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Group extension 1

Group extension
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup
and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence

If G is an extension of Q by N, then G is a group, N is a normal subgroup of G and the quotient group G/N is
isomorphic to group Q. Group extensions arise in the context of the extension problem, where the groups Q and N
are known and the properties of G are to be determined.
An extension is called a central extension if the subgroup N lies in the center of G.

Extensions in general
One extension, the direct product, is immediately obvious. If one requires G and Q to be abelian groups, then the set
of isomorphism classes of extensions of Q by a given (abelian) group N is in fact a group, which is isomorphic to

;
cf. the Ext functor. Several other general classes of extensions are known but no theory exists which treats all the
possible extensions at one time. Group extension is usually described as a hard problem; it is termed the extension
problem.
To consider some examples, if G = H × K, then G is an extension of both H and K. More generally, if G is a
semidirect product of K and H, then G is an extension of H by K, so such products as the wreath product provide
further examples of extensions.

Extension problem
The question of what groups G are extensions of H is called the extension problem, and has been studied heavily
since the late nineteenth century. As to its motivation, consider that the composition series of a finite group is a finite
sequence of subgroups {Ai}, where each Ai+1 is an extension of Ai by some simple group. The classification of finite
simple groups would give us a complete list of finite simple groups; so the solution to the extension problem would
give us enough information to construct and classify all finite groups in general.
We can use the language of diagrams to provide a more flexible definition of extension: a group G is an extension of
a group H by a group K if and only if there is an exact sequence:

where 1 denotes the trivial group with a single element. This definition is more general in that it does not require that
K be a subgroup of G; instead, K is isomorphic to a normal subgroup K* of G, and H is isomorphic to G/K*.

Classifying extensions
Solving the extension problem amounts to classifying all extensions of H by K; or more practically, by expressing all
such extensions in terms of mathematical objects that are easier to understand and compute. In general, this problem
is very hard, and all the most useful results classify extensions that satisfy some additional condition.

Classifying split extensions

A split extension is an extension

for which there is a homomorphism such that going from H to G by s and then back to H by the 
quotient map of the short exact sequence induces the identity map on H. In this situation, it is usually said that s
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splits the above exact sequence.
Split extensions are very easy to classify, because the splitting lemma states that an extension is split if and only if
the group G is a semidirect product of K and H. Semidirect products themselves are easy to classify, because they are
in one-to-one correspondence with homomorphisms from , where Aut(K) is the automorphism
group of K. For a full discussion of why this is true, see semidirect product.

Warning

In general in mathematics, an extension of a structure K is usually regarded as a structure L of which K is a
substructure. See for example field extension. However in group theory the opposite terminology has crept in, partly
because of the notation , which reads easily as extensions of Q by N, and the focus is on the group Q.
The paper of Brown and Porter (1996) on the Schreier theory of nonabelian extensions (cited below) uses the
terminology that an extension of K gives a larger structure.

Central extension
A central extension of a group G is a short exact sequence of groups

such that A is in Z(E), the center of the group E. The set of isomorphism classes of central extensions of G by A
(where G acts trivially on A) is in one-to-one correspondence with the cohomology group H2(G,A).
Examples of central extensions can be constructed by taking any group G and any abelian group A, and setting E to
be A×G. This kind of split example (a split extension in the sense of the extension problem, since G is present as a
subgroup of E) isn't of particular interest, since it corresponds to the element 0 in H2(G,A) under the above
correspondence. More serious examples are found in the theory of projective representations, in cases where the
projective representation cannot be lifted to an ordinary linear representation.
In the case of finite perfect groups, there is a universal perfect central extension.
Similarly, the central extension of a Lie algebra is an exact sequence

such that is in the center of .
There is a general theory of central extensions in Maltsev varieties, see the paper by Janelidze and Kelly listed
below.

Generalization to general extensions
The paper on Group Extensions and H3 given below provides a similar classification of all extensions of G by A in
terms of homomorphisms from , a tedious but explicitly checkable existence condition involving
H3(G,Z(A)) and the cohomology group H2(G,Z(A)).

Lie groups
In Lie group theory, central extensions arise in connection with algebraic topology. Roughly speaking, central
extensions of Lie groups by discrete groups are the same as covering groups. More precisely, a connected covering
space G* of a connected Lie group G is naturally a central extension of G, in such a way that the projection

π: G* → G
is a group homomorphism, and surjective. (The group structure on G* depends on the choice of an identity element
mapping to the identity in G.) For example, when G* is the universal cover of G, the kernel of π is the fundamental
group of G, which is known to be abelian (see H-space). Conversely, given a Lie group G and a discrete central
subgroup Z, the quotient G/Z is a Lie group and G is a covering space of it.
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More generally, when the groups A, E and G occurring in a central extension are Lie groups, and the maps between
them are homomorphism of Lie groups, then the Lie algebra of E is a central extension of the Lie algebra of G by the
Lie algebra of A. In the terminology of theoretical physics, generators of Lie(A) are called central charges. These
generators are in the center of the Lie algebra of E; by Noether's theorem, generators of symmetry groups correspond
to conserved quantities, referred to as charges.
The basic examples of central extensions as covering groups are:
• the spin groups, which double cover the special orthogonal groups, which (in even dimension) double-cover the

projective orthogonal group.
• the metaplectic groups, which double cover the symplectic groups.
The case of SL2(R) involves a fundamental group that is infinite cyclic. Here the central extension involved is well
known in modular form theory, in the case of forms of weight ½. A projective representation that corresponds is the
Weil representation, constructed from the Fourier transform, in this case on the real line. Metaplectic groups also
occur in quantum mechanics.
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Direct product of groups
In the mathematical field of group theory, the direct product is an operation that takes two groups G and H and
constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian
product of sets, and is one of several important notions of direct product in mathematics.
In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted G ⊕ H.
Direct sums play an important role in the classification of abelian groups: according to fundamental theorem of finite
abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups.

Definition
Given groups G and H, the direct product G × H is defined as follows:
1. The elements of G × H are ordered pairs (g, h), where g ∈ G and h ∈ H. That is, the set of elements of G × H is

the Cartesian product of the sets G and H.
2. The binary operation on G × H is defined componentwise:

(g1, h1) · (g2, h2)  =  (g1 · g2, h1 · h2)
The resulting algebraic object satisfies the axioms for a group. Specifically:
Associativity

The binary operation on G × H is indeed associative.
Identity

The direct product has an identity element, namely (1G, 1H), where 1G is the identity element of G and 1H is
the identity element of H.

Inverses
The inverse of an element (g, h) of G × H is the pair (g−1, h−1), where g−1 is the inverse of g in G, and h−1 is
the inverse of h in H.

Examples
• Let R be the group of real numbers under addition. Then the direct product R × R is the group of all

two-component vectors (x, y) under the operation of vector addition:
(x1, y1) + (x2, y2)  =  (x1 + x2, y1 + y2).

• Let G and H be cyclic groups with two elements each:

* 1 a

1 1 a

a a 1

* 1 b

1 1 b

b b 1

Then the direct product G × H is isomorphic to the Klein four-group:
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G × H

* (1, 1) (a, 1) (1, b) (a, b)

(1, 1) (1, 1) (a, 1) (1, b) (a, b)

(a, 1) (a, 1) (1, 1) (a, b) (1, b)

(1, b) (1, b) (a, b) (1, 1) (a, 1)

(a, b) (a, b) (1, b) (a, 1) (1, 1)

Elementary properties
• The order of a direct product G × H is the product of the orders of G and H:

| G × H |  =  | G | | H |.
This follows from the formula for the cardinality of the cartesian product of sets.

• The order of each element (g, h) is the least common multiple of the orders of g and h:

| (g, h) |  =  lcm( | g |, | h | ).
In particular, if | g | and | h | are relatively prime, then the order of (g, h) is the product of the orders of g and h
.

• As a consequence, if G and H are cyclic groups whose orders are relatively prime, then G × H is cyclic as well.
That is, if m and n are relatively prime, then

( Z / mZ ) × ( Z / nZ )  ≅  Z / mnZ.
This fact is closely related to the Chinese remainder theorem.

Algebraic structure
Let G and H be groups, let P = G × H, and consider the following two subsets of P:

G' = { (g, 1)  :  g ∈ G }    and    H' = { (1, h) : h ∈ H }
Both of these are in fact subgroups of P, the first being isomorphic to G, and the second being isomorphic to H. If we
identify these with G and H, respectively, then we can think of the direct product P as containing the original groups
G and H as subgroups.
These subgroups of P have the following three important properties: (Saying again that we identify G' and H' with G
and H, respectively.)
1. The intersection G ∩ H is trivial.
2. Every element of P can be expressed as the product of an element of G and an element of H.
3. Every element of G commutes with every element of H.
Together, these three properties completely determine the algebraic structure of the direct product P. That is, if P is
any group having subgroups G and H that satisfy the properties above, then P is necessarily isomorphic to the direct
product of G and H. In this situation, P is sometimes referred to as the internal direct product of its subgroups G
and H.
In some contexts, the third property above is replaced by the following:

3'.  Both G and H are normal in P.
This property is equivalent to property 3, since the elements of two normal subgroups with trivial intersection
necessarily commute.
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Examples
• Let V be the Klein four-group:

V

* 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Then V is the internal direct product of the two-element subgroups { 1, a } and { 1, b }.

• Let 〈a〉 be a cyclic group of order mn, where m and n are relatively prime. Then 〈an〉 and 〈am〉 are
cyclic subgroups of orders m and n, respectively, and 〈a〉 is the internal direct product of these subgroups.

• Let C× be the group of nonzero complex numbers under multiplication. Then C× is the internal direct product of
the circle group T of unit complex numbers and the group R+ of positive real numbers under multiplication.

• If n is odd, then the general linear group GL(n, R) is the internal direct product of the special linear group SL(n,
R) and the subgroup consisting of all scalar matrices.

• Similarly, when n is odd the orthogonal group O(n, R) is the internal direct product of the special orthogonal
group SO(n, R) and the two-element subgroup { −I, I }, where I denotes the identity matrix.

• The symmetry group of a cube is the internal direct product of the subgroup of rotations and the two-element
group { −I, I }, where I is the identity element and −I is the point reflection through the center of the cube. A
similar fact holds true for the symmetry group of a icosahedron.

• Let n be odd, and let D4n be the dihedral group of order 4n:

D4n  =  〈 r, s | r2n = s2 = 1, sr = r−1s 〉.
Then D4n is the internal direct product of the subgroup 〈 r2, s 〉 (which is isomorphic to D2n) and the
two-element subgroup { 1, rn }.

Presentations
The algebraic structure of G × H can be used to give a presentation for the direct product in terms of the
presentations of G and H. Specifically, suppose that

G = 〈 SG | RG 〉     and     H = 〈 SH | RH 〉,
where SG and SH are (disjoint) generating sets and RG and RH are defining relations. Then

G × H = 〈 SG ∪ SH | RG ∪ RH ∪ RP 〉
where RP is a set of relations specifying that each element of SG commutes with each element of SH
For example, suppose that

G = 〈 a | a3 = 1 〉     and     H = 〈 b | b5 = 1 〉.
Then

G × H = 〈 a, b | a3 = 1, b5 = 1, ab = ba 〉.
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Normal structure
As mentioned above, the subgroups G and H are normal in G × H. Specifically, define functions πG: G × H → G and
πH: G × H → H by

πG(g, h) = g     and     πH(g, h) = h.
Then πG and πH are homomorphisms, known as projection homomorphisms, whose kernels are H and G,
respectively.
It follows that G × H is an extension of G by H (or vice-versa). In the case where G × H is a finite group, it follows
that the composition factors of G × H are precisely the union of the composition factors of G and the composition
factors of H.

Further properties

Universal property
The direct product G × H can be characterized by the following universal property. Let πG: G × H → G and πH: G ×
H → H be the projection homomorphisms. Then for any group P and any homomorphisms ƒG: P → G and ƒH: P →
H, there exists a unique homomorphism ƒ: P → G × H making the following diagram commute:

Specifically, the homomorphism ƒ is given by the formula

ƒ(p)  =  ( ƒG(p), ƒH(p) ).
This is a special case of the universal property for products in category theory.

