
Locally free sheaves

We start this lecture series by asking what are the easiest modules M over a
commutative ring R. There are several possible answers to this question, but
the answer should definitely include the ring R itself and also the 0-module.
Another easy module is the direct product Rn = R×· · ·×R of the ring with
itself. These modules are called free modules of rank r. Ideals might look easy
at first sight, but in fact they are not, with the exception of a principal ideal
domain, where all non-zero ideals are isomorphic as a module to R. Instead
we consider here R-modules which have the property that their localizations
are free. For this we look at a typical example, the so-called syzgy modules.
Let R be a commutative ring and let I be an ideal generated by finitely many
elements I = (f1, . . . , fn). The free resolution of the residue class ring R/I is
the exact complex

. . . −→ Rn2 −→ Rn f1,...,fn−→ R −→ R/I −→ 0 .

This resolution goes (unless I has finite projective dimension) on forever, but
we can break it up to obtain the exact complex

0 −→M = Syz (f1, . . . , fn) −→ Rn f1,...,fn−→ R −→ R/I −→ 0 ,

where the module M is just defined to be the kernel of the R-module-
homomorphism

Rn −→ R, (s1, . . . , sn) 7−→
n∑

i=1

sifi.

This kernel consists exactly of the syzygies for these elements, hence it is cal-
led (the first) syzygy module. This module can be already quite complicated,
however, we can make the following observation. Let us fix one i, say i = 1,
and look at the induced sequence over the localization Rf1 . As localization is
an exact functor, we still get an exact sequence, and since f1 ∈ I, the ideal
If1 contains now a unit and therefore we have (R/I)f1 = 0, so we can rewrite
the induced sequence as

0 −→Mf1 −→ (Rf1)
n f1,...,fn−→ Rf1 −→ 0 .

We claim that we have an Rf1-module isomorphism

(Rf1)
n−1 −→Mf1

∼= (Syz (f1, . . . , fn))f1

by sending the j-th standard vector ej (j = 2, . . . , n) to

vj = (−fj
f1
, . . . , 0, 1, 0, . . . , 0)

(the 1 stands at the jth position). This is obviously well-defined, since f1 is
a unit in Rf1 , and evidently the given tuple is a syzygy. If s = (s1, . . . , sn)
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is a syzygy, then
∑n

j=2 sjej is a preimage, since it is mapped under this
homomorphism to

n∑
j=2

sjvj = (−
n∑

j=2

sj
fj
f1
, s2, . . . , sn) = (s1, s2, . . . , sn).

Hence we have a surjection. The injectivity follows immediately by looking
at the components 2 to n in the syzygy. This means that the syzygy module
when restricted to the open subset D(f1) (viewed as an Rf1-module) is free
of rank n − 1, and the same holds for all D(fj). Hence the syzygy module
restricted to the open subset

U =
n⋃

j=1

D(fj)

has the property that there exists a covering by open subsets such that the
restrictions to these open subsets are free modules. In general, the syzygy mo-
dule is not free as an R-module nor as an OU -module on U . The above given
explicit isomorphism on D(f1) (such an isomorphism is called a local triviali-
zation of M on D(f1)) uses that f1 is a unit, hence this can not be extended
to give an isomorphism on U . On the intersection D(f1) ∩D(f2) = D(f1f2)
f1 as well as f2 are units, hence the above isomorphisms (let’s call them ψ1

on D(f1) and ψ2 on D(f2)) induce two different isomorphisms on D(f1f2)
between (Rf1f2)

n−1 and Mf1f2 We can connect them to get an isomorphism

ψ−12 ◦ ψ1 : (Rf1f2)
n−1 −→ (Rf1f2)

n−1

which is given by the (over Rf1f2) invertible (n− 1)× (n− 1)-matrix
−f2

f1
−f3

f1
−f4

f1
. . . −fn

f1

0 −1 0 . . . 0

0 0 −1
. . .

...
...

...
. . . . . . 0

0 . . . . . . 0 −1

 .

