Mathematics for natural sciences I

Exercise sheet 15

Warm-up-exercises

Exercise 15.1. Show that a linear function

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto a x,
$$

is continuous.

Exercise 15.2. Prove that the function

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto|x|
$$

is continuous.

Exercise 15.3. Prove that the function

$$
\mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}_{\geq 0}, x \longmapsto \sqrt{x}
$$

is continuous.

Exercise 15.4. Let $T \subseteq \mathbb{R}$ be a subset and let

$$
f: T \longrightarrow \mathbb{R}
$$

be a continuous function. Let $x \in T$ be a point such that $f(x)>0$. Prove that $f(y)>0$ for all y in a non-empty open interval $] x-a, x+a[$.

Exercise 15.5. Let $a<b<c$ be real numbers and let

$$
f:[a, b] \longrightarrow \mathbb{R}
$$

and

$$
g:[b, c] \longrightarrow \mathbb{R}
$$

be continuous functions such that $f(b)=g(b)$. Prove that the function

$$
h:[a, c] \longrightarrow \mathbb{R}
$$

such that

$$
h(t)=f(t) \text { for } t \leq b \text { and } h(t)=g(t) \text { for } t>b
$$

is also continuous.

ExErcise 15.6. Compute the limit of the sequence

$$
x_{n}=5\left(\frac{2 n+1}{n}\right)^{3}-4\left(\frac{2 n+1}{n}\right)^{2}+2\left(\frac{2 n+1}{n}\right)-3
$$

for $n \rightarrow \infty$.

Exercise 15.7. Let

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

be a continuous function which takes only finitely many values. Prove that f is constant.

Exercise 15.8. Give an example of a continuuos function

$$
f: \mathbb{Q} \longrightarrow \mathbb{R}
$$

which takes exactly two values.

Exercise 15.9. Prove that the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

defined by

$$
f(x)= \begin{cases}x, & \text { if } x \in \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

is only at the zero point 0 continuous.

Exercise 15.10. Let $T \subseteq \mathbb{R}$ be a subset and let $a \in \mathbb{R}$ be a point. Let $f: T \rightarrow \mathbb{R}$ be a function and $b \in \mathbb{R}$. Prove that the following statements are equivalent.
(1) We have

$$
\lim _{x \rightarrow a} f(x)=b
$$

(2) For all $\epsilon>0$ there exists a $\delta>0$ such that for all $x \in T$ with $d(x, a) \leq \delta$ the inequality $d(f(x), b) \leq \epsilon$ holds.

Hand-in-exercises

Exercise 15.11. (4 points)
We consider the function

$$
f(x)=\left\{\begin{array}{l}
1 \text { for } x \leq-1 \\
x^{2} \text { for }-1<x<2 \\
-2 x+7 \text { for } x \geq 2
\end{array}\right.
$$

Determine the points $x \in \mathbb{R}$ where f is continuous.

EXERCISE 15.12. (4 points)
Compute the limit of the sequence

$$
b_{n}=2 a_{n}^{4}-6 a_{n}^{3}+a_{n}^{2}-5 a_{n}+3
$$

where

$$
a_{n}=\frac{3 n^{3}-5 n^{2}+7}{4 n^{3}+2 n-1} .
$$

EXERCISE 15.13. (3 points)
Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{l}
1, \text { if } x \in \mathbb{Q} \\
0 \text { otherwise }
\end{array}\right.
$$

is for no point $x \in \mathbb{R}$ continuous.

Exercise 15.14. (3 points)
Decide whether the sequence

$$
a_{n}=\sqrt{n+1}-\sqrt{n}
$$

converges and in case determine the limit.

Exercise 15.15. (4 points)
Determine the limit of the rational function

$$
\frac{2 x^{3}+3 x^{2}-1}{x^{3}-x^{2}+x+3}
$$

at the point $a=-1$.