Subgroups
If A is a subgroup of G and B is a subgroup of H, then the direct product A × B is a subgroup of G × H. For example,
the isomorphic copy of G in G × H is the product G × {1}, where {1} is the trivial subgroup of H.
If A and B are normal, then A × B is a normal subgroup of G × H. Moreover, the quotient (G × H) / (A × B) is
isomorphic to the direct product of the quotients G / A and H / B:

(G × H) / (A × B)  ≅  (G / A) × (H / B).
Note that it is not true in general that every subgroup of G × H is the product of a subgroup of G with a subgroup of
H. For example, if G is any group, then the product G × G has a diagonal subgroup

Δ  =  { (g, g) : g ∈ G }
which is not the direct product of two subgroups of G. Other subgroups include fiber products of G and H (see
below). The subgroups of direct products are described by Goursat's lemma.
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Conjugacy and centralizers
Two elements (g1, h1) and (g2, h2) are conjugate in G × H if and only if g1 and g2 are conjugate in G and h1 and h2
are conjugate in H. It follows that each conjugacy class in G × H is simply the Cartesian product of a conjugacy class
in G and a conjugacy class in H.
Along the same lines, if (g, h) ∈ G × H, the centralizer of (g, h) is simply the product of the centralizers of g and h:

CG×H(g, h)  =  CG(g) × CH(h).
Similarly, the center of G × H is the product of the centers of G and H:

Z(G × H)  =  Z(G) × Z(H).
Normalizers behave in a more complex manner since not all subgroups of direct products themselves decompose as
direct products.

Automorphisms and endomorphisms
If α is an automorphism of G and β is an automorphism of H, then the product function α × β: G × H → G × H
defined by

(α × β)(g, h) = (α(g), β(h))
is an automorphism of G × H. It follows that Aut(G × H) has a subgroup isomorphic to the direct product Aut(G) ×
Aut(H).
It is not true in general that every automorphism of G × H has the above form. (That is, Aut(G) × Aut(H) is often a
proper subgroup of Aut(G × H).) For example, if G is any group, then there exists an automorphism σ of G × G that
switches the two factors, i.e.

σ(g1, g2) = (g2, g1).
For another example, the automorphism group of Z × Z is GL(2, Z), the group of all 2 × 2 matrices with integer
entries and determinant ±1. This automorphism group is infinite, but only finitely many of the automorphisms have
the form given above.
In general, every endomorphism of G × H can be written as a 2 × 2 matrix

where α is an endomorphism of G, δ is an endomorphism of H, and β: H → G and γ: G → H are homomorphisms.
Such a matrix must have the property that every element in the image of α commutes with every element in the
image of β, and every element in the image of γ commutes with every element in the image of δ.
When G and H are indecomposable, centerless groups, then the automorphism group is relatively straightforward,
being Aut(G) × Aut(H) if G and H are not isomorphic, and Aut(G) wr 2 if G ≅ H, wr denotes the wreath product.
This is part of the Krull–Schmidt theorem, and holds more generally for finite direct products.
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Generalizations

Finite direct products
It is possible to take the direct product of more than two groups at once. Given a finite sequence G1, ..., Gn of groups,
the direct product

is defined as follows:
• The elements of G1 × ··· × Gn are tuples (g1, ..., gn), where gi ∈ Gi for each i.
• The operation on G1 × ··· × Gn is defined componentwise:

(g1, ..., gn)(g1′, ..., gn′)  =  (g1g1′, ..., gngn′).
This has many of the same properties as the direct product of two groups, and can be characterized algebraically in a
similar way.

Infinite direct products
It is also possible to take the direct product of an infinite number of groups. For an infinite sequence G1, G2, ... of
groups, this can be defined just like the finite direct product of above, with elements of the infinite direct product
being infinite tuples.

More generally, given an indexed family { Gi }i∈I of groups, the direct product ∏i∈I Gi is defined as follows:
• The elements of ∏i∈I Gi are the elements of the infinite Cartesian product of the sets Gi, i.e. functions ƒ: I →

Ui∈I Gi with the property that ƒ(i) ∈ Gi for each i.
• The product of two elements ƒ, g is defined componentwise:

(ƒ • g)(i)  =  ƒ(i) • g(i).

Unlike a finite direct product, the infinite direct product ∏i∈I Gi is not generated by the elements of the isomorphic
subgroups { Gi }i∈I. Instead, these subgroups generate a subgroup of the direct product known as the infinite direct
sum, which consists of all elements that have only finitely many non-identity components.

Other products

Semidirect products

Recall that a group P with subgroups G and H is isomorphic to the direct product of G and H as long as it satisfies
the following three conditions:
1. The intersection G ∩ H is trivial.
2. Every element of P can be expressed as the product of an element of G and an element of H.
3. Both G and H are normal in P.
A semidirect product of G and H is obtained by relaxing the third condition, so that only one of the two subgroups
G, H is required to be normal. The resulting product still consists of ordered pairs (g, h), but with a slightly more
complicated rule for multiplication.
It is also possible to relax the third condition entirely, requiring neither of the two subgroups to be normal. In this
case, the group P is referred to as a Zappa–Szép product of G and H.
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Free products

The free product of G and H, usually denoted G ∗ H, is similar to the direct product, except that the subgroups G
and H of G ∗ H are not required to commute. That is, if

G = 〈 SG | RG 〉     and     H = 〈 SH | RH 〉,
are presentations for G and H, then

G ∗ H = 〈 SG ∪ SH | RG ∪ RH 〉.
Unlike the direct product, elements of the free product cannot be represented by ordered pairs. In fact, the free
product of any two nontrivial groups is infinite. The free product is actually the coproduct in the category of groups.

Subdirect products

If G and H are groups, a subdirect product of G and H is any subgroup of G × H which maps surjectively onto G
and H under the projection homomorphisms. By Goursat's lemma, every subdirect product is a fiber product, and
vice versa.

Fiber products

Let G, H, and Q be groups, and let φ: G → Q and χ: H → Q be epimorphisms. The fiber product of G and H over
Q, also known as a pullback, is the following subgroup of G × H:

G ×Q H  =  { (g, h) ∈ G × H : φ(g) = χ(h) }.
By Goursat's lemma, every subdirect product is a fiber product, and vice versa.
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Direct sum of groups
In mathematics, a group G is called the direct sum of a set of subgroups {Hi} if
• each Hi is a normal subgroup of G
•• each distinct pair of subgroups has trivial intersection, and
• G = <{Hi}>; in other words, G is generated by the subgroups {Hi}.
If G is the direct sum of subgroups H and K, then we write G = H + K; if G is the direct sum of a set of subgroups
{Hi}, we often write G = ∑Hi. Loosely speaking, a direct sum is isomorphic to a weak direct product of subgroups.
In abstract algebra, this method of construction can be generalized to direct sums of vector spaces, modules, and
other structures; see the article direct sum of modules for more information.
This notation is commutative; so that in the case of the direct sum of two subgroups, G = H + K = K + H. It is also
associative in the sense that if G = H + K, and K = L + M, then G = H + (L + M) = H + L + M.
A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable; otherwise it is
called indecomposable.
If G = H + K, then it can be proven that:
• for all h in H, k in K, we have that h*k = k*h
• for all g in G, there exists unique h in H, k in K such that g = h*k
• There is a cancellation of the sum in a quotient; so that (H + K)/K is isomorphic to H
The above assertions can be generalized to the case of G = ∑Hi, where {Hi} is a finite set of subgroups.
• if i ≠ j, then for all hi in Hi, hj in Hj, we have that hi * hj = hj * hi
• for each g in G, there unique set of {hi in Hi} such that

g = h1*h2* ... * hi * ... * hn
• There is a cancellation of the sum in a quotient; so that ((∑Hi) + K)/K is isomorphic to ∑Hi
Note the similarity with the direct product, where each g can be expressed uniquely as

g = (h1,h2, ..., hi, ..., hn)
Since hi * hj = hj * hi for all i ≠ j, it follows that multiplication of elements in a direct sum is isomorphic to
multiplication of the corresponding elements in the direct product; thus for finite sets of subgroups, ∑Hi is
isomorphic to the direct product ×{Hi}.

Equivalence of direct sums
The direct sum is not unique for a group; for example, in the Klein group, V4 = C2 × C2, we have that

V4 = <(0,1)> + <(1,0)> and
V4 = <(1,1)> + <(1,0)>.

However, it is the content of the Remak-Krull-Schmidt theorem that given a finite group G = ∑Ai = ∑Bj, where each
Ai and each Bj is non-trivial and indecomposable, then the two sums are equivalent up to reordering and isomorphism
of the subgroups involved.
The Remak-Krull-Schmidt theorem fails for infinite groups; so in the case of infinite G = H + K = L + M, even when
all subgroups are non-trivial and indecomposable, we cannot then assume that H is isomorphic to either L or M.
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Generalization to sums over infinite sets
If we wish to describe the above properties in the case where G is the direct sum of an infinite (perhaps uncountable)
set of subgroups, we need to be a bit more careful.
If g is an element of the cartesian product ∏{Hi} of a set of groups, let gi be the ith element of g in the product. The
external direct sum of a set of groups {Hi} (written as ∑

E
{Hi}) is the subset of ∏{Hi}, where, for each element g

of ∑
E

{Hi}, gi is the identity for all but a finite number of gi (equivalently, only a finite number of gi are not the
identity). The group operation in the external direct sum is pointwise multiplication, as in the usual direct product.
This subset does indeed form a group; and for a finite set of groups Hi, the external direct sum is identical to the
direct product.
Then if G = ∑Hi, then G is isomorphic to ∑

E
{Hi}. Thus, in a sense, the direct sum is an "internal" external direct

sum. We have that, for each element g in G, there is a unique finite set S and unique {hi in Hi : i in S} such that g = ∏
{hi : i in S}.

Free abelian group
In abstract algebra, a free abelian group is an abelian group that has a "basis" in the sense that every element of the
group can be written in one and only one way as a finite linear combination of elements of the basis, with integer
coefficients. Hence, free abelian groups over a basis B are also known as formal sums over B. Informally, free
abelian groups or formal sums may also be seen as signed multisets with elements in B.
Free abelian groups have very nice properties which make them similar to vector spaces and allow a general abelian
group to be understood as a quotient of a free abelian group by "relations". Every free abelian group has a rank
defined as the cardinality of a basis. The rank determines the group up to isomorphism, and the elements of such a
group can be written as finite formal sums of the basis elements. Every subgroup of a free abelian group is itself free
abelian, which is important for the description of a general abelian group as a cokernel of a homomorphism between
free abelian groups.

Example
For example, let G be the group that is the direct sum of two copies of the infinite cyclic group .
Symbolically,

.
One basis for this group is {(1,0),(0,1)}. If we say and , then we can write the element
(4,3) as

. Where 'multiplication' is defined in following way: .
In this basis, there is no other way to write (4,3), but if we choose our basis to be {(1,0),(1,1)}, where 
and , then we can write (4,3) as

.
Unlike vector spaces, not all abelian groups have a basis, hence the special name for those that do. (For instance, any
group having periodic elements is not a free abelian group because any element can be expressed in an infinite
number of ways simply by putting in an arbitrary number of cycles constructed from a periodic element.) The trivial
abelian group {0} is also considered to be free abelian, with basis the empty set.
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Terminology
Note that a free abelian group is not a free group except in two cases: a free abelian group having an empty basis
(rank 0, giving the trivial group) or having just 1 element in the basis (rank 1, giving the infinite cyclic group). Other
abelian groups are not free groups because in free groups ab must be different from ba if a and b are different
elements of the basis, while in free abelian groups they must be identical.

Properties
1. For every set B, there exists a free abelian group with basis B, and all such free abelian groups having B as basis

are isomorphic. One example may be constructed as the abelian group of functions on B, where each function
may take integer values, and all but finitely many of its values are zero. This is the direct sum of copies of ,
one copy for each element of B.

2. If F is a free abelian group with basis B, then we have the following universal property: for every arbitrary
function f from B to some abelian group A, there exists a unique group homomorphism from F to A which extends
f. This universal property can also be used to define free abelian groups.

3. Given any abelian group A, there always exists a free abelian group F and a surjective group homomorphism
from F to A. This follows from the universal property mentioned above.

4. All free abelian groups are torsion-free, and all finitely generated torsion-free abelian groups are free abelian.
(The same applies to flatness, since an abelian group is torsion-free if and only if it is flat.) The additive group of
rational numbers Q is a (not finitely generated) torsion-free group that's not free abelian. The reason: Q is
divisible but non-zero free abelian groups are never divisible.

5. Free abelian groups are a special case of free modules, as abelian groups are nothing but modules over the ring
.

Importantly, every subgroup of a free abelian group is free abelian (see below). As a consequence, to every abelian
group A there exists a short exact sequence

0 → G → F → A → 0
with F and G being free abelian (which means that A is isomorphic to the factor group F/G). This is called a free
resolution of A. Furthermore, the free abelian groups are precisely the projective objects in the category of abelian
groups.[1]

It can be surprisingly difficult to determine whether a concretely given group is free abelian. Consider for instance
the Baer–Specker group , the direct product (not to be confused with the direct sum, which differs from the
direct product on an infinite number of summands) of countably many copies of . Reinhold Baer proved in 1937
that this group is not free abelian; Specker proved in 1950 that every countable subgroup of is free abelian.