We have seen that a syzygy module as above considered on U =
⋃n

i=1D(fi)
has the following two properties: On the D(fi), which cover U , there are
isomorphisms with a free module, and if we connect two such isomorphisms
then the transition map is linear. These two properties give rise to what
is called a locally free sheaf (the second condition is somehow hidden in
the coherence. It will be explicit in the equivalent definition of a geometric
vector bundle below). We will now give the precise definition. For this we
will work in the context of schemes. If you are not familiar with the theory of
schemes, it is enough to think of X as the spectrum Spec (R) of a ring or an
open subset D(a) ⊆ Spec (R) of it defined by an ideal a ⊆ R (such schemes
are called quasiaffine). Recall that Spec (R) consists of all prime ideals of R
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together with the Zariski topology where a basis is given by

D(f) = {p ∈ Spec (R)| f 6∈ p} ∼= Spec (Rf ).

If R = K[X1, . . . , Xn], where K is a field, then one should consider Spec (R)
as the usual affine space Kn, where the points (a1, . . . , an) correspond to the
maximal ideals of the form (X1 − a1, . . . , Xn − an) (and all maximal ideals
with residue class field K are of this form). If R = K[X1, . . . , Xn]/(H),
then one should think of Spec (R) as the closed subset of affine space Kn

consisting of the points (a1, . . . , an) such that H(a1, . . . , an) = 0. For some
also the word sheaf might be scary. As a first good approximation, one may
think of a quasicoherent sheaf as an R-module M together with the family
of localizations Mf which are associated to the open subsets D(f) (f ∈ R).

Definition 1.1. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃
i∈I Ui and OUi

-module-
isomorphisms F|Ui

∼= Or|Ui
for every i ∈ I.

The easist locally free sheaves are Or
X (r ∈ N), these are called free. The

definition says exactly that locally a locally free sheaf is such a free sheaf.
Over a local ring, any locally free sheaf is free, so there is not much to say.
However, if we consider over a local ring R the modules which are locally
free outside the unique closed point m of Spec (R), i.e. on D(m) (which is
called the punctured spectrum), then this is already a very important class
of modules. Examples of this type will be the first syzygy module for an m-
primary ideal. The following two theorems give equivalent characterizations
of locally free sheaves on an affine scheme Spec (R). Basically it says that
the term locally can be understood in any meaningful sense.

Theorem 1.2. Let R denote a commutative noetherian ring and let M de-
note a finitely generated R-module. Let r ∈ N. Then the following conditions
are equivalent.

(1) The localizations Mp are free of rank r for every prime ideal p ∈
Spec (R).

(2) The localizations Mm are free of rank r for every maximal ideal m
of R.

(3) There exists elements f1, . . . , fk ∈ R which generate the unit ideal
and such that the localizations Mfj are free of rank r for every j =
1, . . . , k.

(4) The coherent sheaf M̃ on Spec (R) associated to M is locally free.

Theorem 1.3. Let R denote a commutative noetherian ring and let M de-
note a finitely generated R-module. Let r ∈ N. Then the following conditions
are equivalent.

(1) M̃ is locally free.
(2) M is a projective module.
(3) M is a (faithfully) flat module.
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The following theorem provides many locally free sheaves. The syzygy sheaves
discussed above are a special case of this construction, since they are the
kernel of On

X → OX , which is surjective on U =
⋃n

i=1D(fi).

Theorem 1.4. Let X denote a scheme and let F and G denote two locally
free sheaves (of rank r and s) together with a surjective sheaf homomorphism

ψ :F −→ G.
Then the kernel sheaf ker (ψ) is also locally free (of rank r − s).

Geometric vector bundles

We develop an equivalent but more geometric notion for a locally free sheaf.
Both concepts are equally important, and it is good to switch from one
perspective to the other.

Definition 1.5. Let X denote a scheme. A scheme

p :V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃
i∈I Ui and Ui-isomorphisms

ψi :Ui × Ar = Ar
Ui
−→ V |Ui

= p−1(Ui)

such that for every open affine subset U ⊆ Ui ∩ Uj the transition mappings

ψ−1j ◦ ψi :Ar
Ui
|U −→ Ar

Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r
j=1 aijTj.

