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Vector bundles, forcing algebras and local cohomology

Lecture 2

Forcing algebras and closure operations

Let R denote a commutative ring and let I = (f1, . . . , fn) be an ideal. Let
f ∈ R and let

B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

be the corresponding forcing algebra and

ϕ : Spec (B) −→ Spec (R)

the corresponding spectrum morphism. How are properties of ϕ (or of the
R-algebra B) related to certain ideal closure operations?

We start with some examples. The element f belongs to the ideal I if and
only if we can write f = r1f1 + . . . + rnfn. By the universal property of the
forcing algebra this means that there exists an R-algebra-homomorphism

B −→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also
equivalent to

R −→ B

admitting an R-module section or B being a pure R-algebra (so for forcing
algebras properties might be equivalent which are not equivalent for arbitrary
algebras).

The radical of an ideal

Now we look at the radical of the ideal I,

rad (I) =
{

f ∈ R| fk ∈ I for some k
}

.

The importance of the radical comes mainly from Hilbert’s Nullstellensatz,
saying that for algebras of finite type over an algebraically closed field there
is a natural bijection between radical ideals and closed algebraic zero-sets.
So geometrically one can see from an ideal only its radical. As this is quite
a coarse closure operation we should expect that this corresponds to a quite
coarse property of the morphism ϕ as well. Indeed, it is true that f ∈ rad (I)
if and only if ϕ is surjective. This is true since the radical of an ideal is the
intersection of all prime ideals in which it is contained. Hence an element f
belongs to the radical if and only if for all residue class homomorphisms

ϕ :R −→ κ(p)
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where I is sent to 0, also f is sent to 0. But this means for the forcing
equation that whenever the equation degenerates to 0, then also the inho-
mogeneous part becomes zero, and so there will always be a solution to the
inhomogeneous equation.

Exercise: Define the radical of a submodule inside a module.

Integral closure of an ideal

Another closure operation is integral closure. It is defined by

I =
{

f ∈ R| fk + a1f
k−1 + . . .+ ak−1f + ak = 0 for some k and ai ∈ I i

}

.

This notion is important for describing the normalization of the blow up
of the ideal I. Another characterization is that there exists a z ∈ R, not
contained in any minimal prime ideal of R, such that zfn ∈ In holds for all
n. Another equivalent property - the valuative criterion - is that for all ring
homomorphisms

θ :R −→ D

to a discrete valuation domain D (assume that R is noetherian) the contain-
ment θ(f) ∈ θ(I)D holds.

The characterization of the integral closure in terms of forcing algebras re-
quires some notions from topology. A continuous map

ϕ :X −→ Y

between topological spaces X and Y is called a submersion, if it is surjective
and if Y carries the image topology (quotient topology) under this map. This
means that a subset W ⊆ Y is open if and only if its preimage ϕ−1(W ) is
open. Since the spectrum of a ring endowed with the Zarisiki topology is a
topological space, this notion can be applied to the spectrum morphism of a
ring homomorphism. With this notion we can state that f ∈ Ī if and only if
the forcing morphism

ϕ : Spec (B) −→ Spec (R)

is a universal submersion (universal means here that for any ring change
R → R′ to a noetherian ring R′, the resulting homomorphism R′ → B′ still
has this property). The relation between these two notions stems from the
fact that also for universal submersions there exists a criterion in terms of
discrete valuation domains: A morphism of finite type between two affine
noetherian schemes is a universal submersion if and only if the base change
to any discrete valuation domain yields a submersion. For a morphism

Z −→ Spec (D)

(D a discrete valuation domain) to be a submersion means that above the
only chain of prime ideals in Spec (D), namely (0) ⊂ mD, there exists a chain
of prime ideals p′ ⊆ q′ in Z lying over this chain. This pair-lifting property
holds for a universal submersion

Spec (S) −→ Spec (R)
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for any pair of prime ideals p ⊆ q in Spec (R). This property is stronger that
lying over (which means surjective) but weaker than the going-down or the
going-up property (in the presence of surjectivity).