Rank
Every finitely generated free abelian group is isomorphic to for some natural number n called the rank of the
free abelian group. In general, a free abelian group F has many different bases, but all bases have the same
cardinality, and this cardinality is called the rank of F. This rank of free abelian groups can be used to define the rank
of all other abelian groups: see rank of an abelian group. The relationships between different bases can be
interesting; for example, the different possibilities for choosing a basis for the free abelian group of rank two is
reviewed in the article on the fundamental pair of periods.

http://en.wikipedia.org/w/index.php?title=Trivial_group
http://en.wikipedia.org/w/index.php?title=Infinite_cyclic_group
http://en.wikipedia.org/w/index.php?title=Group_isomorphism
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Universal_property
http://en.wikipedia.org/w/index.php?title=Group_homomorphism
http://en.wikipedia.org/w/index.php?title=Surjective
http://en.wikipedia.org/w/index.php?title=Torsion_%28algebra%29
http://en.wikipedia.org/w/index.php?title=Flat_module
http://en.wikipedia.org/w/index.php?title=Rational_number
http://en.wikipedia.org/w/index.php?title=Divisible_group
http://en.wikipedia.org/w/index.php?title=Free_module
http://en.wikipedia.org/w/index.php?title=Module_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Ring_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Subgroup
http://en.wikipedia.org/w/index.php?title=Free_abelian_group%23Subgroup_closure
http://en.wikipedia.org/w/index.php?title=Short_exact_sequence
http://en.wikipedia.org/w/index.php?title=Factor_group
http://en.wikipedia.org/w/index.php?title=Projective_module
http://en.wikipedia.org/w/index.php?title=Category_of_abelian_groups
http://en.wikipedia.org/w/index.php?title=Category_of_abelian_groups
http://en.wikipedia.org/w/index.php?title=Baer%E2%80%93Specker_group
http://en.wikipedia.org/w/index.php?title=Countably_infinite
http://en.wikipedia.org/w/index.php?title=Reinhold_Baer
http://en.wikipedia.org/w/index.php?title=Finitely_generated_module
http://en.wikipedia.org/w/index.php?title=Natural_number
http://en.wikipedia.org/w/index.php?title=Cardinality
http://en.wikipedia.org/w/index.php?title=Rank_of_an_abelian_group
http://en.wikipedia.org/w/index.php?title=Fundamental_pair_of_periods


Free abelian group 14

Formal sum
A formal sum of elements of a given set B is an element of the free abelian group with basis B. In other words,
given a set B, let G be the unique (up to isomorphism) free abelian group with basis B. For elements 
and (where there may be an such that  iff ),

Subgroup closure
Every subgroup of a free abelian group is itself a free abelian group. This is similar to the Nielsen–Schreier theorem
that a subgroup of a free group is free.[2]

Theorem: Let be a free abelian group generated by the set and let be a subgroup.
Then is a free abelian group.
Proof:[3] If , the statement holds, so we can assume that is nontrivial. First we shall prove this for
finite by induction. When , is isomorphic to (being nontrivial) and clearly free. Assume that if
a group is generated by a set of size , then every subgroup of it is free. Let ,

the free group generated by and a subgroup. Let be the projection
If , then is a subset of and free

by the induction hypothesis. Thus we can assume that the range is nontrivial. Let be the least such that
and choose some such that . It is standard to verify that and if

, then , where and . Hence . By the
induction hypothesis and are free: first is isomorphic to a subgroup of and the
second to .Assume now that is arbitrary. For each subset of let be the free group generated by

, thus is a free subgroup and denote .
Now set

Formally is an injective (one-to-one) map

such that generates .
Clearly is nonempty: Let us have an element in . Then and thus the free
group generated by contains and the intersection is a nontrivial subgroup of a
finitely generated free abelian group and thus free by the induction above.
If , define order if and only if and the basis is an
extension of ; formally if and , then and .
If is a -chain ( is some linear order) of elements of , then obviously

,

so we can apply Zorn's lemma and conclude that there exists a maximal . Since , it is enough to
prove now that . Assume on contrary that there is .
Put . If then it means that , but they are not
equal, so is bigger, which contradicts maximality of . Otherwise there is an element

such that and .
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The set of for which there exists such that forms a subgroup of . Let be
a generator of this group and let with . Now if , then for some

, , where .
On the other hand clearly , so is a basis of , so

contradicting the maximality again. 
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[1][1] Griffith, p.18
[2] According to Johnson, this result is due to Richard Dedekind. Johnson, D. L. (1980). Topics in the Theory of Group Presentations. London

Mathematical Society lecture note series. 42. Cambridge University Press. p. 9. ISBN 9780521231084.
[3] This proof is an application of Zorn's lemma and can be found in Appendix 2 §2, page 880 of Lang, Serge (2002), Algebra, Graduate Texts in

Mathematics, 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR1878556.
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Free group

The Cayley graph for the free group on two
generators. Each vertex represents an element of

the free group, and each edge represents
multiplication by a or b.

In mathematics, a group G is called free if there is a subset S of G such
that any element of G can be written in one and only one way as a
product of finitely many elements of S and their inverses (disregarding
trivial variations such as st−1 = su−1ut−1). Apart from the existence of
inverses no other relation exists between the generators of a free group.

A related but different notion is a free abelian group.

History

Free groups first arose in the study of hyperbolic geometry, as
examples of Fuchsian groups (discrete groups acting by isometries on
the hyperbolic plane). In an 1882 paper, Walther von Dyck pointed out
that these groups have the simplest possible presentations.[1] The
algebraic study of free groups was initiated by Jakob Nielsen in 1924,
who gave them their name and established many of their basic
properties.[2][3][4] Max Dehn realized the connection with topology,
and obtained the first proof of the full Nielsen–Schreier theorem.[5] Otto Schreier published an algebraic proof of this
result in 1927,[6] and Kurt Reidemeister included a comprehensive treatment of free groups in his 1932 book on
combinatorial topology.[7] Later on in the 1930s, Wilhelm Magnus discovered the connection between the lower
central series of free groups and free Lie algebras.
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Examples
The group (Z,+) of integers is free; we can take S = {1}. A free group on a two-element set S occurs in the proof of
the Banach–Tarski paradox and is described there.
On the other hand, any nontrivial finite group cannot be free, since the elements of a free generating set of a free
group have infinite order.
In algebraic topology, the fundamental group of a bouquet of k circles (a set of k loops having only one point in
common) is the free group on a set of k elements.

Construction
The free group FS with free generating set S can be constructed as follows. S is a set of symbols and we suppose
for every s in S there is a corresponding "inverse" symbol, s−1, in a set S−1. Let T = S ∪ S−1, and define a word in S
to be any written product of elements of T. That is, a word in S is an element of the monoid generated by T. The
empty word is the word with no symbols at all. For example, if S = {a, b, c}, then T = {a, a−1, b, b−1, c, c−1}, and

is a word in S. If an element of S lies immediately next to its inverse, the word may be simplified by omitting the
s, s−1 pair:

A word that cannot be simplified further is called reduced. The free group FS is defined to be the group of all
reduced words in S. The group operation in FS is concatenation of words (followed by reduction if necessary). The
identity is the empty word. A word is called cyclically reduced, if its first and last letter are not inverse to each
other. Every word is conjugate to a cyclically reduced word, and the cyclically reduced conjugates of a cyclically
reduced word are all cyclic permutations. For instance b−1abcb is not cyclically reduced, but is conjugate to abc,
which is cyclically reduced. The only cyclically reduced conjugates of abc are abc, bca, and cab.

Universal property
The free group FS is the universal group generated by the set S. This can be formalized by the following universal
property: given any function ƒ from S to a group G, there exists a unique homomorphism φ: FS → G making the
following diagram commute:

That is, homomorphisms FS → G are in one-to-one correspondence with functions S → G. For a non-free group, the
presence of relations would restrict the possible images of the generators under a homomorphism.
To see how this relates to the constructive definition, think of the mapping from S to FS as sending each symbol to a
word consisting of that symbol. To construct φ for given ƒ, first note that φ sends the empty word to identity of G
and it has to agree with ƒ on the elements of S. For the remaining words (consisting of more than one symbol) φ can
be uniquely extended since it is a homomorphism, i.e., φ(ab) = φ(a) φ(b).
The above property characterizes free groups up to isomorphism, and is sometimes used as an alternative definition.
It is known as the universal property of free groups, and the generating set S is called a basis for FS. The basis for a
free group is not uniquely determined.
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Being characterized by a universal property is the standard feature of free objects in universal algebra. In the
language of category theory, the construction of the free group (similar to most constructions of free objects) is a
functor from the category of sets to the category of groups. This functor is left adjoint to the forgetful functor from
groups to sets.

Facts and theorems
Some properties of free groups follow readily from the definition:
1. Any group G is the homomorphic image of some free group F(S). Let S be a set of generators of G. The natural

map f: F(S) → G is an epimorphism, which proves the claim. Equivalently, G is isomorphic to a quotient group of
some free group F(S). The kernel of f is a set of relations in the presentation of G. If S can be chosen to be finite
here, then G is called finitely generated.

2. If S has more than one element, then F(S) is not abelian, and in fact the center of F(S) is trivial (that is, consists
only of the identity element).

3. Two free groups F(S) and F(T) are isomorphic if and only if S and T have the same cardinality. This cardinality is
called the rank of the free group F. Thus for every cardinal number k, there is, up to isomorphism, exactly one
free group of rank k.

4. A free group of finite rank n > 1 has an exponential growth rate of order 2n − 1.
A few other related results are:
1. The Nielsen–Schreier theorem: Any subgroup of a free group is free.
2. A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group

of rank at least 2 has subgroups of all countable ranks.
3. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely

generated by the commutators [am, bn] for non-zero m and n.
4. The free group in two elements is SQ universal; the above follows as any SQ universal group has subgroups of all

countable ranks.
5. Any group that acts on a tree, freely and preserving the orientation, is a free group of countable rank (given by 1

plus the Euler characteristic of the quotient graph).
6. The Cayley graph of a free group of finite rank, with respect to a free generating set, is a tree on which the group

acts freely, preserving the orientation.
7. The groupoid approach to these results, given in the work by P.J. Higgins below, is kind of extracted from an

approach using covering spaces. It allows more powerful results, for example on Grushko's theorem, and a normal
form for the fundamental groupoid of a graph of groups. In this approach there is considerable use of free
groupoids on a directed graph.

8. Grushko's theorem has the consequence that if a subset B of a free group F on n elements generates F and has n
elements, then B generates F freely.

Free abelian group
Further information: free abelian group
The free abelian group on a set S is defined via its universal property in the analogous way, with obvious
modifications: Consider a pair (F, φ), where F is an abelian group and φ: S → F is a function. F is said to be the free
abelian group on S with respect to φ if for any abelian group G and any function ψ: S → G, there exists a unique
homomorphism f: F → G such that

f(φ(s)) = ψ(s), for all s in S.
The free abelian group on S can be explicitly identified as the free group F(S) modulo the subgroup generated by its 
commutators, [F(S), F(S)], i.e. its abelianisation. In other words, the free abelian group on S is the set of words that

http://en.wikipedia.org/w/index.php?title=Free_object
http://en.wikipedia.org/w/index.php?title=Universal_algebra
http://en.wikipedia.org/w/index.php?title=Category_theory
http://en.wikipedia.org/w/index.php?title=Functor
http://en.wikipedia.org/w/index.php?title=Category_of_sets
http://en.wikipedia.org/w/index.php?title=Category_of_groups
http://en.wikipedia.org/w/index.php?title=Left_adjoint
http://en.wikipedia.org/w/index.php?title=Forgetful_functor
http://en.wikipedia.org/w/index.php?title=Epimorphism
http://en.wikipedia.org/w/index.php?title=Quotient_group
http://en.wikipedia.org/w/index.php?title=Abelian_group
http://en.wikipedia.org/w/index.php?title=Center_of_a_group
http://en.wikipedia.org/w/index.php?title=Cardinality
http://en.wikipedia.org/w/index.php?title=Up_to
http://en.wikipedia.org/w/index.php?title=Exponential_growth
http://en.wikipedia.org/w/index.php?title=Growth_rate_%28group_theory%29
http://en.wikipedia.org/w/index.php?title=Nielsen%E2%80%93Schreier_theorem
http://en.wikipedia.org/w/index.php?title=Subgroup
http://en.wikipedia.org/w/index.php?title=Countable_set
http://en.wikipedia.org/w/index.php?title=Commutator_subgroup
http://en.wikipedia.org/w/index.php?title=Commutator
http://en.wikipedia.org/w/index.php?title=SQ_universal
http://en.wikipedia.org/w/index.php?title=Group_action
http://en.wikipedia.org/w/index.php?title=Free_action
http://en.wikipedia.org/w/index.php?title=Oriented_graph
http://en.wikipedia.org/w/index.php?title=Euler_characteristic
http://en.wikipedia.org/w/index.php?title=Group_action
http://en.wikipedia.org/w/index.php?title=Graph_theory
http://en.wikipedia.org/w/index.php?title=Cayley_graph
http://en.wikipedia.org/w/index.php?title=Tree_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Groupoid
http://en.wikipedia.org/w/index.php?title=Covering_space
http://en.wikipedia.org/w/index.php?title=Igor_Grushko
http://en.wikipedia.org/w/index.php?title=Abelianisation


Free group 18

are distinguished only up to the order of letters. The rank of a free group can therefore also be defined as the rank of
its abelianisation as a free abelian group.