Here we can restrict always to affine open coverings. If X is separated then
the intersection of two affine open subschemes is again affine and then it
is enough to check the condition on the intersection. The trivial bundle of
rank r is the r-dimensional affine space Ar

X over X, and locally every vector
bundle looks like this. Many properties of an affine space are enjoyed by
general vector bundles. For example, in the affine space we have the natural
addition

+ : (Ar
U)×U (Ar

U) −→ Ar
U , (v1, . . . , vr, w1, . . . , wr) 7−→ (v1 + w1, . . . , vr + wr),

and this carries over to a vector bundle. The reason for this is that the
isomorphisms occurring in the definition of a geometric vector bundle are
linear, hence the addition on V coming from an isomorphism with some
affine space is independent of the chosen isomorphism. For the same reason
there is a unique closed subscheme of V called the zero-section which is
locally defined to be 0 × U ⊆ Ar

U . Also, the multiplication by a scalar, i.e.
the mapping

· :AU ×U (Ar
U) −→ Ar

U , (s, v1, . . . , vr) 7−→ (sv1, . . . , svr),
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carries over to a scalar multiplication

· :AX ×X V −→ V.

In particular, for every point x ∈ X the fiber Vx = V ×X x is an affine vector
space over κ(x). This given we can say that a vector bundle V is in particular
a commutative group scheme (but one which is defined over an arbitrary base
X, not over the spectrum of a field), meaning that we have morphismus

+ : V × V −→ V, 0 : X −→ V and − : V −→ V

fulfilling certain natural arrow-conditions expressing associativity, that 0 is
the neutral element and that − gives the negative. This viewpoint will be
later important when we have a look at the torsors of this group scheme. For
a geometric vector bundle p :V → X and an open subset U ⊆ X one sets

Γ(U, V ) = {s : U → V |U | p ◦ s = idU} ,

so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf,
and so we get for every vector bundle a locally free sheaf, which is free on
the open subsets where the vector bundle is trivial.

Theorem 1.6. Let X denote a scheme. Then the category of locally free
sheaves on X and the category of geometric vector bundles on X are equi-
valent. A geometric vector bundle V → X corresponds to the sheaf of its
sections, and a locally free sheaf F corresponds to the (relative) Spectrum of
the symmetric algebra of the dual module F∗.

The free sheaf of rank r corresponds to the affine space Ar
X over X.

Remark 1.7. For a surjective morphism

ϕ :On
X −→ OX

on a scheme X given by elements f1, . . . , fn ∈ Γ(X,OX) (the surjectivity
means that these elements generate locally the unit ideal) we can realize the
corresponding locally free kernel sheaf in the following natural way. We can
directly look at the corresponding surjection of geometric vector bundles

ϕ :An
X −→ AX , (v1, . . . , vn) 7−→

n∑
i=1

fivi,

and the kernel consists for every base point x ∈ X in the solution set

{(v1, . . . , vn) ∈ (κ(x))n|
n∑

i=1

fi(x)vi = 0}

to this linear equation over the residue class field κ(x). So fiberwise this
syzygy bundle is a very simple object, but of course the solution space varies
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with the basis. If X = Spec (R) is affine, then one can also describe the
syzygy bundle as the spectrum of the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn) .

If the elements f1, . . . , fn ∈ R do not generate the unit ideal in R, then the
syzygy module yields only a vector bundle on the open subset D(f1, . . . , fn).
However, the algebra just mentioned,

A = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn) ,

always gives rise to a commutative group scheme Spec (A) over Spec (R).
Note that

A⊗R A ∼= R[T1, . . . , Tn, S1, . . . , Sn]/(f1T1 + . . .+ fnTn, f1S1 + . . .+ fnSn) .

The coadditon is given by

A −→ A⊗R A, Ti 7−→ Ti + Si,

and the addition is given by

Spec (A⊗RA) −→ Spec (A), (t1, . . . , tn, s1, . . . , sn) 7−→ (s1 + t1, . . . , sn + tn).

The zero element and the negatives are also defined in an obvious way. Also,
the fibers of Spec (A) over a point x ∈ Spec (R) is always a vector space
over the residue class field. However, the dimension may vary. If x ∈ X is a
point where all the functions f1, . . . , fn vanish (and such points exist if these
elements do not generate the unit ideal), then the equation which defines A
degenerates to 0 and then the dimension of the fiber is n instead of n − 1.
This corresponds to the property that the linear equation degenerates and
hence the dimension of the solution space goes up. In the next lecture we
will study torsors of vector bundles and forcing algebras, which correspond
to inhomogeneous linear equations varying with a basis.


