Mathematics for natural sciences I

Exercise sheet 22

Warm-up-exercises

Exercise 22.1. Determine the Taylor polynomial of degree 4 of the function

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \sin x \cos x
$$

at the zero point.

Exercise 22.2. Determine all the Taylor polynomials of the function

$$
f(x)=x^{4}-2 x^{3}+2 x^{2}-3 x+5
$$

at the point $a=3$.

EXERCISE 22.3. Let $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ be a convergent power series. Determine the derivative $f^{(k)}(a)$.

Exercise 22.4. Let $p \in \mathbb{R}[Y]$ be a polynomial and

$$
g: \mathbb{R}_{+} \longrightarrow \mathbb{R}, x \longmapsto g(x)=p\left(\frac{1}{x}\right) e^{-\frac{1}{x}}
$$

Prove that the derivative $g^{\prime}(x)$ has also the shape

$$
g^{\prime}(x)=q\left(\frac{1}{x}\right) e^{-\frac{1}{x}},
$$

where q is a polynomial.

ExErcise 22.5. We consider the function

$$
f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, x \longmapsto f(x)=e^{-\frac{1}{x}}
$$

Prove that for all $n \in \mathbb{N}$ the n-th derivative $f^{(n)}$ satisfies the following property

$$
\lim _{x \in \mathbb{R}_{+}, x \rightarrow 0} f^{(n)}(x)=0
$$

Exercise 22.6. Determine the Taylor series of the function $f(x)=\frac{1}{x}$ at point $a=2$ up to order 4 (Give also the Taylor polynomial of degree 4 at point 2 , where the coefficients must be stated in the most simple form).

Exercise 22.7. Determine the Taylor polynomial of degree 3 of the function

$$
f(x)=x \cdot \sin x
$$

at point $a=\frac{\pi}{2}$.

Exercise 22.8. Let

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x),
$$

be a differentiable function with the property

$$
f^{\prime}=f \text { and } f(0)=1 .
$$

Prove that $f(x)=\exp x$ for all $x \in \mathbb{R}$.

Exercise 22.9. Determine the Taylor polynomial up to fourth order of the inverse of the sine function at the point 0 with the power series approach described in Remark 22.8.

Hand-in-exercises

EXERCISE 22.10. (4 points)
Find the Taylor polynomials in 0 up to degree 4 of the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \sin (\cos x)+x^{3} \exp \left(x^{2}\right)
$$

EXERCISE 22.11. (4 points)
Discuss the behavior of the function

$$
f:[0,2 \pi] \longrightarrow \mathbb{R}, x \longmapsto f(x)=\sin x \cos x
$$

concerning zeros, growth behavior, (local) extrema. Sketch the graph of the function.

Exercise 22.12. (4 points)
Discuss the behavior of the function

$$
f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}, x \longmapsto f(x)=\sin ^{3} x-\frac{1}{4} \sin x
$$

concerning zeros, growth behavior, (local) extrema. Sketch the graph of the function.

Exercise 22.13. (4 points)
Determine the Taylor polynomial up to fourth order of the natural logarithm at point 1 with the power series approach described in Remark 22.8 from the power series of the exponential function.

Exercise 22.14. (8 points)
For $n \geq 3$ let A_{n} be the area of a circle inscribed in the unit regular n-gon. Prove that $A_{n} \leq A_{n+1}$.