Tarski's problems
Around 1945, Alfred Tarski asked whether the free groups on two or more generators have the same first order
theory, and whether this theory is decidable. Sela (2006) answered the first question by showing that any two
nonabelian free groups have the same first order theory, and Kharlampovich & Myasnikov (2006) answered both
questions, showing that this theory is decidable.
A similar unsolved (in 2011) question in free probability theory asks whether the von Neumann group algebras of
any two non-abelian finitely generated free groups are isomorphic.

Notes
[1] von Dyck, Walther (1882). "Gruppentheoretische Studien" (http:/ / www. springerlink. com/ content/ t8lx644qm87p3731). Mathematische

Annalen 20 (1): 1–44. doi:10.1007/BF01443322. .
[2] Nielsen, Jakob (1917). "Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden" (http:/ / www. springerlink. com/

content/ xp12702q30q40381). Mathematische Annalen 78 (1): 385–397. doi:10.1007/BF01457113. JFM 46.0175.01. MR1511907. .
[3] Nielsen, Jakob (1921). "On calculation with noncommutative factors and its application to group theory. (Translated from Danish)". The

Mathematical Scientist 6 (1981) (2): 73–85.
[4] Nielsen, Jakob (1924). "Die Isomorphismengruppe der freien Gruppen" (http:/ / www. springerlink. com/ content/ l898u32j37u10671).

Mathematische Annalen 91 (3): 169–209. doi:10.1007/BF01556078. .
[5] See Magnus, Wilhelm; Moufang, Ruth (1954). "Max Dehn zum Gedächtnis" (http:/ / www. springerlink. com/ content/ l657774u3w864mp3).

Mathematische Annalen 127 (1): 215–227. doi:10.1007/BF01361121. ..
[6] Schreier, Otto (1928). "Die Untergruppen der freien Gruppen". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5:

161–183. doi:10.1007/BF02952517.
[7] Reidemeister, Kurt (1972 (1932 original)). Einführung in die kombinatorische Topologie. Darmstadt: Wissenschaftliche Buchgesellschaft.
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Free product
In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and
constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these
subgroups, and is the “most general” group having these properties. Unless one of the groups G and H is trivial, the
free product is always infinite. The construction of a free product is similar in spirit to the construction of a free
group (the most general group that can be made from a given set of generators).
The free product is the coproduct in the category of groups. That is, the free product plays the same role in group
theory that disjoint union plays in set theory, or that the direct sum plays in module theory.
The free product is important in algebraic topology because of van Kampen's theorem, which states that the
fundamental group of the union of two path-connected topological spaces is always an amalgamated free product
of the fundamental groups of the spaces. In particular, the fundamental group of the wedge sum of two spaces (i.e.
the space obtained by joining two spaces together at a single point) is simply the free product of the fundamental
groups of the spaces.
Free products are also important in Bass–Serre theory, the study of groups acting by automorphisms on trees.
Specifically, any group acting with finite vertex stabilizers on a tree may be constructed from finite groups using
amalgamated free products and HNN extensions. Using the action of the modular group on a certain tessellation of
the hyperbolic plane, it follows from this theory that the modular group is isomorphic to the free product of cyclic
groups of orders 4 and 6 amalgamated over a cyclic group of order 2.

Construction
If G and H are groups, a word in G and H is a product of the form

where each si is either an element of G or an element of H. Such a word may be reduced using the following
operations:
• Remove an instance of the identity element (of either G or H).
• Replace a pair of the form g1g2 by its product in G, or a pair h1h2 by its product in H.
Every reduced word is an alternating product of elements of G and elements of H, e.g.

The free product G ∗ H is the group whose elements are the reduced words in G and H, under the operation of
concatenation followed by reduction.
For example, if G is the infinite cyclic group <x>, and H is the infinite cyclic group <y>, then every element of
G ∗ H is an alternating product of powers of x with powers of y. In this case, G ∗ H is isomorphic to the free group
generated by x and y.
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Presentation
Suppose that

is a presentation for G (where RG is a set of generators and SG is a set of relations), and suppose that

is a presentation for H. Then

That is, G ∗ H is generated by the generators for G together with the
generators for H, with relations consisting of the relations from G together with the relations from H (assume
here no notational clashes so that these are in fact disjoint unions).

For example, suppose that G is a cyclic group of order 4,

and H is a cyclic group of order 5

Then G ∗ H is the infinite group

Because there are no relations in a free group, the free product of free groups is always a free group. In particular,

where Fn denotes the free group on n generators.

Generalization: Free product with amalgamation
The more general construction of free product with amalgamation is correspondingly a pushout in the same
category. Suppose G and H are given as before, along with group homomorphisms

where F is some arbitrary group. Start with the free product G ∗ H and adjoin as relations

for every f in F. In other words take the smallest normal subgroup N of G ∗ H containing all elements on the
left-hand side of the above equation, which are tacitly being considered in G ∗ H by means of the inclusions of G
and H in their free product. The free product with amalgamation of G and H, with respect to φ and ψ, is the quotient
group

The amalgamation has forced an identification between φ(F) in G with ψ(F) in H, element by element. This is the
construction needed to compute the fundamental group of two connected spaces joined along a connected subspace,
with F taking the role of the fundamental group of the subspace. See: Seifert–van Kampen theorem.
Free products with amalgamation and a closely related notion of HNN extension are basic building blocks in
Bass–Serre theory of groups acting on trees.
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In other branches
One may similarly define free products of other algebraic structures than groups, including algebras over a field.
Free products of algebras of random variables play the same role in defining "freeness" in the theory of free
probability that Cartesian products play in defining statistical independence in classical probability theory.

References
• Free product [1] on PlanetMath
• Free product with amalgamated subgroup [2] on PlanetMath

Notes
[1] http:/ / planetmath. org/ ?op=getobj& amp;from=objects& amp;id=6574
[2] http:/ / planetmath. org/ ?op=getobj& amp;from=objects& amp;id=3944

Generating set of a group
In abstract algebra, a generating set of a group is a subset that is not contained in any proper subgroup of the group.
Equivalently, a generating set of a group is a subset such that every element of the group can be expressed as the
combination (under the group operation) of finitely many elements of the subset and their inverses.
More generally, if S is a subset of a group G, then <S>, the subgroup generated by S, is the smallest subgroup of G
containing every element of S, meaning the intersection over all subgroups containing the elements of S;
equivalently, <S> is the subgroup of all elements of G that can be expressed as the finite product of elements in S
and their inverses.
If G = <S>, then we say S generates G; and the elements in S are called generators or group generators. If S is the
empty set, then <S> is the trivial group {e}, since we consider the empty product to be the identity.
When there is only a single element x in S, <S> is usually written as <x>. In this case, <x> is the cyclic subgroup of
the powers of x, a cyclic group, and we say this group is generated by x. Equivalent to saying an element x generates
a group is saying that <x> equals the entire group G. For finite groups, it is also equivalent to saying that x has order
|G|.

Finitely generated group
If S is finite, then a group G = <S> is called finitely generated. The structure of finitely generated abelian groups in
particular is easily described. Many theorems that are true for finitely generated groups fail for groups in general. It
has been proven that if a finite group is generated by a subset S, then each group element may be expressed as a
word from the alphabet S of length less than or equal to the order of the group.
Every finite group is finitely generated since <G> = G. The integers under addition are an example of an infinite
group which is finitely generated by both 1 and −1, but the group of rationals under addition cannot be finitely
generated. No uncountable group can be finitely generated.
Different subsets of the same group can be generating subsets; for example, if p and q are integers with gcd(p, q) = 1,
then {p, q} also generates the group of integers under addition (by Bézout's identity).
While it is true that every quotient of a finitely generated group is finitely generated (simply take the images of the 
generators in the quotient), a subgroup of a finitely generated group need not be finitely generated. For example, let 
G be the free group in two generators, x and y (which is clearly finitely generated, since G = <{x,y}>), and let S be 
the subset consisting of all elements of G of the form ynxy−n, for n a natural number. Since <S> is clearly isomorphic
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to the free group in countable generators, it cannot be finitely generated. However, every subgroup of a finitely
generated abelian group is in itself finitely generated. Rather more can be said about this though: the class of all
finitely generated groups is closed under extensions. To see this, take a generating set for the (finitely generated)
normal subgroup and quotient: then the generators for the normal subgroup, together with preimages of the
generators for the quotient, generate the group.

Free group
The most general group generated by a set S is the group freely generated by S. Every group generated by S is
isomorphic to a quotient of this group, a feature which is utilized in the expression of a group's presentation.

Frattini subgroup
An interesting companion topic is that of non-generators. An element x of the group G is a non-generator if every
set S containing x that generates G, still generates G when x is removed from S. In the integers with addition, the
only non-generator is 0. The set of all non-generators forms a subgroup of G, the Frattini subgroup.

Examples
The group of units U(Z9) is the group of all integers relatively prime to 9 under multiplication mod 9
(U9 = {1, 2, 4, 5, 7, 8}). All arithmetic here is done modulo 9. Seven is not a generator of U(Z9), since

while 2 is, since:

On the other hand, for n > 2 the symmetric group of degree n is not cyclic, so it is not generated by any one element.
However, it is generated by the two permutations (1 2) and (1 2 3 ... n). For example, for S3 we have:

e = (1 2)(1 2)
(1 2) = (1 2)
(1 3) = (1 2)(1 2 3)
(2 3) = (1 2 3)(1 2)
(1 2 3) = (1 2 3)
(1 3 2) = (1 2)(1 2 3)(1 2)

Infinite groups can also have finite generating sets. The additive group of integers has 1 as a generating set. The
element 2 is not a generating set, as the odd numbers will be missing. The two-element subset {3, 5} is a generating
set, since (−5) + 3 + 3 = 1 (in fact, any pair of coprime numbers is, as a consequence of Bézout's identity).
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Group cohomology
In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications
to group theory proper, group cohomology is a way to study groups using a sequence of functors H n. The study of
fixed points of groups acting on modules and quotient modules is a motivation, but the cohomology can be defined
using various constructions. There is a dual theory, group homology, and a generalization to non-abelian
coefficients.
These algebraic ideas are closely related to topological ideas. Thus, the group cohomology of a group G can be
thought of as, and is motivated by, the singular cohomology of a suitable space having G as its fundamental group,
namely the corresponding Eilenberg-MacLane space. Thus, the group cohomology of can be thought of as the
singular cohomology of the circle , and similarly for and .
A great deal is known about the cohomology of groups, including interpretations of low dimensional cohomology,
functorality, and how to change groups. The subject of group cohomology began in the 1920s, matured in the late
1940s, and continues as an area of active research today.

Motivation
A general paradigm in group theory is that a group G should be studied via its group representations. A slight
generalization of those representations are the G-modules: a G-module is an abelian group M together with a group
action of G on M, with every element of G acting as an endomorphism of M. In the sequel we will write G
multiplicatively and M additively.
Given such a G-module M, it is natural to consider the subgroup of G-invariant elements:

Now, if N is a submodule of M (i.e. a subgroup of M mapped to itself by the action of G), it isn't in general true that
the invariants in M/N are found as the quotient of the invariants in M by those in N: being invariant 'modulo N ' is
broader. The first group cohomology H1(G,N) precisely measures the difference. The group cohomology functors H*

in general measure the extent to which taking invariants doesn't respect exact sequences. This is expressed by a long
exact sequence.
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Formal constructions
In this article, G is a finite group. The collection of all G-modules is a category (the morphisms are group
homomorphisms f with the property f(gx) = g(f(x)) for all g in G and x in M). This category of G-modules is an
abelian category with enough injectives (since it is isomorphic to the category of all modules over the group ring
ℤ[G]).
Sending each module M to the group of invariants MG yields a functor from this category to the category of
abelian groups. This functor is left exact but not necessarily right exact. We may therefore form its right derived
functors; their values are abelian groups and they are denoted by Hn(G,M), "the n-th cohomology group of G with
coefficients in M". H0(G,M) is identified with MG.

