Mathematics for natural sciences I

Exercise sheet 25

Warm-up-exercises

Exercise 25.1. Compute the definite integral

$$
\int_{0}^{\sqrt{\pi}} x \sin x^{2} d x
$$

In the following exercises, which involve the determination of antiderivative functions, consider an appropriate domain of definition.

Exercise 25.2. Determine an antiderivative of the function $\tan x$.

EXERCISE 25.3. Determine an antiderivative of the function

$$
x^{n} \cdot \ln x \text {. }
$$

Exercise 25.4. Determine an antiderivative of the function

$$
e^{\sqrt{x}}
$$

EXERCISE 25.5. Determine an antiderivative of the function

$$
\frac{x^{3}}{\sqrt[5]{x^{4}+2}}
$$

Exercise 25.6. Determine an antiderivative of the function

$$
\frac{\sin ^{2} x}{\cos ^{2} x}
$$

Exercise 25.7. Determine for which $a \in \mathbb{R}$ the function

$$
a \longmapsto \int_{-1}^{2} a t^{2}-a^{2} t d t
$$

has a maximum or a minimum.

Exercise 25.8. According to recent studies the student's attention skills during the day are described by the following function

$$
[8,18] \longrightarrow \mathbb{R}, x \longmapsto f(x)=-x^{2}+25 x-100 .
$$

Here x is the time in hours and $y=f(x)$ is the attention measured in micro-credit points per second. When should one start a one and a half hour lecture, such that the total attention skills are optimal? How many microcredit points will be added during this lecture?

Exercise 25.9. Let I be a real interval and let

$$
f: I \longrightarrow \mathbb{R}
$$

be a continuous function with antiderivative F. Let G be an antiderivative of F and let $b, c \in \mathbb{R}$. Determine an antiderivative of the function

$$
(b t+c) \cdot f(t) .
$$

Exercise 25.10. Let $n \in \mathbb{N}_{+}$. Determine an antiderivative of the function

$$
\mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}, x \longmapsto x^{1 / n},
$$

using the antiderivative of x^{n} and Theorem 25.4.

ExERCISE 25.11. Determine an antiderivative of the natural logarithm function using the antiderivative of its inverse function.

Exercise 25.12. Let

$$
f:[a, b] \longrightarrow[c, d]
$$

be a bijective, continuous differentiable function. Prove the formula for the antiderivative of the inverse function by the integral

$$
\int_{a}^{b} f^{-1}(y) d y
$$

using the substitution $y=f(x)$ and then integration by parts.

Exercise 25.13. Compute by an appropriate substitution an antiderivative of

$$
\sqrt{3 x^{2}+5 x-4}
$$

Exercise 25.14. Compute the definite integral of the function

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f(x)=2 x^{3}+3 e^{x}-\sin x
$$

on $[-1,0]$.

Exercise 25.15. Compute the definite integral of the function

$$
f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, x \longmapsto f(x)=\sqrt{x}-\frac{1}{\sqrt{x}}+\frac{1}{2 x+3}-e^{-x}
$$

on $[1,4]$.

Hand-in-exercises

EXERCISE 25.16. (4 points)
Compute the definite integral $\int_{0}^{8} f(t) d t$, where the function f is

$$
f(t)=\left\{\begin{array}{l}
t+1, \text { if } 0 \leq t \leq 2 \\
t^{2}-6 t+11, \text { if } 2<t \leq 5 \\
6, \text { if } 5<t \leq 6 \\
-2 t+18, \text { if } 6<t \leq 8
\end{array}\right.
$$

Exercise 25.17. (3 points)
Determine an antiderivative of the function

$$
x^{3} \cdot \cos x-x^{2} \cdot \sin x .
$$

Exercise 25.18. (2 points)
Determine an antiderivative of the function

$$
\arcsin x
$$

EXERCISE 25.19. (4 points)
Determine an antiderivative of the function

$$
\sin (\ln x)
$$

EXERCISE 25.20. (5 points)
Determine an antiderivative of the function

$$
e^{x} \cdot \frac{x^{2}+1}{(x+1)^{2}}
$$

Exercise 25.21. (5 points)
Let I be a real interval and let

$$
f: I \longrightarrow \mathbb{R}
$$

be a continuous function with antiderivative F. Let G be an antiderivative of F and H an antiderivative of G. Let $a, b, c \in \mathbb{R}$. Determine an antiderivative of the function

$$
\left(a t^{2}+b t+c\right) \cdot f(t)
$$

