## Mathematics for natural sciences I

## Exercise sheet 16

## Warm-up-exercises

Exercise 16.1. Find a zero for the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{2}+x-1,
$$

in the interval $[0,1]$ using the interval bisection method with a maximum error of $1 / 100$.

Exercise 16.2. Let

$$
f:[0,1] \longrightarrow[0,1[
$$

be a continuous function. Prove that $f$ is not surjective.

Exercise 16.3. Give an example of a bounded interval $I \subseteq \mathbb{R}$ and a continuous function

$$
f: I \longrightarrow \mathbb{R}
$$

such that the image of $f$ is bounded, but the function admits no maximum.

Exercise 16.4. Let

$$
f:[a, b] \longrightarrow \mathbb{R}
$$

be a continuous function. Show that there exists a continuous extension

$$
\tilde{f}: \mathbb{R} \longrightarrow \mathbb{R}
$$

of $f$.

Exercise 16.5. Let

$$
f: I \longrightarrow \mathbb{R}
$$

be a continuous function defined over a real interval. The function has at points $x_{1}, x_{2} \in I, x_{1}<x_{2}$, local maxima. Prove that the function has between $x_{1}$ and $x_{2}$ has at least one local minimum.

Exercise 16.6. Determine directly, for which $n \in \mathbb{N}$ the power function

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^{n}
$$

has an extremum at the point zero.

Exercise 16.7. Show that the Intermediate value theorem for continuous functions from $\mathbb{Q}$ to $\mathbb{Q}$ does not hold.

Exercise 16.8. Determine the limit of the sequence

$$
x_{n}=\sqrt{\frac{7 n^{2}-4}{3 n^{2}-5 n+2}}, n \in \mathbb{N}
$$

## Hand-in-exercises

Exercise 16.9. (2 points)
Determine the minimum of the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^{2}+3 x-5 .
$$

Exercise 16.10. (4 points)
Find for the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)=x^{3}-3 x+1,
$$

a zero in the interval $[0,1]$ using the interval bisection method, with a maximum error of $1 / 200$.

EXERCISE 16.11. (2 points)
Determine the limit of the sequence

$$
x_{n}=\sqrt[3]{\frac{27 n^{3}+13 n^{2}+n}{8 n^{3}-7 n+10}}, n \in \mathbb{N}
$$

The next task uses the notion of an even and an odd function.
A function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

is called even, if for all $x \in \mathbb{R}$ the equality

$$
f(x)=f(-x)
$$

holds.
A function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

is called odd, if for all $x \in \mathbb{R}$ the equality

$$
f(x)=-f(-x)
$$

holds.

EXERCISE 16.12. (4 points)
Let

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

be a continuous function. Show that one can write

$$
f=g+h
$$

with a continuous even function $g$ and a continuous odd function $h$.
The following task uses the notion of fixed point.
Let $M$ be a set and let

$$
f: M \longrightarrow M
$$

be a function. An element $x \in M$ such that $f(x)=x$ is called a fixed point of the function.

Exercise 16.13. (4 points)
Let

$$
f:[a, b] \longrightarrow[a, b]
$$

be a continuous function from the interval $[a, b]$ into itself. Prove that $f$ has a fixed point.