Long exact sequence of cohomology
In practice, one often computes the cohomology groups using the following fact: if

is a short exact sequence of G-modules, then a long exact sequence

is induced. The maps δn are called the "connecting homomorphisms" and can be obtained from the snake lemma.[1]

Cochain complexes
Rather than using the machinery of derived functors, the cohomology groups can also be defined more concretely, as
follows.[2] For n ≥ 0, let Cn(G, M) be the group of all functions from Gn to M. This is an abelian group; its elements
are called the (inhomogeneous) n-cochains. The coboundary homomorphisms

are defined as

The crucial thing to check here is

thus we have a cochain complex and we can compute cohomology. For n ≥ 0, define the group of n-cocycles as:

and the group of n-coboundaries as

and
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The functors Extn and formal definition of group cohomology
Yet another approach is to treat G-modules as modules over the group ring ℤ[G], which allows one to define group
cohomology via Ext functors:

where M is a ℤ[G]-module.
Here ℤ is treated as the trivial G-module: every element of G acts as the identity. These Ext groups can also be
computed via a projective resolution of ℤ, the advantage being that such a resolution only depends on G and not on
M. We recall the definition of Ext more explicitly for this context. Let F be a projective ℤ[G]-resolution (e.g. a free
ℤ[G]-resolution) of the trivial ℤ[G]-module ℤ:

e.g., one may always take the resolution of group rings, , with morphisms

Recall that for ℤ[G]-modules N and M, HomG(N, M) is an abelian group consisting of ℤ[G]-homomorphisms from N
to M. Since HomG(–, M) is a contravariant functor and reverses the arrows, applying HomG(–, M) to F termwise
produces a cochain complex HomG(F, M):

The cohomology groups H*(G,M) of G with coefficients in M are defined as the cohomology of the above cochain
complex:

Hn(G,M)=Hn(HomG(F, M))
for n ≥ 0.

Group homology
Dually to the construction of group cohomology there is the following definition of group homology: given a
G-module M, set DM to be the submodule generated by elements of the form g·m-m, g∈G, m∈M. Assigning to M its
so-called coinvariants, the quotient

,
is a right exact functor. Its left derived functors are by definition the group homology

.
Note that the superscript/subscript convention for cohomology/homology agrees with the convention for group
invariants/coinvariants, while which is denoted "co-" switches:

• superscripts correspond to cohomology and invariants while
• subscripts correspond to homology and coinvariants 
The covariant functor which assigns MG to M is isomorphic to the functor which sends M to , where

is endowed with the trivial G-action. Hence one also gets an expression for group homology in terms of the Tor
functors,

Recall that the tensor product is defined whenever N is a right ℤ[G]-module and M is a left
ℤ[G]-module. If N is a left ℤ[G]-module, we turn it into a right ℤ[G]-module by setting a g = g− 1 a for every g ∈ G
and every a ∈ N. This convention allows to define the tensor product in the case where both M and N
are left ℤ[G]-modules.
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Specifically, the homology groups Hn(G, M) can be computed as follows. Start with a projective resolution F of the
trivial ℤ[G]-module ℤ, as in the previous section. Apply the covariant functor to F termwise to get a chain
complex :

Then Hn(G, M) are the homology groups of this chain complex, for n ≥ 0.
Group homology and cohomology can be treated uniformly for some groups, especially finite groups, in terms of
complete resolutions and the Tate cohomology groups.

Functorial maps in terms of cochains

Connecting homomorphisms
For a short exact sequence 0 → L → M → N → 0, the connecting homomorphisms δn : Hn(G, N) → Hn+1(G, L) can
be described in terms of inhomogeneous cochains as follows.[3] If c is an element of Hn(G, N) represented by an
n-cocycle φ : Gn → N, then δn(c) is represented by dn(ψ), where ψ is an n-cochain Gn → M "lifting" φ (i.e. such that
φ is the composition of ψ with the surjective map M → N).

Non-abelian group cohomology
Using the G-invariants and the 1-cochains, one can construct the zeroth and first group cohomology for a group G
with coefficients in a non-abelian group. Specifically, a G-group is a (not necessarily abelian) group A together with
an action by G.
The zeroth cohomology of G with coefficients in A is defined to be the subgroup

of A.
The first cohomology of G with coefficents in A is defined as 1-cocycles modulo an equivalence relation instead of by
1-coboundaries. The condition for a map φ to be a 1-cocycle is that and if there
is an a in A such that . In general, is not a group when A is non-abelian. It
instead has the structure of a pointed set – exactly the same situation arises in the 0th homotopy group, 
which for a general topological space is not a group but a pointed set. Note that a group is in particular a pointed set,
with the identity element as distinguished point.
Using explicit calculations, one still obtains a truncated long exact sequence in cohomology. Specifically, let

be a short exact sequence of G-groups, then there is an exact sequence of pointed sets

Connections with topological cohomology theories
Group cohomology can be related to topological cohomology theories: to the topological group G there is an
associated classifying space BG. (If G has no topology about which we care, then we assign the discrete topology to
G. In this case, BG is an Eilenberg-MacLane space K(G,1), whose fundamental group is G and whose higher
homotopy groups vanish). The n-th cohomology of BG, with coefficients in M (in the topological sense), is the same
as the group cohomology of G with coefficients in M. This will involve a local coefficient system unless M is a
trivial G-module. The connection holds because the total space EG is contractible, so its chain complex forms a
projective resolution of M. These connections are explained in (Adem-Milgram 2004), Chapter II.
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When M is a ring with trivial G-action, we inherit good properties which are familiar from the topological context: in
particular, there is a cup product under which

is a graded module, and a Künneth formula applies.

If, furthermore, M=k is a field, then is a graded k-algebra. In this case, the Künneth formula yields

For example, let G be the group with two elements, under the discrete topology. The real projective space is a
classifying space for G. Let k=F2, the field of two elements. Then

a polynomial k-algebra on a single generator, since this is the cellular cohomology ring of .
Hence, as a second example, if G is an elementary abelian 2-group of rank r, and k=F2, then the Künneth formula
gives

,
a polynomial k-algebra generated by r classes in .

Properties
In the following, let M be a G-module.

Functoriality
Group cohomology depends contravariantly on the group G, in the following sense: if f : H → G is a group
homomorphism, then we have a naturally induced morphism Hn(G,M) → Hn(H,M) (where in the latter, M is treated
as an H-module via f).
Given a morphism of G-modules M→N, one gets a morphism of cohomology groups in the Hn(G,M) → Hn(G,N).

H1

The first cohomology group is the quotient of the so-called crossed homomorphisms, i.e. maps (of sets)
satisfying for all in G, modulo the so-called principal crossed

homomorphisms, i.e. maps given by for some fixed . This follows
from the definition of cochains above.
If the action of G on M is trivial, then the above boils down to , the group of group
homomorphisms .

H2

If M is a trivial G-module (i.e. the action of G on M is trivial), the second cohomology group H2(G,M) is in
one-to-one correspondence with the set of central extensions of G by M (up to a natural equivalence relation). More
generally, if the action of G on M is nontrivial, H2(G,M) classifies the isomorphism classes of all extensions of G by
M in which the induced action of G on M by inner automorphisms agrees with the given action.

Change of group
The Hochschild-Serre spectral sequence relates the cohomology of a normal subgroup N of G and the quotient G/N
to the cohomology of the group G (for (pro-)finite groups G).
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Cohomology of finite groups is torsion
The cohomology groups of finite groups are all torsion. Indeed, by Maschke's theorem the category of
representations of a finite group is semi-simple over any field of characteristic zero (or more generally, any field
whose characteristic does not divide the order of the group), hence, viewing group cohomology as a derived functor
in this abelian category, one obtains that it is zero. The other argument is that over a field of characteristic zero, the
group algebra of a finite group is a direct sum of matrix algebras (possibly over division algebras which are
extensions of the original field), while a matrix algebra is Morita equivalent to its base field and hence has trivial
cohomology.

History and relation to other fields
The low dimensional cohomology of a group was classically studied in other guises, long before the notion of group
cohomology was formulated in 1943-45. The first theorem of the subject can be identified as Hilbert's Theorem 90 in
1897; this was recast into Noether's equations in Galois theory (an appearance of cocycles for H1). The idea of factor
sets for the extension problem for groups (connected with H2) arose in the work of Hölder (1893), in Issai Schur's
1904 study of projective representations, in Schreier's 1926 treatment, and in Richard Brauer's 1928 study of simple
algebras and the Brauer group. A fuller discussion of this history may be found in (Weibel 1999, pp. 806–811).

In 1941, while studying (which plays a special role in groups), Hopf discovered what is now called
Hopf's integral homology formula (Hopf 1942), which is identical to Schur's formula for the Schur multiplier of a
finite, finitely presented group:

, where and F is a free group.
Hopf's result led to the independent discovery of group cohomology by several groups in 1943-45: Eilenberg and
Mac Lane in the USA (Rotman 1995, p. 358); Hopf and Eckmann in Switzerland; and Freudenthal in the
Netherlands (Weibel 1999, p. 807). The situation was chaotic because communication between these countries was
difficult during World War II.
From a topological point of view, the homology and cohomology of G was first defined as the homology and
cohomology of a model for the topological classifying space BG as discussed in #Connections with topological
cohomology theories above. In practice, this meant using topology to produce the chain complexes used in formal
algebraic definitions. From a module-theoretic point of view this was integrated into the Cartan-Eilenberg theory of
Homological algebra in the early 1950s.
The application in algebraic number theory to class field theory provided theorems valid for general Galois
extensions (not just abelian extensions). The cohomological part of class field theory was axiomatized as the theory
of class formations. In turn, this led to the notion of Galois cohomology and étale cohomology (which builds on it)
(Weibel 1999, p. 822). Some refinements in the theory post-1960 have been made, such as continuous cocycles and
Tate's redefinition, but the basic outlines remain the same. This is a large field, and now basic in the theories of
algebraic groups.
The analogous theory for Lie algebras, called Lie algebra cohomology, was first developed in the late 1940s, by
Chevalley-Eilenberg, and Koszul (Weibel 1999, p. 810). It is formally similar, using the corresponding definition of
invariant for the action of a Lie algebra. It is much applied in representation theory, and is closely connected with
the BRST quantization of theoretical physics.
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Notes
[1][1] Section VII.2 of Serre 1979
[2][2] Page 62 of Milne 2008 or section VII.3 of Serre 1979
[3][3] Remark II.1.21 of Milne 2008

References
• Adem, Alejandro; R. James Milgram (2004), Cohomology of Finite Groups, Grundlehren der Mathematischen

Wissenschaften, 309, Springer-Verlag, ISBN 3-540-20283-8, MR2035696
• Brown, Kenneth S. (1972), Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer Verlag,

ISBN 0-387-90688-6, MR0672956
• Hopf, Heinz (1942), "Fundamentalgruppe und zweite Bettische Gruppe" (http:/ / www. digizeitschriften. de/

index. php?id=166& ID=132355& L=2), Comment. Math. Helv. 14 (1): 257–309, doi:10.1007/BF02565622,
MR6510

• Chapter II of Milne, James (5/2/2008), Class Field Theory (http:/ / www. jmilne. org/ math), v4.00, retrieved
8/9/2008

• Rotman, Joseph (1995), An Introduction to the Theory of Groups, Springer-Verlag, ISBN 978-0-387-94285-8,
MR1307623

• Chapter VII of Serre, Jean-Pierre (1979), Local fields, Graduate Texts in Mathematics, 67, Berlin, New York:
Springer-Verlag, ISBN 978-0-387-90424-5, MR554237

• Serre, Jean-Pierre (1994), Cohomologie galoisienne, Lecture Notes in Mathematics, 5 (Fifth ed.), Berlin, New
York: Springer-Verlag, ISBN 978-3-540-58002-7, MR1324577

• Shatz, Stephen S. (1972), Profinite groups, arithmetic, and geometry, Princeton, NJ: Princeton University Press,
ISBN 978-0-691-08017-8, MR0347778

• Chapter 6 of Weibel, Charles A. (1994), An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics, 38, Cambridge University Press, ISBN 978-0-521-55987-4, OCLC 36131259, MR1269324

• Weibel, Charles A. (1999), "History of homological algebra", History of Topology, Cambridge University Press,
pp. 797–836, ISBN 0-444-82375-1, MR1721123

http://en.wikipedia.org/w/index.php?title=Cohomology_of_Finite_Groups
http://en.wikipedia.org/w/index.php?title=Springer-Verlag
http://en.wikipedia.org/w/index.php?title=Springer_Verlag
http://www.digizeitschriften.de/index.php?id=166&ID=132355&L=2
http://www.digizeitschriften.de/index.php?id=166&ID=132355&L=2
http://www.jmilne.org/math
http://en.wikipedia.org/w/index.php?title=Jean-Pierre_Serre
http://en.wikipedia.org/w/index.php?title=Princeton_University_Press
http://en.wikipedia.org/w/index.php?title=Cambridge_University_Press
http://en.wikipedia.org/w/index.php?title=Cambridge_University_Press


Presentation of a group 30

Presentation of a group
In mathematics, one method of defining a group is by a presentation. One specifies a set S of generators so that
every element of the group can be written as a product of powers of some of these generators, and a set R of
relations among those generators. We then say G has presentation

Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R.
Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by
the normal subgroup generated by the relations R.
As a simple example, the cyclic group of order n has the presentation

where 1 is the group identity. This may be written equivalently as

since terms that don't include an equals sign are taken to be equal to the group identity. Such terms are called
relators, distinguishing them from the relations that include an equals sign.
Every group has a presentation, and in fact many different presentations; a presentation is often the most compact
way of describing the structure of the group.
A closely related but different concept is that of an absolute presentation of a group.