If we are dealing only with algebras of finite type over the complex numbers
C, then we may also consider the corresponding complex spaces with their
natural topology induced from the euklidean topology of Cn. Then universal
submersive with respect to the Zariski topology is the same as submersive in
the complex topology (the target space needs to be normal).

Example 2.1. Let K be a field and consider R = K[X]. Since this is a prin-
cipal ideal domain, the only interesting forcing algebras (if we are only intere-
sted in the local behavior around (X)) are of the form K[X,T ]/(XnT−Xm).
Form ≥ n thisK[X]-algebra admits a section (corresponding to the fact that
Xm ∈ (Xn)), and if n ≥ 1 there exists an affine line over the maximal ideal
(X). So now assume m < n. If m = 0, then we have a hyperbola mapping to
an affine line, with the fiber over (X) being empty, corresponding to the fact
that 1 does not belong to the radical of (Xn) for n ≥ 1. So assume finally
1 ≤ m < n. Then Xm belongs to the radical of (Xn), but not to its integral
closure (which is the identical closure on a one-dimensional regular ring). We
can write the forcing equation as XnT − Xm = Xm(Xn−mT − 1). So the
spectrum of the forcing algebra consists of a (thickend) line over (X) and of
a hyperbola. The forcing morphism is surjective, but it is not a submersion.
For example, the preimage of D(X) is a connected component hence open,
but this single point is not open.

Example 2.2. Let K be a field and let R = K[X, Y ] be the polynomial ring
in two variables. We consider the ideal I = (X2, Y ) and the element X. This
element belongs to the radical of this ideal, hence the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y T2 +X) −→ Spec (K[X, Y ])

is surjective. We claim that it is not a submersion. For this we look at the
reduction modulo Y . In K[X, Y ]/(Y ) ∼= K[X] the ideal becomes (X2) which
does not contain X. Hence by the valuative criterion for integral closure, X
does not belong to the integral closure of the ideal. One can also say that the
chain V (X, Y ) ⊂ V (Y ) in the affine plane does not have a lift (as a chain)
to the spectrum of the forcing algebra.

For the ideal I = (X2, Y 2) and the element XY the situation looks different.
Let

θ :K[X, Y ] −→ D

be a ring homomorphism to a discrete valuation domain D. If X or Y is
mapped to 0, then also XY is mapped to 0 and hence belongs to the ex-
tendend ideal. So assume that θ(X) = uπr and θ(Y ) = vπs, where π is a
local parameter of D and u and v are units. Then θ(XY ) = uvπr+s and the
exponent is at least the minimum of 2r and 2s, hence θ(XY ) ∈ (π2r, π2s) =
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(θ(X2), θ(Y 2))D. Hence XY belongs to the integral closure of (X2, Y 2) and
the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y 2T2 +XY ) −→ Spec (K[X, Y ])

is a universal submersion.

Continuous closure

Suppose now that R = C[X1, . . . , Xk]. Then every polynomial f ∈ R can be
considered as a continuous function

f :Ck −→ C, (x1, . . . , xk) 7−→ f(x1, . . . , xk)

in the complex topology. If I = (f1, . . . , fn) is an ideal and f ∈ R is an
element, we say that f belongs to the continuous closure of I, if there exist
continuous functions

g1, . . . , gn :Ck −→ C

such that

f =
n

∑

i=1

gifi

(identity of functions) (the same definition works for C-algebras of finite
type).

It is not at all clear at once that there may exist polynomials f 6∈ I but inside
the continuous closure of I. For C[X] it is easy to show that the continuous
closure is (like the integral closure) just the ideal itself. We also remark that
when we would only allow holomorphic functions g1, . . . , gn then we could not
get something larger. However, with continuous functions we can for example
write

X2Y 2 = g1X
3 + g2Y

3 .

Continuous closure is always inside the integral closure and hence also inside
the radical. The element XY does not belong to the continuous closure of
(X2, Y 2), though it belongs to the integral closure of I. In terms of forcing
algebras, an element f belongs to the continuous closure if and only if the
complex forcing mapping

ϕC : Spec (B)C −→ Spec (R)C

(between the corresponding complex spaces) admits a continuous section.


