Mathematics for natural sciences I

Exercise sheet 4

Warm-up-exercises

Exercise 4.1. Establish for each $n \in \mathbb{N}$ if the function

$$
\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^{n}
$$

is injective and/or surjective.

Exercise 4.2. Show that there exists a bijection between \mathbb{N} and \mathbb{Z}.

Exercise 4.3. Give examples of functions

$$
\varphi, \psi: \mathbb{N} \longrightarrow \mathbb{N}
$$

such that φ is injective, but not surjective, and ψ is surjective, but not injective.

Exercise 4.4. Let L and M be two sets and let

$$
F: L \longrightarrow M
$$

be a function. Let

$$
G: M \longrightarrow L
$$

be another function such that $F \circ G=\operatorname{id}_{M}$ and $G \circ F=\operatorname{id}_{L}$. Show that G is the inverse of F.

EXERCISE 4.5. Determine the composite functions

$$
\varphi \circ \psi \text { and } \psi \circ \varphi
$$

for the functions $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
\varphi(x)=x^{4}+3 x^{2}-2 x+5 \text { and } \psi(x)=2 x^{3}-x^{2}+6 x-1 .
$$

Exercise 4.6. Let L, M, N and P be sets and let

$$
\begin{aligned}
& F: L \longrightarrow M, x \longmapsto F(x), \\
& G: M \longrightarrow N, y \longmapsto G(y),
\end{aligned}
$$

and

$$
H: N \longrightarrow P, z \longmapsto H(z),
$$

be functions. Show that

$$
H \circ(G \circ F)=(H \circ G) \circ F .
$$

Exercise 4.7. Let L, M, N be sets and let

$$
f: L \longrightarrow M \text { and } g: M \longrightarrow N
$$

be functions with their composition

$$
g \circ f: L \longrightarrow N, x \longmapsto g(f(x)) .
$$

Show that if $g \circ f$ is injective, then also f is injective.

Exercise 4.8. Let

$$
f_{1}, \ldots, f_{n}: \mathbb{R} \longrightarrow \mathbb{R}
$$

be functions, which are increasing or decreasing, and let $f=f_{n} \circ \cdots \circ f_{1}$ be their composition. Let k be the number of the decreasing functions among the f_{i} 's. Show that if k is even then f is increasing and if k is odd then f is decreasing.

Exercise 4.9. Calculate in the polynomial ring $\mathbb{C}[X]$ the product

$$
\left((4+i) X^{2}-3 X+9 i\right) \cdot\left((-3+7 i) X^{2}+(2+2 i) X-1+6 i\right) .
$$

Exercise 4.10. Let K be a field and let $K[X]$ be the polynomial ring over K. Prove the following properties concerning the degree of a polynomial:
(1) $\operatorname{deg}(P+Q) \leq \max \{\operatorname{deg}(P), \operatorname{deg}(Q)\}$.
(2) $\operatorname{deg}(P \cdot Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$.

Exercise 4.11. Show that in a polynomial ring over a field K the following statement holds: if $P, Q \in K[X]$ are not zero, then also $P Q \neq 0$.

Exercise 4.12. Let K be a field and let $K[X]$ be the polynomial ring over K. Let $a \in K$. Prove that the evaluating function

$$
\psi: K[X] \longrightarrow K, P \longmapsto P(a)
$$

satisfies the following properties (here let $P, Q \in K[X]$).
(1) $(P+Q)(a)=P(a)+Q(a)$.
(2) $(P \cdot Q)(a)=P(a) \cdot Q(a)$.
(3) $1(a)=1$.

Exercise 4.13. Evaluate the polynomial

$$
2 X^{3}-5 X^{2}-4 X+7
$$

replacing the variable X by the complex number $2-5 i$.

Exercise 4.14. Perform, in the polynomial ring $\mathbb{Q}[X]$ the division with remainder $\frac{P}{T}$, where $P=3 X^{4}+7 X^{2}-2 X+5$, and $T=2 X^{2}+3 X-1$.

Exercise 4.15. Let K be a field and let $K[X]$ be the polynomial ring over K. Show that every polynomial $P \in K[X], P \neq 0$, can be decomposed as a product

$$
P=\left(X-\lambda_{1}\right)^{\mu_{1}} \cdots\left(X-\lambda_{k}\right)^{\mu_{k}} \cdot Q
$$

where $\mu_{j} \geq 1$ and Q is a polynomial with no roots (no zeroes). Moreover the different numbers $\lambda_{1}, \ldots, \lambda_{k}$ and the exponents μ_{1}, \ldots, μ_{k} are uniquely determined apart from the order.

Exercise 4.16. Let $F \in \mathbb{C}[X]$ be a non-constant polynomial. Prove that F can be decomposed as a product of linear factors.

Exercise 4.17. Determine the smallest real number for which the Bernoulli inequality with exponent $n=3$ holds.

EXERCISE 4.18. Sketch the graph of the following rational functions

$$
f=g / h: U \longrightarrow \mathbb{R}
$$

where each time U is the complement set of the set of the zeros of the denominator polynomial h.
(1) $1 / x$,
(2) $1 / x^{2}$,
(3) $1 /\left(x^{2}+1\right)$,
(4) $x /\left(x^{2}+1\right)$,
(5) $x^{2} /\left(x^{2}+1\right)$,
(6) $x^{3} /\left(x^{2}+1\right)$,
(7) $(x-2)(x+2)(x+4) /(x-1) x(x+1)$.

Exercise 4.19. Let $P \in \mathbb{R}[X]$ be a polynomial with real coefficients and let $z \in \mathbb{C}$ be a root of P. Show that also the complex conjugate \bar{z} is a root of P.

Hand-in-exercises

Exercise 4.20. (3 points)
Consider the set $M=\{1,2,3,4,5,6,7,8\}$ and the function

$$
\varphi: M \longrightarrow M, x \longmapsto \varphi(x)
$$

defined by the following table

x	1	2	3	4	5	6	7	8
$\varphi(x)$	2	5	6	1	4	3	7	7

Compute φ^{1003}, that is the 1003 -rd composition (or iteration) of φ with itself.

Exercise 4.21. (2 points)
Prove that a strictly increasing function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

is injective.

Exercise 4.22. (3 points)
Let L, M, N be sets and let

$$
f: L \longrightarrow M \text { and } g: M \longrightarrow N
$$

be functions with their composite

$$
g \circ f: L \longrightarrow N, x \longmapsto g(f(x))
$$

Show that if $g \circ f$ is surjective, then also g is surjective.

Exercise 4.23. (3 points)
Calculate in the polynomial ring $\mathbb{C}[X]$ the product
$\left((4+i) X^{3}-i X^{2}+2 X+3+2 i\right) \cdot\left((2-i) X^{3}+(3-5 i) X^{2}+(2+i) X+1+5 i\right)$.

Exercise 4.24. (3 points)
Perform, in the polynomial ring $\mathbb{C}[X]$ the division with remainder $\frac{P}{T}$, where $P=(5+i) X^{4}+i X^{2}+(3-2 i) X-1$ and $T=X^{2}+i X+3-i$.

ExERCISE 4.25. (5 points)
Let $P \in \mathbb{R}[X]$ be a non-constant polynomial with real coefficients. Prove that P can be written as a product of real polynomials of degrees 1 or 2 .