Background
A free group on a set S is a group where each element can be uniquely described as a finite length product of the
form:

where the si are elements of S, adjacent si are distinct, and ai are non-zero integers (but n may be zero). In less formal
terms, the group consists of words in the generators and their inverses, subject only to canceling a generator with its
inverse.
If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in
general, these products will not uniquely describe an element of G.
For example, the dihedral group D of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order
2; and certainly any element of D is a product of r 's and f 's.
However, we have, for example, r f r = f, r 7 = r −1, etc.; so such products are not unique in D. Each such product
equivalence can be expressed as an equality to the identity; such as

r f r f = 1
r 8 = 1
f 2 = 1.

Informally, we can consider these products on the left hand side as being elements of the free group F = <r,f>, and
can consider the subgroup R of F which is generated by these strings; each of which would also be equivalent to 1
when considered as products in D.
If we then let N be the subgroup of F generated by all conjugates x −1 R x of R, then it is straightforward to show that
every element of N is a finite product x1

 −1 r1 x1 . . . xm
 −1 rm xm of members of such conjugates. It follows that N is a

normal subgroup of F; and that each element of N, when considered as a product in D, will also evaluate to 1. Thus
D is isomorphic to the quotient group F /N. We then say that D has presentation
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Definition
Let S be a set and let FS be the free group on S. Let R be a set of words on S, so R naturally gives a subset of FS. To
form a group with presentation <S|R>, the idea is to take FS quotient by the smallest normal subgroup such that each
element of R gets identified with the identity. Note that R might not be a subgroup, let alone a normal subgroup of
FS, so we cannot take a quotient by R. The solution is to take the normal closure N of R in FS. The group <S|R> is
then defined as the quotient group

The elements of S are called the generators of <S|R> and the elements of R are called the relators. A group G is
said to have the presentation <S|R> if G is isomorphic to <S|R>.
It is a common practice to write relators in the form = where and are words on . What this means is
that . This has the intuitive meaning that the images of x and y are supposed to be equal in the quotient
group. Thus e.g. in the list of relators is equivalent with . Another common shorthand is to write 
for a commutator .
A presentation is said to be finitely generated if is finite and finitely related if is finite. If both are finite it is
said to be a finite presentation. A group is finitely generated (respectively finitely related, finitely presented) if it
has a presentation that is finitely generated (respectively finitely related, a finite presentation).
If is indexed by a set consisting of all the natural numbers or a finite subset of them, then it is easy to set
up a simple one to one coding (or Gödel numbering) from the free group on to the natural
numbers, such that we can find algorithms that, given , calculate , and vice versa. We can then call a
subset of  recursive (respectively recursively enumerable) if is recursive (respectively recursively
enumerable). If is indexed as above and recursively enumerable, then the presentation is a recursive
presentation and the corresponding group is recursively presented. This usage may seem odd, but it is possible to
prove that if a group has a presentation with recursively enumerable then it has another one with recursive.
For a finite group , the multiplication table provides a presentation. We take to be the elements of and

to be all words of the form , where is an entry in the multiplication table. A presentation
can then be thought of as a generalization of a multiplication table.
Every finitely presented group is recursively presented, but there are recursively presented groups that cannot be
finitely presented. However a theorem of Graham Higman states that a finitely generated group has a recursive
presentation if and only if it can be embedded in a finitely presented group. From this we can deduce that there are
(up to isomorphism) only countably many finitely generated recursively presented groups. Bernhard Neumann has
shown that there are uncountably many non-isomorphic two generator groups. Therefore there are finitely generated
groups that cannot be recursively presented.
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Examples

History
One of the earliest presentations of a group by generators and relations was given by the Irish mathematician
William Rowan Hamilton in 1856, in his Icosian Calculus – a presentation of the icosahedral group.[1]

The first systematic study was given by Walther von Dyck, student of Felix Klein, in the early 1880s, laying the
foundations for combinatorial group theory.[2]

Common examples
The following table lists some examples of presentations for commonly studied groups. Note that in each case there
are many other presentations that are possible. The presentation listed is not necessarily the most efficient one
possible.

Group Presentation Comments

the free group on S A free group is "free" in the sense that it is subject to no
relations.

Cn, the cyclic group of
order n

D2n, the dihedral
group of order 2n

Here r represents a rotation and f a reflection

D∞, the infinite
dihedral group

Dicn, the dicyclic
group

The quaternion group is a special case when n = 2

Z × Z

Zm × Zn

the free abelian group
on S

where R is the set of all commutators of elements of S

the symmetric group,
Sn

generators: 
relations:

• ,
• ,
•

The last set of relations can be transformed into

•
using .

Here is the permutation that swaps the ith element
with the i+1 one. The product is a 3-cycle on
the set .

the braid group, Bn generators: 
relations:

• ,
•

Note the similarity with the symmetric group; the only
difference is the removal of the relation .

the tetrahedral group,
T ≅ A4

the octahedral group,
O ≅ S4

the icosahedral group,
I ≅ A5
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the quaternion group,
Q8

For an alternative presentation see Dicn above.

topologically you can visualize a and b as Dehn twists
on the torus

non trivial - group extension of 

PSL2(Z) is the free product of the cyclic groups Z2 and
Z3

Heisenberg group

Baumslag-Solitar
group, B(m,n)

Tits group [a, b] is the commutator

An example of a finitely generated group that is not finitely presented is the wreath product of the group of
integers with itself.

Some theorems
Every group G has a presentation. To see this, consider the free group FG on G. By the universal property of free
groups, there exists a unique group homomorphism φ : FG → G whose restriction to G is the identity map. Let K be
the kernel of this homomorphism. Then K is normal in FG, therefore is equal to its normal closure, so <G|K> = FG/K.
Since the identity map is surjective, φ is also surjective, so by the First Isomorphism Theorem, <G|K> = G.
Note that this presentation may be highly inefficient if both G and K are much larger than necessary.
Every finite group has a finite presentation.
The negative solution to the word problem for groups states that there is a finite presentation <S|R> for which there
is no algorithm which, given two words u, v, decides whether u and v describe the same element in the group.

Constructions
Suppose G has presentation <S|R> and H has presentation <T|Q> with S and T being disjoint. Then
• the free product G ∗ H has presentation <S,T|R,Q> and
• the direct product G × H has presentation <S,T|R,Q, [S,T]>, where [S,T] means that every element from S

commutes with every element from T (cf. commutator).

Geometric group theory
Further information: Cayley graph
Further information: Word metric
A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph,
which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order,
and corresponding Hasse diagrams. An important example is in the Coxeter groups.
Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of
generators.
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Notes
[1] Sir William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (http:/ / www. maths. tcd. ie/ pub/

HistMath/ People/ Hamilton/ Icosian/ NewSys. pdf). Philosophical Magazine 12: 446. .
[2] Stillwell, John (2002). Mathematics and its history. Springer. p. 374 (http:/ / books. google. com/ books?id=WNjRrqTm62QC& pg=PA374).

ISBN 978-0-38795336-6
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Schreier's method, Nielsen's method, free presentations, subgroups and HNN extensions, Golod-Shafarevich
theorem, etc.
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Product of group subsets
In mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G
then their product is the subset of G defined by

Note that S and T need not be subgroups. The associativity of this product follows from that of the group product.
The product of group subsets therefore defines a natural monoid structure on the power set of G.
If S and T are subgroups of G their product need not be a subgroup. It will be a subgroup if and only if ST = TS and
the two subgroups are said to permute. In this case ST is the group generated by S and T, i.e. ST = TS = <S ∪ T>. If
either S or T is normal then this condition is satisfied and ST is a subgroup. Suppose S is normal. Then according to
the second isomorphism theorem S ∩ T is normal in T and ST/S ≅ T/(S ∩ T).
If G is a finite group and S and T and subgroups of G then ST is a subset of G of size |ST| given by the product
formula:

Note that this applies even if neither S nor T is normal.
In particular, if S and T (subgroups now) intersect only in the identity, then every element of ST has a unique
expression as a product st with s in S and t in T. If S and T also permute, then ST is a group, and is called a
Zappa-Szep product. Even further, if S or T is normal in ST, then ST is called a semidirect product. Finally, if both S
and T are normal in ST, then ST is called a direct product.
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• Rotman, Joseph (1995). An Introduction to the Theory of Groups (4th ed.). Springer-Verlag.

ISBN 0-387-94285-8.
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Schur multiplier
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group

of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.

Examples and properties
The Schur multiplier M(G) of a finite group G is a finite abelian group whose exponent divides the order of G. If a
Sylow p-subgroup of G is cyclic for some p, then order of M(G) is not divisible by p. In particular, if all Sylow
p-subgroups of G are cyclic, then M(G) is trivial.
For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup
is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order
64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion
group is trivial, but the Schur multiplier of dihedral 2-groups has order 2.
The Schur multipliers of the finite simple groups are given at the list of finite simple groups. The covering groups of
the alternating and symmetric groups are of considerable recent interest.

Relation to projective representations

A projective representation of G can be pulled back to a linear
representation of a central extension C of G.

Schur's original motivation for studying the multiplier was to
classify projective representations of a group, and the
modern formulation of his definition is the second
cohomology group H2(G,C×). A projective representation is
much like a group representation except that instead of a
homomorphism into the general linear group GL(n,C), one
takes a homomorphism into the projective general linear
group PGL(n,C). In other words, a projective representation
is a representation modulo the center.

Schur (1904, 1907) showed that every finite group G has
associated to it at least one finite group C, called a Schur
cover, with the property that every projective representation
of G can be lifted to an ordinary representation of C. The
Schur cover is also known as a covering group or
Darstellungsgruppe. The Schur covers of the finite simple
groups are known, and each is an example of a quasisimple group. The Schur cover of a perfect group is uniquely
determined up to isomorphism, but the Schur cover of a general finite group is only determined up to isoclinism.

Relation to central extensions

The study of such covering groups led naturally to the study of central and stem extensions.
A central extension of a group G is an extension

1 → K → C → G → 1
where K ≤ Z(C) is a subgroup of the center of C.
A stem extension of a group G is an extension

1 → K → C → G → 1
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where K ≤ Z(C) ∩ C′ is a subgroup of the intersection of the center of C and the derived subgroup of C; this is more
restrictive than central.
If the group G is finite and one considers only stem extensions, then there is a largest size for such a group C, and for
every C of that size the subgroup K is isomorphic to the Schur multiplier of G. If the finite group G is moreover
perfect, then C is unique up to isomorphism and is itself perfect. Such C are often called universal perfect central
extensions of G, or covering group (as it is a discrete analog of the universal covering space in topology). If the
finite group G is not perfect, then its Schur covering groups (all such C of maximal order) are only isoclinic.
It is also called more briefly a universal central extension, but note that there is no largest central extension, as the
direct product of G and an abelian group form a central extension of G of arbitrary size.
Stem extensions have the nice property that any lift of a generating set of G is a generating set of C. If the group G is
presented in terms of a free group F on a set of generators, and a normal subgroup R generated by a set of relations
on the generators, so that G ≅ F/R, then the covering group itself can be presented in terms of F but with a smaller
normal subgroup S, C ≅ F/S. Since the relations of G specify elements of K when considered as part of C, one must
have S ≤ [F,R].
In fact if G is perfect, this is all that is needed: C ≅ [F,F]/[F,R] and M(G) ≅ K ≅ R/[F,R]. Because of this simplicity,
expositions such as (Aschbacher 2000, §33) handle the perfect case first. The general case for the Schur multiplier is
similar but ensures the extension is a stem extension by restricting to the derived subgroup of F: M(G) ≅ (R ∩ [F,
F])/[F, R]. These are all slightly later results of Schur, who also gave a number of useful criteria for calculating them
more explicitly.

Relation to efficient presentations
In combinatorial group theory, a group often originates from a presentation. One important theme in this area of
mathematics is to study presentations with as few relations as possible, such as one relator groups like
Baumslag-Solitar groups. These groups are infinite groups with two generators and one relation, and an old result of
Schreier shows that in any presentation with more generators than relations, the resulting group is infinite. The
borderline case is thus quite interesting: finite groups with the same number of generators as relations are said to
have an efficient presentation. For a group to have an efficient presentation, the group must have a trivial Schur
multiplier because the minimum number of generators of the Schur multiplier is always less than or equal to the
difference between the number of relations and the number of generators.
A fairly recent topic of research is to find efficient presentations for all finite simple groups with trivial Schur
multipliers. Such presentations are in some sense nice because they are usually short, but they are difficult to find
and to work with because they are ill-suited to standard methods such as coset enumeration.

