## Mathematics for natural sciences I

## Exercise sheet 8

## Warm-up-exercises

Exercise 8.1. Let $K$ be a field and let $V$ be a $K$-vector space of dimension $n=\operatorname{dim}(V)$. Suppose that $n$ vectors $v_{1}, \ldots, v_{n}$ in $V$ are given. Prove that the following facts are equivalent.
(1) $v_{1}, \ldots, v_{n}$ form a basis for $V$.
(2) $v_{1}, \ldots, v_{n}$ form a system of generators for $V$.
(3) $v_{1}, \ldots, v_{n}$ are linearly independent.

Exercise 8.2. Let $K$ be a field and let $K[X]$ denote the polynomial ring over $K$. Let $d \in \mathbb{N}$. Show that the set of all polynomials of degree $\leq d$ is a finite dimensional subspace of $K[X]$. What is its dimension?

Exercise 8.3. Show that the set of real polynomials of degree $\leq 4$ which have a zero at -2 and a zero at 3 is a finite dimensional subspace of $\mathbb{R}[X]$. Determine the dimension of this vector space.

Exercise 8.4. Let $K$ be a field and let $V$ and $W$ be two finite-dimensional $K$-vector spaces with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. What is the dimension of the Cartesian product $V \times W$ ?

ExERCISE 8.5. Let $V$ be a finite-dimensional vector space over the complex numbers, and let $v_{1}, \ldots, v_{n}$ be a basis of $V$. Prove that the family of vectors

$$
v_{1}, \ldots, v_{n} \text { and } i v_{1}, \ldots, i v_{n}
$$

form a basis for $V$, considered as a real vector space.

Exercise 8.6. Consider the standard basis $e_{1}, e_{2}, e_{3}, e_{4}$ in $\mathbb{R}^{4}$ and the three vectors

$$
\left(\begin{array}{c}
1 \\
3 \\
0 \\
-4
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
5 \\
7
\end{array}\right) \text { and }\left(\begin{array}{c}
-4 \\
9 \\
-5 \\
1
\end{array}\right)
$$

Prove that these vectors are linearly independent and extend them to a basis by adding an appropriate standard vector as shown in Theorem 8.2. Can one take any standard vector?

ExErcise 8.7. Determine the transformation matrices $M_{\mathfrak{v}}^{\mathfrak{u}}$ and $M_{\mathfrak{u}}^{\mathfrak{v}}$ for the standard basis $\mathfrak{u}$ and the basis $\mathfrak{v}$ in $\mathbb{R}^{4}$ which is given by

$$
v_{1}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), v_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \text { and } v_{4}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

ExErcise 8.8. Determine the transformation matrices $M_{\mathfrak{v}}^{\mathfrak{u}}$ and $M_{\mathfrak{u}}^{\mathfrak{v}}$ for the standard basis $\mathfrak{u}$ and the basis $\mathfrak{v}$ of $\mathbb{C}^{2}$ which is given by the vectors

$$
v_{1}=\binom{3+5 i}{1-i} \text { and } v_{2}=\binom{2+3 i}{4+i},
$$

Exercise 8.9. We consider the families of vectors

$$
\mathfrak{v}=\binom{7}{-4},\binom{8}{1} \text { and } \mathfrak{u}=\binom{4}{6},\binom{7}{3}
$$

in $\mathbb{R}^{2}$.
a) Show that $\mathfrak{v}$ and $\mathfrak{u}$ are both a basis of $\mathbb{R}^{2}$.
b) Let $P \in \mathbb{R}^{2}$ denote the point which has the coordinates $(-2,5)$ with respect to the basis $\mathfrak{v}$. What are the coordinates of this point with respect to the basis $\mathfrak{u}$ ?
c) Determine the transformation matrix which describes the change of basis from $\mathfrak{v}$ to $\mathfrak{u}$.

## Hand-in-exercises

## ExErcise 8.10. (4 points)

Show that the set of all real polynomials of degree $\leq 6$ which have a zero at -1 , at 0 and at 1 is a finite dimensional subspace of $\mathbb{R}[X]$. Determine the dimension of this vector space.

Exercise 8.11. (3 points)
Let $K$ be a field and let $V$ be a $K$-vector space. Let $v_{1}, \ldots, v_{m}$ be a family of vectors in $V$ and let

$$
U=\left\langle v_{i}, i=1, \ldots, m\right\rangle
$$

be the subspace they span. Prove that the family is linearly independent if and only if the dimension of $U$ is exactly $m$.

## Exercise 8.12. (4 points)

Determine the transformation matrices $M_{\mathfrak{v}}^{\mathfrak{u}}$ and $M_{\mathfrak{u}}^{\mathfrak{v}}$ for the standard basis $\mathfrak{u}$ and the basis $\mathfrak{v}$ of $\mathbb{R}^{3}$ which is given by the vectors

$$
v_{1}=\left(\begin{array}{l}
4 \\
5 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{c}
2 \\
3 \\
-8
\end{array}\right) \text { and } v_{3}=\left(\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right)
$$

ExErcise 8.13. (6 points)
We consider the families of vectors

$$
\mathfrak{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
7 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
5
\end{array}\right) \text { and } \mathfrak{u}=\left(\begin{array}{l}
0 \\
2 \\
4
\end{array}\right),\left(\begin{array}{l}
6 \\
6 \\
1
\end{array}\right),\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)
$$

in $\mathbb{R}^{3}$.
a) Show that $\mathfrak{v}$ and $\mathfrak{u}$ are both a basis of $\mathbb{R}^{3}$.
b) Let $P \in \mathbb{R}^{3}$ denote the point which has the coordinates $(2,5,4)$ with respect to the basis $\mathfrak{v}$. What are the coordinates of this point with respect to the basis $\mathfrak{u}$ ?
c) Determine the transformation matrix which describes the change of basis from $\mathfrak{v}$ to $\mathfrak{u}$.

