
Systems of linear equations

We start with some linear algebra. Let K be a field. We consider a system
of linear homogeneous equations over K,

f11t1 + . . .+ f1ntn = 0 ,

f21t1 + . . .+ f2ntn = 0 ,

...

fm1t1 + . . .+ fmntn = 0 ,

where the fij are elements in K. The solution set to this system of homo-
geneous equations is a vector space V over K (a subvector space of Kn),
its dimension is n − rk(A), where A = (fij)ij is the matrix given by these
elements. Additional elements f1, . . . , fm ∈ K give rise to the system of
inhomogeneous linear equations,

f11t1 + . . .+ f1ntn = f1 ,

f21t1 + . . .+ f2ntn = f2 ,

...

fm1t1 + . . .+ fmntn = fm .

The solution set T of this inhomogeneous system may be empty, but never-
theless it is tightly related to the solution space of the homogeneous system.
First of all, there exists an action

V × T −→ T, (v, t) 7−→ v + t,

because the sum of a solution of the homogeneous system and a solution of
the inhomogeneous system is again a solution of the inhomogeneous system.
This action is a group action of the group (V,+, 0) on the set T . Moreover,
if we fix one solution t0 ∈ T (supposing that at least one solution exists),
then there exists a bijection

V −→ T, v 7−→ v + t0.

This means that the group V acts simply transitive on T , and so T can be
identified with the vector space V , however not in a canonical way.
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Suppose now that X is a geometric object (a topological space, a manifold,
a variety, the spectrum of a ring) and that instead of elements in the field K
we have functions

fij : X −→ K

on X (which are continuous, or differentiable, or algebraic). We form the
matrix of functions A = (fij)ij, which yields for every point P ∈ X a matrix
A(P ) over K. Then we get from these data the space

V =

(P ; t1, . . . , tn)|A(P )

t1...
tn

 = 0

 ⊆ X ×Kn

together with the projection to X. For a fixed point P ∈ X, the fiber VP of
V over P is the solution space to the corresponding system of homogeneous
linear equations given by inserting P . In particular, all fibers of the map

V −→ X,

are vector spaces (maybe of non-constant dimension). This vector space
structures yield an addition1

V ×X V −→ V, (P ; s1, . . . , sn; t1, . . . , tn) 7−→ (P ; s1 + t1, . . . , sn + tn)

(only points in the same fiber can be added). The mapping

X −→ V, P 7−→ (P ; 0, . . . , 0)

is called the zero-section.

Suppose now that there are additionally functions

f1, . . . , fm : X −→ K

given. Then we can form the set

T =

(P ; t1, . . . , tn)|A(P )

t1...
tn

 =

f1(P )
...

fn(P )

 ⊆ X ×Kn

with the projection to X. Again, every fiber TP of T over a point P ∈ X
is the solution set to the system of inhomogeneous linear equations which
arises by inserting P . The actions of the fibers VP on TP (coming from linear
algebra) extend to an action

V ×X T −→ T, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn).

Also, if a (continuous, differentiable, algebraic) map

s : X −→ T

1V ×X V is the fiber product of V → X with itself.
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with s(P ) ∈ TP exists, then we can construct an (continuous, differentiable,
algebraic) isomorphism between V and T . However, different from the situ-
ation in linear algebra (which corresponds to the situation where X is just
one point), such a section does rarely exist.

These objects T have new and sometimes difficult global properties which
we try to understand in these lectures. We will work mainly in an algebraic
setting and restrict to the situation where just one equation

f1T1 + . . .+ fnTn = f

is given. Then in the homogeneous case (f = 0) the fibers are vector spaces
of dimension n − 1 or n, and the later holds exactly for the points P ∈ X
where f1(P ) = . . . = fn(P ) = 0. In the inhomogeneous case the fibers are
either empty or of dimension n− 1 or n. We give some typical examples.

Example 1.1. We consider the line X = A1
K (or X = K,R,C etc.) with

the (identical) function x. For f1 = x and f = 0, i.e. for the homogeneous
equation xt = 0, the geometric object V consists of a horizontal line (corre-
sponding to the zero-solution) and a vertical line over x = 0. So all fibers
except one are zero-dimensional vector spaces. For the inhomogeneous equa-
tion xt = 1, T is a hyperbola, and all fibers are zero-dimensional with the
exception that the fiber over x = 0 is empty.