Relation to topology
In topology, groups can often be described as finitely presented groups and a fundamental question is to calculate
their integral homology . In particular, the second homology plays a special role and this led Hopf to
find an effective method for calculating it. The method in (Hopf 1942) is also known as Hopf's integral homology
formula and is identical to Schur's formula for the Schur multiplier of a finite, finitely presented group:

where and F is a free group. The same formula also holds when G is a perfect group.[1]

The recognition that these formulas were the same led Eilenberg and Mac Lane to the creation of cohomology of
groups. In general, where the star denotes the algebraic dual group, and when G is

finite, there is an unnatural isomorphism .
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A perfect group is one whose first integral homology vanishes. A superperfect group is one whose first two
homology groups vanish. The Schur covers of finite perfect groups are superperfect. An acyclic group is a group all
of whose reduced integral homology vanishes.

Applications
The second algebraic K-group K2(R) of a commutative ring R can be identified with the second homology group

of the group E(R) of (infinite) elementary matrices with entries in R.[2]
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Semidirect product
In mathematics, specifically in the area of abstract algebra known as group theory, a semidirect product is a
particular way in which a group can be put together from two subgroups, one of which is a normal subgroup. A
semidirect product is a generalization of a direct product. It is a cartesian product as a set, but with a particular
multiplication operation.

Some equivalent definitions
Let G be a group with identity element e, N a normal subgroup of G (i.e., N ◁ G) and H a subgroup of G. The
following statements are equivalent:
• G = NH and N ∩ H = {e}.
• G = HN and N ∩ H = {e}.
• Every element of G can be written as a unique product of an element of N and an element of H.
• Every element of G can be written as a unique product of an element of H and an element of N.
• The natural embedding H → G, composed with the natural projection G → G / N, yields an isomorphism between

H and the quotient group G / N.
• There exists a homomorphism G → H which is the identity on H and whose kernel is N.
If one (and therefore all) of these statements hold, we say that G is a semidirect product of N and H, written

or that G splits over N; one also says that G is a semidirect product of H acting on N, or even a
semidirect product of H and N. In order to avoid ambiguities, it is advisable to specify which of the two subgroups is
normal.

Elementary facts and caveats
If G is the semidirect product of the normal subgroup N and the subgroup H, and both N and H are finite, then the
order of G equals the product of the orders of N and H.
Note that, as opposed to the case with the direct product, a semidirect product of two groups is not, in general,
unique; if G and G′ are two groups which both contain isomorphic copies of N as a normal subgroup and H as a
subgroup, and both are a semidirect product of N and H, then it does not follow that G and G′ are isomorphic. This
remark leads to an extension problem, of describing the possibilities.

Semidirect products and group homomorphisms
Let G be a semidirect product of the normal subgroup N and the subgroup H. Let Aut(N) denote the group of all
automorphisms of N. The map φ : H → Aut(N) defined by φ(h) = φh, where φh(n) = hnh-1 for all h in H and n in N,
is a group homomorphism. Together N, H and φ determine G up to isomorphism, as we show now.
Given any two groups N and H (not necessarily subgroups of a given group) and a group homomorphism : H →
Aut(N), there is a new group (or simply ), called the semidirect product of N and H with

respect to , defined as follows.
• As a set, is the cartesian product N × H.
• Multiplication of elements in is determined by the homomorphism . The operation is

defined by

for n1, n2 in N and h1, h2 in H.
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This defines a group in which the identity element is (eN, eH) and the inverse of the element (n, h) is ( h–1(n–1),
h–1). Pairs (n,eH) form a normal subgroup isomorphic to N, while pairs (eN, h) form a subgroup isomorphic to H. The
full group is a semidirect product of those two subgroups in the sense given above.
Conversely, suppose that we are given a group G with a normal subgroup N and a subgroup H, such that every
element g of G may be written uniquely in the form g=nh where n lies in N and h lies in H. Let : H → Aut(N) be
the homomorphism given by (h) = h, where

for all n in N and h in H. Then G is isomorphic to the semidirect product ; the isomorphism sends the
product nh to the tuple (n,h). In G, we have the multiplication rule

A version of the splitting lemma for groups states that a group G is isomorphic to a semidirect product of the two
groups N and H if and only if there exists a short exact sequence

and a group homomorphism γ : H → G such that , the identity map on H. In this case, : H →
Aut(N) is given by (h) = h, where

If is the trivial homomorphism, sending every element of H to the identity automorphism of N, then is
the direct product .

Examples
The dihedral group D2n with 2n elements is isomorphic to a semidirect product of the cyclic groups Cn and C2. Here,
the non-identity element of C2 acts on Cn by inverting elements; this is an automorphism since Cn is abelian. The
presentation for this group is:

More generally, a semidirect product of any two cyclic groups with generator and with generator is
given by a single relation with and  coprime, i.e. the presentation:

If and are coprime, is a generator of and , hence the presentation:

gives a group isomorphic to the previous one.
The fundamental group of the Klein bottle can be presented in the form

and is therefore a semidirect product of the group of integers, , with itself.
The Euclidean group of all rigid motions (isometries) of the plane (maps f : R2 → R2 such that the Euclidean
distance between x and y equals the distance between f(x) and f(y) for all x and y in R2) is isomorphic to a semidirect
product of the abelian group R2 (which describes translations) and the group O(2) of orthogonal 2×2 matrices (which
describes rotations and reflections which keep the origin fixed). n is a translation, h a rotation or reflection. Applying
a translation and then a rotation or reflection corresponds to applying the rotation or reflection first and then a
translation by the rotated or reflected translation vector (i.e. applying the conjugate of the original translation). Every
orthogonal matrix acts as an automorphism on R2 by matrix multiplication.
The orthogonal group O(n) of all orthogonal real n×n matrices (intuitively the set of all rotations and reflections of 
n-dimensional space which keep the origin fixed) is isomorphic to a semidirect product of the group SO(n) 
(consisting of all orthogonal matrices with determinant 1, intuitively the rotations of n-dimensional space) and C2. If
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we represent C2 as the multiplicative group of matrices {I, R}, where R is a reflection of n dimensional space which
keeps the origin fixed (i.e. an orthogonal matrix with determinant –1 representing an involution), then φ : C2 →
Aut(SO(n)) is given by φ(H)(N) = H N H–1 for all H in C2 and N in SO(n). In the non-trivial case ( H is not the
identity) this means that φ(H) is conjugation of operations by the reflection (a rotation axis and the direction of
rotation are replaced by their "mirror image").

Relation to direct products
Suppose G is a semidirect product of the normal subgroup N and the subgroup H. If H is also normal in G, or
equivalently, if there exists a homomorphism G → N which is the identity on N, then G is the direct product of N and
H.
The direct product of two groups N and H can be thought of as the outer semidirect product of N and H with respect
to φ(h) = idN for all h in H.
Note that in a direct product, the order of the factors is not important, since N × H is isomorphic to H × N. This is not
the case for semidirect products, as the two factors play different roles.

Generalizations
The construction of semidirect products can be pushed much further. The Zappa-Szep product of groups is a
generalization which, in its internal version, does not assume that either subgroup is normal. There is also a
construction in ring theory, the crossed product of rings. This is seen naturally as soon as one constructs a group ring
for a semidirect product of groups. There is also the semidirect sum of Lie algebras. Given a group action on a
topological space, there is a corresponding crossed product which will in general be non-commutative even if the
group is abelian. This kind of ring (see crossed product for a related construction) can play the role of the space of
orbits of the group action, in cases where that space cannot be approached by conventional topological techniques -
for example in the work of Alain Connes (cf. noncommutative geometry).
There are also far-reaching generalisations in category theory. They show how to construct fibred categories from
indexed categories. This is an abstract form of the outer semidirect product construction.

Groupoids
Another generalisation is for groupoids. This occurs in topology because if a group acts on a space it also
acts on the fundamental groupoid of the space. The semidirect product is then relevant to
finding the fundamental groupoid of the orbit space . For full details see Chapter 11 of the book referenced
below, and also some details in semidirect product[1] in ncatlab.

Abelian categories
Non-trivial semidirect products do not arise in abelian categories, such as the category of modules. In this case, the
splitting lemma shows that every semidirect product is a direct product. Thus the existence of semidirect products
reflects a failure of the category to be abelian.

Notation
Usually the semidirect product of a group H acting on a group N (in most cases by conjugation as subgroups of a
common group) is denoted by or . However, some sources may use this symbol with the
opposite meaning. In case the action should be made explicit, one also writes .
One way of thinking about the symbol is as a combination of the symbol for normal subgroup ( ) and
the symbol for the product ( ).
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Unicode lists four variants:[2]

value MathML Unicode description

⋉ U+22C9 ltimes LEFT NORMAL FACTOR SEMIDIRECT PRODUCT

⋊ U+22CA rtimes RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT

⋋ U+22CB lthree LEFT SEMIDIRECT PRODUCT

⋌ U+22CC rthree RIGHT SEMIDIRECT PRODUCT

Here the Unicode description of the rtimes symbol says "right normal factor", in contrast to its usual meaning in
mathematical practice.
In LaTeX, the commands \rtimes and \ltimes produce the corresponding characters.

Notes
[1] Ncatlab.org (http:/ / ncatlab. org/ nlab/ show/ semidirect+ product)
[2] See unicode.org (http:/ / www. unicode. org/ charts/ symbols. htm)

References
•• R. Brown, Topology and groupoids, Booksurge 2006. ISBN 1-4196-2722-8

Sylow theorems
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems
named after the Norwegian mathematician Ludwig Sylow (1872) that give detailed information about the number of
subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite
group theory and have very important applications in the classification of finite simple groups.
For a prime number p, a Sylow p-subgroup (sometimes p-Sylow subgroup) of a group G is a maximal p-subgroup
of G, i.e., a subgroup of G which is a p-group (so that the order of any group element is a power of p), and which is
not a proper subgroup of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p is
sometimes written Sylp(G).
The Sylow theorems assert a partial converse to Lagrange's theorem that for any finite group G the order (number of
elements) of every subgroup of G divides the order of G. For any prime factor p of the order of a finite group G,
there exists a Sylow p-subgroup of G. The order of a Sylow p-subgroup of a finite group G is pn, where n is the
multiplicity of p in the order of G, and any subgroup of order pn is a Sylow p-subgroup of G. The Sylow p-subgroups
of a group (for fixed prime p) are conjugate to each other. The number of Sylow p-subgroups of a group for fixed
prime p is congruent to 1 mod p.
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Sylow theorems
Collections of subgroups which are each maximal in one sense or another are common in group theory. The
surprising result here is that in the case of Sylp(G), all members are actually isomorphic to each other and have the
largest possible order: if |G| = pnm with where p does not divide m, then any Sylow p-subgroup P has order
|P| = pn. That is, P is a p-group and gcd(|G:P|, p) = 1. These properties can be exploited to further analyze the
structure of G.
The following theorems were first proposed and proven by Ludwig Sylow in 1872, and published in Mathematische
Annalen.
Theorem 1: For any prime factor p with multiplicity n of the order of a finite group G, there exists a Sylow
p-subgroup of G, of order pn.
The following weaker version of theorem 1 was first proved by Cauchy.
Corollary: Given a finite group G and a prime number p dividing the order of G, then there exists an element of
order p in G .
Theorem 2: Given a finite group G and a prime number p, all Sylow p-subgroups of G are conjugate to each other,
i.e. if H and K are Sylow p-subgroups of G, then there exists an element g in G with g−1Hg = K.
Theorem 3: Let p be a prime factor with multiplicity n of the order of a finite group G, so that the order of G can be
written as pn · m, where n > 0 and p does not divide m. Let np be the number of Sylow p-subgroups of G. Then the
following hold:
• np divides m, which is the index of the Sylow p-subgroup in G.
• np ≡ 1 mod p.
• np = |G : NG(P)|, where P is any Sylow p-subgroup of G and NG denotes the normalizer.

Consequences
The Sylow theorems imply that for a prime number p every Sylow p-subgroup is of the same order, pn. Conversely,
if a subgroup has order pn, then it is a Sylow p-subgroup, and so is isomorphic to every other Sylow p-subgroup. Due
to the maximality condition, if H is any p-subgroup of G, then H is a subgroup of a p-subgroup of order pn.
A very important consequence of Theorem 2 is that the condition np = 1 is equivalent to saying that the Sylow
p-subgroup of G is a normal subgroup (there are groups which have normal subgroups but no normal Sylow
subgroups, such as S4).

Sylow theorems for infinite groups
There is an analogue of the Sylow theorems for infinite groups. We define a Sylow p-subgroup in an infinite group
to be a p-subgroup (that is, every element in it has p-power order) which is maximal for inclusion among all
p-subgroups in the group. Such subgroups exist by Zorn's lemma.
Theorem: If K is a Sylow p-subgroup of G, and np = |Cl(K)| is finite, then every Sylow p-subgroup is conjugate to K,
and np ≡ 1 mod p, where Cl(K) denotes the conjugacy class of K.
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Examples

In all reflections are conjugate, as
reflections correspond to Sylow 2-subgroups.

