Mathematics for natural sciences I

Exercise sheet 19

Warm-up-exercises

The following task should be solved both directly and through the derivation rules.

Exercise 19.1. Determine the derivative of the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{n}
$$

for all $n \in \mathbb{N}$.

Exercise 19.2. Determine the derivative of the function

$$
f: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{n}
$$

for all $n \in \mathbb{Z}$.

Exercise 19.3. Determine the derivative of the function

$$
f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{\frac{1}{n}},
$$

for all $n \in \mathbb{N}_{+}$.

Exercise 19.4. Determine directly (without the use of derivation rules) the derivative of the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{3}+2 x^{2}-5 x+3,
$$

at any point $a \in \mathbb{R}$.

Exercise 19.5. Prove that the real absolute value

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto|x|
$$

is not differentiable at the point zero.

Exercise 19.6. Determine the derivative of the function

$$
f: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R}, x \longmapsto f(x)=\frac{x^{2}+1}{x^{3}}
$$

Exercise 19.7. Prove that the derivative of a rational function is also a rational function.

Exercise 19.8. Consider $f(x)=x^{3}+4 x^{2}-1$ and $g(y)=y^{2}-y+2$. Determine the derivative of the composite function $h(x)=g(f(x))$ directly and by the chain rule (Theorem 19.8).

Exercise 19.9. Prove that a polynomial $P \in \mathbb{R}[X]$ has degree $\leq d$ (or it is $P=0)$, if and only if the $(d+1)$-th derivative of P is the zero poynomial.

Exercise 19.10. Let

$$
f, g: \mathbb{R} \longrightarrow \mathbb{R}
$$

be two differentiable functions and consider

$$
h(x)=(g(f(x)))^{2} f(g(x)) .
$$

a) Determine the derivative h^{\prime} from the derivatives of f and g.
b) Let now

$$
f(x)=x^{2}-1 \text { and } g(x)=x+2 .
$$

Compute $h^{\prime}(x)$ in two ways, one directly from $h(x)$ and the other by the formula of part a).

For the "linear approximation" of differentiable maps we need the definition of affine-linear maps.

Let K be a field and let V and W be vector spaces over K. A map

$$
\alpha: V \longrightarrow W, v \longmapsto \alpha(v)=\varphi(v)+w,
$$

where φ is a linear map and $w \in W$ is a vector, is called affine-linear.
Exercise 19.11. Let K be a field and let V be a K-vector space. Prove that given two vectors $u, v \in W$ there exists exactly one affine-linear map

$$
\alpha: K \longrightarrow W
$$

sucht that $\alpha(0)=u$ and $\alpha(1)=v$.

Exercise 19.12. Determine the affine-linear map

$$
\alpha: \mathbb{R} \longrightarrow \mathbb{R}^{3}
$$

such that $\alpha(0)=(2,3,4)$ and $\alpha(1)=(5,-2,-1)$.

Hand-in-exercises

Exercise 19.13. (3 points)
Determine the derivative of the function

$$
f: D \longrightarrow \mathbb{R}, x \longmapsto f(x)=\frac{x^{2}+x-1}{x^{3}-x+2}
$$

where D is the set where the denominator does not vanish.

Exercise 19.14. (4 points)
Determine the tangents to the graph of the function $f(x)=x^{3}-x^{2}-x+1$, which are parallel to $y=x$.

Exercise 19.15. (4 points)
Let $f(x)=\frac{x^{2}+5 x-2}{x+1}$ and $g(y)=\frac{y-2}{y^{2}+3}$. Determine the derivative of the composite $h(x)=g(f(x))$ directly and by the chain rule (Theorem 19.8).

Exercise 19.16. (2 points)
Determine the affine-linear map

$$
\alpha: \mathbb{R} \longrightarrow \mathbb{R}
$$

whose graph passes through the two points $(-2,3)$ and $(5,-7)$.

Exercise 19.17. (3 points)
Let $D \subseteq \mathbb{R}$ be a subset and let

$$
f_{i}: D \longrightarrow \mathbb{R}, i=1, \ldots, n
$$

be differentiable functions. Prove the formula

$$
\left(f_{1} \cdots f_{n}\right)^{\prime}=\sum_{i=1}^{n} f_{1} \cdots f_{i-1} f_{i}^{\prime} f_{i+1} \cdots f_{n}
$$

