Mathematics for natural sciences I

Exercise sheet 24

Warm-up-exercises

Exercise 24.1. Compute the definite integral

$$
\int_{2}^{5} \frac{x^{2}+3 x-6}{x-1} d x
$$

ExERCISE 24.2. Determine the second derivative of the function

$$
F(x)=\int_{0}^{x} \sqrt{t^{5}-t^{3}+2 t} d t
$$

Exercise 24.3. An object is released at time 0 and it falls freely without air resistance from a certain height down to the earth thanks to the (constant) gravity force. Determine the velocity $v(t)$ and the distance $s(t)$ as a function of time t. After which time the object has traveled 100 meters?

ExERCISE 24.4. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that the function

$$
h(x)=\int_{0}^{g(x)} f(t) d t
$$

is differentiable and determine its derivative.

Exercise 24.5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Consider the following sequence

$$
a_{n}:=\int_{\frac{1}{n+1}}^{\frac{1}{n}} f(t) d t
$$

Determine whether this sequence converges and, in case, determine its limit.

EXERCISE 24.6. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series with $a_{n} \in[0,1]$ for all $n \in \mathbb{N}$ and let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann-integrable function. Prove that the series

$$
\sum_{n=1}^{\infty} \int_{0}^{a_{n}} f(x) d x
$$

is absolutely convergent.

Exercise 24.7. Let f be a Riemann-integrable function on $[a, b]$ with $f(x) \geq$ 0 for all $x \in[a, b]$. Show that if f is continuous at a point $c \in[a, b]$ with $f(c)>0$, then

$$
\int_{a}^{b} f(x) d x>0
$$

Exercise 24.8. Prove that the equation

$$
\int_{0}^{x} e^{t^{2}} d t=1
$$

has exactly one solution $x \in[0,1]$.

Exercise 24.9. Let

$$
f, g:[a, b] \longrightarrow \mathbb{R}
$$

be two continuous functions such that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x .
$$

Prove that there exists $c \in[a, b]$ such that $f(c)=g(c)$.

Hand-in-exercises

Exercise 24.10. (2 points)
Determine the area below ${ }^{1}$ the graph of the sine function between 0 and π.

EXERCISE 24.11. (3 points)
Compute the definite integral

$$
\int_{1}^{7} \frac{x^{3}-2 x^{2}-x+5}{x+1} d x
$$

Exercise 24.12. (3 points)
Determine an antiderivative for the function

$$
\frac{1}{\sqrt{x}+\sqrt{x+1}} .
$$

Exercise 24.13. (4 points)
Compute the area of the surface, which is enclosed by the graphs of the two functions f and g such that

$$
f(x)=x^{2} \text { and } g(x)=-2 x^{2}+3 x+4
$$

[^0]EXERCISE 24.14. (4 points)
We consider the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, t \longmapsto f(t),
$$

with

$$
f(t)=\left\{\begin{array}{l}
0 \text { for } t=0 \\
\sin \frac{1}{t} \text { for } t \neq 0
\end{array}\right.
$$

Show, with reference to the function $g(x)=x^{2} \cos \frac{1}{x}$, that f has an antiderivative.

Exercise 24.15. (3 points)
Let

$$
f, g:[a, b] \longrightarrow \mathbb{R}
$$

be two continuous functions and let $g(t) \geq 0$ for all $t \in[a, b]$. Prove that there exists $s \in[a, b]$ such that

$$
\int_{a}^{b} f(t) g(t) d t=f(s) \int_{a}^{b} g(t) d t
$$

[^0]: ${ }^{1}$ Here we mean the area between the graph and the x-axis.