For the homogeneous equation 0t = 0, V is just the affine cylinder over the
base line. For the inhomogeneous equation 0t = x, T consists of one vertical
line, almost all fibers are empty.

Example 1.2. Let X denote a plane (K2,R2,A2
K) with coordinate functions

x and y. We consider an inhomogeneous linear equation of type

xat1 + ybt2 = xcyd .

The fiber of the solution set T over a point 6= (0, 0) is onedimensional, whereas
the fiber over (0, 0) has dimension two (for a, b, c, d ≥ 1). Many properties
of T depend on these four exponents.

In (most of) these example we can observe the following behavior. On an
open subset, the dimension of the fibers is constant and equals n−1, whereas
the fiber over some special points degenerates to an n-dimensional solution
set (or becomes empty).

Forcing algebras

We describe now the algebraic setting of systems of inhomogeneous linear
equations depending on a base space. For a commutative ring R, its spectrum
X = Spec (R) is a topological space on which the ring elements can be
considered as functions. The value of f ∈ R at a prime ideal P ∈ Spec (R)
is just the image of f under the morphism R → R/P → κ(P ) = Q(R/P ).
In this interpretation, a ring element is a function with values in different
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fields. Suppose that R contains a field K. Then an element f ∈ R gives rise
to the ring homomorphism

K[Y ] −→ R, Y 7−→ f,

which itself gives rise to a scheme morphism

Spec (R) −→ Spec (K[Y ]) ∼= A1
K .

This is another way to consider f as a function on Spec (R).

The following object was introduced by M. Hochster in 1994 in his work on
solid closure.

Definition 1.3. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

is called the forcing algebra of these elements (or these data).

The forcing algebra B forces f to lie inside the extended ideal (f1, . . . , fn)B
(hence the name) For every R-algebra S such that f ∈ (f1, . . . , fn)S there
exists a (non unique) ring homomorphism B → S by sending Ti to the
coefficient si ∈ S in an expression f = s1f1 + . . .+ snfn.

The forcing algebra induces the spectrum morphism

Spec (B) −→ Spec (R).

Over a point P ∈ X = Spec (R), the fiber of this morphism is given by

Spec (B ⊗R κ(P )) ,

and we can write

B ⊗R κ(P ) = κ(P )[T1, . . . , Tn]/(f1(P )T1 + . . .+ fn(P )Tn − f(P )) ,

where fi(P ) means the evaluation of the fi in the residue class field. Hence
the κ(P )-points in the fiber are exactly the solutions to the inhomogeneous
linear equation f1(P )T1 + . . .+ fn(P )Tn = f(P ). In particular, all the fibers
are (empty or) affine spaces.

As the solution vector space of a system of homogeneous linear equations
acts on the solution set of a system of inhomogeneous linear equations, the
spectrum of a homogeneous forcing algebra acts on the spectrum of an inho-
mogeneous forcing algebra. The spectrum

V = Spec (A) = Spec (R[S1, . . . , Sn]/(f1S1 + . . .+ fnSn))

is a group scheme over Spec (R), and the Hopfalgebra structure is given by
Si 7→ Si + Ti. Similarly, the action of V on T = Spec (B) is given by

Spec (A)×Spec (R)Spec (B) −→ Spec (B), (s1, . . . , sn, t1, . . . , tn) 7−→ (s1+t1, . . . , sn+tn).

On the ring level this map is again induced by Ti 7→ Si + Ti.
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Forcing algebras and closure operations

Let R denote a commutative ring and let I = (f1, . . . , fn) be an ideal. Let
f ∈ R and let

B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

be the corresponding forcing algebra and

ϕ : Spec (B) −→ Spec (R)

the corresponding spectrum morphism. How are properties of ϕ (or of the
R-algebra B) related to certain ideal closure operations?

We start with some examples. The element f belongs to the ideal I if and
only if we can write f = r1f1 + . . .+ rnfn. By the universal property of the
forcing algebra this means that there exists an R-algebra-homomorphism

B −→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also
equivalent to

R −→ B

admitting an R-module section or B being a pure R-algebra (so for forcing
algebras properties might be equivalent which are not equivalent for arbitrary
algebras).

We have a look at the radical of the ideal I,

rad (I) =
{
f ∈ R| fk ∈ I for some k

}
.

As this is quite a coarse closure operation we should expect that this corre-
sponds to a quite coarse property of the morphism ϕ as well. Indeed, it is
true that f ∈ rad (I) if and only if ϕ is surjective. This and the interpreta-
tion of other closure operations like integral closure and in particular tight
closure in terms of forcing algebras will be discussed in the tutorial session
and in the next lectures.

