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Vector bundles, forcing algebras and local cohomology

Lecture 4

Forcing algebras and induced torsors

As TU is a VU -torsor, and as every V -torsor is represented by a unique coho-
mology class, there should be a natural cohomology class coming from the
forcing data. To see this, let R be a noetherian ring and I = (f1, . . . , fn) be
an ideal. Then on U = D(I) we have the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

An element f ∈ R defines an element f ∈ Γ(U,OU) and hence a cohomology
class δ(f) ∈ H1(U, Syz (f1, . . . , fn)). Hence f defines in fact a Syz (f1, . . . , fn)-
torsor over U . We will see that this torsor is induced by the forcing algebra
given by f1, . . . , fn and f .

Theorem 4.1. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let B = R[T1, . . . , Tn]/(f1T1 +
. . . + fnTn − f) denote the forcing algebra for these data. Then the scheme

Spec (B)|D(I) together with the natural action of the syzygy bundle on it is

isomorphic to the torsor given by c.

Proof. We compute the cohomology class δ(f) ∈ H1(U, Syz (f1, . . . , fn)) and
the cohomology class given by the forcing algebra. For the first computation
we look at the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

On D(fi), the element f is the image of (0, . . . , 0, f

fi
, 0, . . . , 0) (the non-zero

entry is at the ith place). The cohomology class is therefore represented by
the family of differences

(0, . . . , 0,
f

fi
, 0, . . . , 0,−

f

fj
, 0, . . . , 0) ∈ Γ(D(fi) ∩D(fj), Syz (f1, . . . , fn)) .

On the other hand, there are isomorphisms

V |D(fi) −→ T |D(fi), (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi
, si+1, . . . , sn).

The difference of two such isomorphisms on D(fifj) is the same as before.
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Example 4.2. Let (R,m) denote a two-dimensional normal local noetherian
domain and let f and g be two parameters in R. On D(m) we have the short
exact sequence

0 −→ OU
∼= Syz (f, g) −→ O2

U

f,g
−→ OU −→ 0

and its corresponding long exact sequence of cohomology,

0 −→ R −→ R2 f,g
−→ R

δ
−→ H1(U,O) −→ . . . .

The connecting homomorphisms δ sends an element h ∈ R to h
fg
. The torsor

given by such a cohomology class c = h
fg

∈ H1(U,OX) can be realized by the

forcing algebra
R[T1, T2]/(fT1 + gT2 − h) .

Note that different forcing algebras may give the same torsor, because the
torsor depends only on the spectrum of the forcing algebra restricted to the
punctured spectrum of R. For example, the cohomology class 1

fg
= fg

f2g2

defines one torsor, but the two quotients yield the two forcing algebras
R[T1, T2]/(fT1 + gT2 − 1) and R[T1, T2]/(f

2T1 + g2T2 − fg), which are quite
different. The fiber over the maximal ideal of the first one is empty, whereas
the fiber over the maximal ideal of the second one is a plane.

If R is regular, say R = K[X, Y ] (or the localization of this at (X, Y ) or
the corresponding power series ring) then the first cohomology classes are
K-linear combinations of 1

xiyj
, i, j ≥ 1. They are realized by the forcing

algebras K[X, Y ]/(X iT1 + Y jT2 − 1). Since the fiber over the maximal ideal
is empty, the spectrum of the forcing algebra equals the torsor. Or, the other
way round, the torsor is itself an affine scheme.

The closure operations we have considered in the second lecture can be cha-
racterized by some property of the forcing algebra. However, they can not be
characterized by a property of the corresponding torsor alone. For example,
for R = K[X, Y ], we may write

1

XY
=

X

X2Y
=

XY

X2Y 2
=

X2Y 2

X3Y 3
,

so the torsors given by the forcing algebras

R[T1, T2]/(XT1 + Y T2 + 1),

R[T1, T2]/(X
2T1 + Y T2 +X),

R[T1, T2]/(X
2T1 + Y 2T2 +XY ) and

R[T1, T2]/(X
3T1 + Y 3T2 +X2Y 2)

are all the same (the restriction over D(X, Y )), but there global properties
are quite different. We have a non-surjection, a surjective non submersion, a
submersion which does not admit (for K = C) a continuous section and a
map which admits a continuous section.


