalent: let R+ be the absolute integral closure of R. This is the integral
closure of in an algebraic closure of the quotient field Q(R) (first considered
by Artin). Then

f ∈ I+ if and only if f ∈ IR+ .

The plus closure commutes with localization. We also have the inclusion
I+ ⊆ I∗. Here the question arises: Question: Is I+ = I∗? This question is
known as the tantalizing question in tight closure theory. In terms of forcing
algebras and their torsors, the containment inside the plus closure means
that there exists a d-dimensional closed subscheme inside the torsor which
meet the exceptional fiber (the fiber over the maximal ideal) in one point,
and this means that the superheight of the extended ideal is d. In this case
the local cohomological dimension of the torsor must be d as well, since it
contains a closed subscheme with this cohomological dimension. So also the
plus closure depends only on the torsor.

Remark 4.8. In characteristic zero, the plus closure behaves very differently
compared with positive characteristic. If R is a normal domain of characte-
ristic 0, then the trace map shows that the plus closure is trivial, I+ = I for
every ideal I. This implies also that if R is a twodimensional normal local
ring of characteristic 0 and I an m-primary ideal and f ∈ R an element
with f 6∈ I, then the extendend ideal mB inside the forcing algebra B has
superheight 1. If moreover f belongs to the solid closure of I, then D(mB)
is not affine and so by Theorem 4.7 its ring of global sections is not finitely
generated.
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In the following two examples we use results from tight closure theory to
establish (non)-affineness properties of certain torsors. These results follow
also from the results mentioned in the next lecture.

Example 4.9. Let K be a field and consider the Fermat ring

R = K[X, Y, Z]/(Xd + Y d + Zd)

together with the ideal I = (X, Y ) and f = Z2. For d ≥ 3 we have Z2 6∈
(X, Y ). This element is however in the tight closure (X, Y )∗ of the ideal in
positive characteristic (assume that the characteristic p does not divide d)
and is therefore also in characteristic 0 inside the tight closure and inside the
solid closure. Hence the open subset

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(Xd + Y d + Zd, SX + TY − Z2))

is not an affine scheme. In positive characteristic, Z2 is also contained in
the plus closure (X, Y )+ and therefore this open subset contains punctured
surfaces (the spectrum of the forcing algebra contains two-dimensional closed
subschemes which meet the exceptional fiber V (X, Y ) in only one point; the
ideal (X, Y ) has superheight 2 in the forcing algebra). In characteristic zero
however, due to Remark 4.8 the superheight is one and therefore by Theorem
4.7 the algebra Γ(D(X, Y ),OB) is not finitely generated. For K = C and
d = 3 one can also show that D(X, Y )C is, considered as a complex space, a
Stein space.

Example 4.10. Let K be a field of positive characteristic p ≥ 7 and consider
the ring

R = K[X, Y, Z]/(X5 + Y 3 + Z2)

together with the ideal I = (X, Y ) and f = Z. Since R has a rational
singularity, it is F -regular, i.e. all ideals are tightly closed. Therefore Z 6∈
(X, Y )∗ and so the torsor

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(X5 + Y 3 + Z2, SX + TY − Z))

is an affine scheme. In characteristic zero this can be proved by either using
that R is a quotient singularity or by using the natural grading (deg (X) =
6, deg (Y ) = 10, deg (Z) = 15) where the corresponding cohomology class
Z

XY
gets degree −1 and then applying the geometric criteria on the corre-

sponding projective curve (rather the corresponding curve of the standard-
homogenization U30 + V 30 + W 30 = 0).