Geometric vector bundles

We have seen that the fibers of the spectrum of a forcing algebra are (empty
or) affine spaces. However, this is not only fiberwisely true, but more gener-
ally: If we localize the forcing algebra at fi we get

(R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f))fi
∼= Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn],

since we can write

Ti = −
∑
j 6=i

fj
fi
Tj +

f

fi
.
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So over every D(fi) the spectrum of the forcing algebra is an (n − 1)-
dimensional affine space over the base. So locally, restricted to D(fi), we
have isomorphisms

T |D(fi)
∼= D(fi)× An−1 .

On the intersections D(fi)∩D(fj) we get two identifications with affine space,
and the transition morphisms are linear if f = 0, but only affine-linear in
general (because of the translation with f

fi
). This local description holds

on the union U =
⋃n

i=1D(fi) = D(I). Moreover, in the homogeneous case
(f = 0) the transition mappings are linear. Hence V |U is a geometric vector
bundle according to the following definition.

Definition 1.4. Let X denote a scheme. A scheme

p : V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃
i∈I Ui and Ui-isomorphisms

ψi : Ui × Ar = Ar
Ui
−→ V |Ui

= p−1(Ui)

such that for every open affine subset U ⊆ Ui ∩ Uj the transition mappings

ψ−1j ◦ ψi : Ar
Ui
|U −→ Ar

Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r
j=1 aijTj.

Here we can always restrict to affine open coverings. If X is separated then
the intersection of two affine open subschemes is again affine and then it
is enough to check the condition on the intersection. The trivial bundle of
rank r is the r-dimensional affine space Ar

X over X, and locally every vector
bundle looks like this. Many properties of an affine space are enjoyed by
general vector bundles. For example, in the affine space we have the natural
addition

+: Ar
U ×U Ar

U −→ Ar
U , (v1, . . . , vr, w1, . . . , wr) 7−→ (v1 + w1, . . . , vr + wr),

and this carries over to a vector bundle, that is, we have an addition

α : V ×X V −→ V.

The reason for this is that the isomorphisms occurring in the definition of a
geometric vector bundle are linear, hence the addition on V |U coming from
an isomorphism with some affine space over U is independent of the choosen
isomorphism. For the same reason there is a unique closed subscheme of V
called the zero-section which is locally defined to be 0× U ⊆ Ar

U . Also, the
multiplication by a scalar, i.e. the mapping

· : AU ×U Ar
U −→ Ar

U , (s, v1, . . . , vr) 7−→ (sv1, . . . , svr),

carries over to a scalar multiplication

· : AX ×X V −→ V.
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In particular, for every point P ∈ X the fiber VP = V ×X P is an affine space
over κ(P ).

For a geometric vector bundle p : V → X and an open subset U ⊆ X one
sets

Γ(U, V ) = {s : U → V |U | p ◦ s = idU} ,
so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf,
and so we get for every vector bundle a locally free sheaf, which is free on
the open subsets where the vector bundle is trivial.

Definition 1.5. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃
i∈I Ui and OUi

-module-
isomorphisms F|Ui

∼= (OUi
)r for every i ∈ I.

Vector bundles and locally free sheaves are essentially the same objects.

Theorem 1.6. Let X denote a scheme. Then the category of locally free
sheaves on X and the category of geometric vector bundles on X are equiv-
alent. A geometric vector bundle V → X corresponds to the sheaf of its
sections, and a locally free sheaf F corresponds to the (relative) Spectrum of
the symmetric algebra of the dual module F∗.

The free sheaf of rank r corresponds to the affine space Ar
X over X.

The global sections in

V = Spec (R[S1, . . . , Sn]/(f1S1 + . . .+ fnSn) −→ Spec (R)

are just the tuples (s1, . . . , sn) such that
∑n

i=1 sifi = 0. So these are just
the syzygies for the ideal generators, and they form the syzygy module.
We denote this by Syz (f1, . . . , fn). The sheaf of sections in V is also the
sheafification of this syzygy module. The restriction of this sheaf to U =
D(f1, . . . , fn) is locally free and corresponds to the geometric vector bundle
V |U . .

This action of V on T induces an action of the vector bundle V |U on Spec (B)|U ,
and endowed with this action Spec (B)|U becomes a torsor. We will deal with
this structure in the next lecture.


