Mathematics for natural sciences I

Exercise sheet 6

Warm-up-exercises

Exercise 6.1. Compute the following product of matrices

$$
\left(\begin{array}{ccccc}
Z & E & I & L & E \\
R & E & I & H & E \\
H & O & R & I & Z \\
O & N & T & A & L
\end{array}\right) \cdot\left(\begin{array}{ccc}
S & E & I \\
P & V & K \\
A & E & A \\
L & R & A \\
T & T & L
\end{array}\right) .
$$

ExErcise 6.2. Compute over the complex numbers the following product of matrices

$$
\left(\begin{array}{ccc}
2-i & -1-3 i & -1 \\
i & 0 & 4-2 i
\end{array}\right)\left(\begin{array}{c}
1+i \\
1-i \\
2+5 i
\end{array}\right)
$$

ExERCISE 6.3. Determine the product of matrices

$$
e_{i} \circ e_{j}
$$

where the i-th standard vector (of length n) is considered as a row vector and the j-th standard vector (also of length n) is considered as a column vector.

Exercise 6.4. Let M be a $m \times n$ - matrix. Show that the product of matrices $M e_{j}$, with the j-th standard vector (regarded as column vector) is the j-th column of M. What is $e_{i} M$, where e_{i} is the i-th standard vector (regarded as a row vector)?

Exercise 6.5. Compute the product of matrices

$$
\left(\begin{array}{ccc}
2+i & 1-\frac{1}{2} i & 4 i \\
-5+7 i & \sqrt{2}+i & 0
\end{array}\right)\left(\begin{array}{cc}
-5+4 i & 3-2 i \\
\sqrt{2}-i & e+\pi i \\
1 & -i
\end{array}\right)\binom{1+i}{2-3 i}
$$

according to the two possible parantheses.
For the following statements we will soon give a simple proof using the relationship between matrices and linear maps.

Exercise 6.6. Show that the multiplication of matrices is associative. More precisely: Let K be a field and let A be an $m \times n$-matrix, B an $n \times p$-matrix and C a $p \times r$-matrix over K. Show that $(A B) C=A(B C)$.

For a matrix M we denote by M^{n} the n-th product of M with iself. This is also called the n-th power of the matrix.

Exercise 6.7. Compute for the matrix

$$
M=\left(\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 5 \\
0 & 1 & 2
\end{array}\right)
$$

the powers

$$
M^{i}, i=1, \ldots, 4 .
$$

Exercise 6.8. Let K be a field and let V and W be two vector spaces over K. Show that the product

$$
V \times W
$$

is also a K -vector space.

Exercise 6.9. Let K be a field and I an index set. Show that

$$
K^{I}:=\operatorname{Maps}(I, K)
$$

with pointwise addition and scalar multiplication is a K-vector space.

Exercise 6.10. Let K be a field and let

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =0 \\
\vdots & \vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =0
\end{array}
$$

be a system of linear equations over K. Show that the set of all solutions of the system is a subspace of K^{n}. How is this solution space related to the solution spaces of the individual equations?

ExERCISE 6.11. Show that the addition and the scalar multiplication of a vector space V can be restricted to a subspace and that this subspace with the inherited structures of V is a vector space itself.

Exercise 6.12 . Let K be a field and let V be a K-vector space. Let $U, W \subseteq$ V be two subspaces of V. Prove that the union $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$.

Hand-in-exercises

Exercise 6.13. (3 points)
Compute over the complex numbers the following product of matrices

$$
\left(\begin{array}{ccc}
3-2 i & 1+5 i & 0 \\
7 i & 2+i & 4-i
\end{array}\right)\left(\begin{array}{cc}
1-2 i & -i \\
3-4 i & 2+3 i \\
5-7 i & 2-i
\end{array}\right)
$$

Exercise 6.14. (4 points)
We consider the matrix

$$
M=\left(\begin{array}{llll}
0 & a & b & c \\
0 & 0 & d & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0
\end{array}\right)
$$

over a field K. Show that the fourth power of M is 0 , that is

$$
M^{4}=M M M M=0
$$

Exercise 6.15. (3 points)
Let K be a field and let V be a K-vector space. Show that the following properties hold (where $\lambda \in K$ and $v \in V$).
(1) We have $0 v=0$.
(2) We have $\lambda 0=0$.
(3) We have $(-1) v=-v$.
(4) If $\lambda \neq 0$ and $v \neq 0$ then $\lambda v \neq 0$.

Exercise 6.16. (3 points)
Give an example of a vector space V and of three subsets of V which satisfy two of the subspace axioms, but not the third.