In reflections no longer correspond to
Sylow 2-subgroups, and fall into two conjugacy

classes.

A simple illustration of Sylow subgroups and the Sylow theorems are
the dihedral group of the n-gon, For n odd, is the
highest power of 2 dividing the order, and thus subgroups of order 2
are Sylow subgroups. These are the groups generated by a reflection,
of which there are n, and they are all conjugate under rotations;
geometrically the axes of symmetry pass through a vertex and a side.
By contrast, if n is even, then 4 divides the order of the group, and
these are no longer Sylow subgroups, and in fact they fall into two
conjugacy classes, geometrically according to whether they pass
through two vertices or two faces. These are related by an outer
automorphism, which can be represented by rotation through 
half the minimal rotation in the dihedral group.

Example applications

Cyclic group orders

Some numbers n are such that every group of order n is cyclic. One can
show that n = 15 is such a number using the Sylow theorems: Let G be
a group of order 15 = 3 · 5 and n3 be the number of Sylow 3-subgroups.
Then and . The only value satisfying
these constraints is 1; therefore, there is only one subgroup of order 3,
and it must be normal (since it has no distinct conjugates). Similarly, n5
must divide 3, and n5 must equal 1 (mod 5); thus it must also have a
single normal subgroup of order 5. Since 3 and 5 are coprime, the
intersection of these two subgroups is trivial, and so G must be the
internal direct product of groups of order 3 and 5, that is the cyclic
group of order 15. Thus, there is only one group of order 15 (up to
isomorphism).

Small groups are not simple

A more complex example involves the order of the smallest simple group which is not cyclic. Burnside's paqb

theorem states that if the order of a group is the product of two prime powers, then it is solvable, and so the group is
not simple, or is of prime order and is cyclic. This rules out every group up to order 30 (= 2 · 3 · 5).

If G is simple, and |G| = 30, then n3 must divide 10 ( = 2 · 5), and n3 must equal 1 (mod 3). Therefore n3 = 10, since
neither 4 nor 7 divides 10, and if n3 = 1 then, as above, G would have a normal subgroup of order 3, and could not be
simple. G then has 10 distinct cyclic subgroups of order 3, each of which has 2 elements of order 3 (plus the
identity). This means G has at least 20 distinct elements of order 3. As well, n5 = 6, since n5 must divide 6 ( = 2 · 3),
and n5 must equal 1 (mod 5). So G also has 24 distinct elements of order 5. But the order of G is only 30, so a simple
group of order 30 cannot exist.
Next, suppose |G| = 42 = 2 · 3 · 7. Here n7 must divide 6 ( = 2 · 3) and n7 must equal 1 (mod 7), so n7 = 1. So, as
before, G can not be simple.
On the other hand for |G| = 60 = 22 · 3 · 5, then n3 = 10 and n5 = 6 is perfectly possible. And in fact, the smallest 
simple non-cyclic group is A5, the alternating group over 5 elements. It has order 60, and has 24 cyclic permutations
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of order 5, and 20 of order 3.

Fusion results
Frattini's argument shows that a Sylow subgroup of a normal subgroup provides a factorization of a finite group. A
slight generalization known as Burnside's fusion theorem states that if G is a finite group with Sylow p-subgroup P
and two subsets A and B normalized by P, then A and B are G-conjugate if and only if they are NG(P)-conjugate. The
proof is a simple application of Sylow's theorem: If B=Ag, then the normalizer of B contains not only P but also Pg

(since Pg is contained in the normalizer of Ag). By Sylow's theorem P and Pg are conjugate not only in G, but in the
normalizer of B. Hence gh−1 normalizes P for some h that normalizes B, and then Agh−1 = Bh−1 = B, so that A and B
are NG(P)-conjugate. Burnside's fusion theorem can be used to give a more power factorization called a semidirect
product: if G is a finite group whose Sylow p-subgroup P is contained in the center of its normalizer, then G has a
normal subgroup K of order coprime to P, G = PK and P∩K = 1, that is, G is p-nilpotent.
Less trivial applications of the Sylow theorems include the focal subgroup theorem, which studies the control a
Sylow p-subgroup of the derived subgroup has on the structure of the entire group. This control is exploited at
several stages of the classification of finite simple groups, and for instance defines the case divisions used in the
Alperin–Brauer–Gorenstein theorem classifying finite simple groups whose Sylow 2-subgroup is a quasi-dihedral
group. These rely on J. L. Alperin's strengthening of the conjugacy portion of Sylow's theorem to control what sorts
of elements are used in the conjugation.

Proof of the Sylow theorems
The Sylow theorems have been proved in a number of ways, and the history of the proofs themselves are the subject
of many papers including (Waterhouse 1980), (Scharlau 1988), (Casadio & Zappa 1990), (Gow 1994), and to some
extent (Meo 2004).
One proof of the Sylow theorems exploit the notion of group action in various creative ways. The group G acts on
itself or on the set of its p-subgroups in various ways, and each such action can be exploited to prove one of the
Sylow theorems. The following proofs are based on combinatorial arguments of (Wielandt 1959). In the following,
we use a | b as notation for "a divides b" and a  b for the negation of this statement.

Theorem 1: A finite group G whose order |G| is divisible by a prime power pk has a subgroup of order
pk.

Proof: Let |G| = pkm = pk+ru such that p does not divide u, and let Ω denote the set of subsets of G of size pk. G acts
on Ω by left multiplication. The orbits Gω = {gω | g ∈ G} of the ω ∈ Ω are the equivalence classes under the action
of G.
For any ω ∈ Ω consider its stabilizer subgroup Gω. For any fixed element α ∈ ω the function [g ↦ gα] maps Gω to ω
injectively: for any two g,h ∈ Gω we have that gα = hα implies g = h, because α ∈ ω ⊆ G means that one may cancel
on the right. Therefore pk = |ω| ≥ |Gω|.
On the other hand

and no power of p remains in any of the factors inside the product on the right. Hence νp(|Ω|) = νp(m) = r. Let R ⊆ Ω
be a complete representation of all the equivalence classes under the action of G. Then,

Thus, there exists an element ω ∈ R such that s := νp(|Gω|) ≤ νp(|Ω|) = r. Hence |Gω| = psv where p does not divide v. 
By the stabilizer-orbit-theorem we have |Gω| = |G| / |Gω| = pk+r-su / v. Therefore pk | |Gω|, so pk ≤ |Gω| and Gω is
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the desired subgroup.
Lemma: Let G be a finite p-group, let G act on a finite set Ω, and let Ω0 denote the set of points of Ω
that are fixed under the action of G. Then |Ω| ≡ |Ω0| mod p.

Proof: Write Ω as a disjoint sum of its orbits under G. Any element x ∈ Ω not fixed by G will lie in an orbit of order
|G|/|Gx| (where Gx denotes the stabilizer), which is a multiple of p by assumption. The result follows immediately.

Theorem 2: If H is a p-subgroup of G and P is a Sylow p-subgroup of G, then there exists an element g
in G such that g−1Hg ≤ P. In particular, all Sylow p-subgroups of G are conjugate to each other (and
therefore isomorphic), i.e. if H and K are Sylow p-subgroups of G, then there exists an element g in G
with g−1Hg = K.

Proof: Let Ω be the set of left cosets of P in G and let H act on Ω by left multiplication. Applying the Lemma to H on
Ω, we see that |Ω0| ≡ |Ω| = [G : P] mod p. Now p [G : P] by definition so p |Ω0|, hence in particular |Ω0| ≠ 0 so
there exists some gP ∈ Ω0. It follows that for some g ∈ G and ∀ h ∈ H we have hgP = gP so g−1hgP ⊆ P and
therefore g−1Hg ≤ P. Now if H is a Sylow p-subgroup, |H| = |P| = |gPg−1| so that H = gPg−1 for some g ∈ G.

Theorem 3: Let q denote the order of any Sylow p-subgroup of a finite group G. Then np | |G|/q and np
≡ 1 mod p.

Proof: By Theorem 2, np = [G : NG(P)], where P is any such subgroup, and NG(P) denotes the normalizer of P in G,
so this number is a divisor of |G|/q. Let Ω be the set of all Sylow p-subgroups of G, and let P act on Ω by
conjugation. Let Q ∈ Ω0 and observe that then Q = xQx−1 for all x ∈ P so that P ≤ NG(Q). By Theorem 2, P and Q
are conjugate in NG(Q) in particular, and Q is normal in NG(Q), so then P = Q. It follows that Ω0 = {P} so that, by
the Lemma, |Ω| ≡ |Ω0| = 1 mod p.

Algorithms
The problem of finding a Sylow subgroup of a given group is an important problem in computational group theory.
One proof of the existence of Sylow p-subgroups is constructive: if H is a p-subgroup of G and the index [G:H] is
divisible by p, then the normalizer N = NG(H) of H in G is also such that [N:H] is divisible by p. In other words, a
polycyclic generating system of a Sylow p-subgroup can be found by starting from any p-subgroup H (including the
identity) and taking elements of p-power order contained in the normalizer of H but not in H itself. The algorithmic
version of this (and many improvements) is described in textbook form in (Butler 1991, Chapter 16), including the
algorithm described in (Cannon 1971). These versions are still used in the GAP computer algebra system.
In permutation groups, it has been proven in (Kantor 1985a, 1985b, 1990; Kantor & Taylor 1988) that a Sylow
p-subgroup and its normalizer can be found in polynomial time of the input (the degree of the group times the
number of generators). These algorithms are described in textbook form in (Seress 2003), and are now becoming
practical as the constructive recognition of finite simple groups becomes a reality. In particular, versions of this
algorithm are used in the Magma computer algebra system.
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Hall subgroup
In mathematics, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They are
named after the group theorist Philip Hall.

Definitions
A Hall divisor of an integer n is a divisor d of n such that d and n/d are coprime. The easiest way to find the Hall
divisors is to write the prime factorization for the number in question and take any product of the multiplicative
terms (the full power of any of the prime factors), including 0 of them for a product of 1 or all of them for a product
equal to the original number. For example, to find the Hall divisors of 60, show the prime factorization is 22·3·5 and
take any product of {3,4,5}. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60.
A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup
whose order is coprime to its index.
If π is a set of primes, then a Hall π-subgroup is a subgroup whose order is a product of primes in π, and whose
index is not divisible by any primes in π.

Examples
• Any Sylow subgroup of a group is a Hall subgroup.
• If G = A5, the only simple group of order 60, then 15 and 20 are Hall divisors of the order of G, but G has no

subgroups of these orders.
• The simple group of order 168 has two different conjugacy classes of Hall subgroups of order 24 (though they are

conjugate under an outer automorphism of G).
•• The simple group of order 660 has two Hall subgroups of order 12 that are not isomorphic.

Hall's theorem
Hall proved that if G is a finite solvable group and π is any set of primes, then G has a Hall π-subgroup, and any two
Hall π-subgroups are conjugate. Moreover any subgroup whose order is a product of primes in π is contained in
some Hall π-subgroup. This result can be thought of as a generalization of Sylow's Theorem to Hall subgroups, but
the examples above show that such a generalization is false when the group is not solvable.
Hall's theorem can be proved by induction on the order of G, using the fact that every finite solvable group has a
normal elementary abelian subgroup.

A converse to Hall's theorem
Any finite group that has a Hall π-subgroup for every set of primes π is solvable. This is a generalization of
Burnside's theorem that any group whose order is of the form p aq b for primes p and q is solvable, because Sylow's
theorem implies that all Hall subgroups exist. This does not (at present) give another proof of Burnside's theorem,
because Burnside's theorem is used to prove this converse.

Sylow systems
A Sylow system is a set of Sylow p-subgroups Sp for each prime p such that SpSq = SqSp for all p and q. If we have a
Sylow system, then the subgroup generated by the groups Sp for p in π is a Hall π-subgroup. A more precise version
of Hall's theorem says that any solvable group has a Sylow system, and any two Sylow systems are conjugate.
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Normal Hall subgroups
Any normal Hall subgroup H of a finite group G possesses a complement, that is there is some subgroup K of G
which intersects H trivially and such that HK=G (so G is isomorphic to a semi-direct product of H and K).

References
• Gorenstein, Daniel (1980), Finite groups, Boston: Amer Mathematical Society, ISBN 0828403015.

Wreath product
In mathematics, the wreath product of group theory is a specialized product of two groups, based on a semidirect
product. Wreath products are an important tool in the classification of permutation groups and also provide a way of
constructing interesting examples of groups.
Given two groups A and H there exist two variations of the wreath product: the unrestricted wreath product
A Wr H (also written A≀H) and the restricted wreath product A wr H. Given a set Ω with an H-action there exists a
generalisation of the wreath product which is denoted by A WrΩ H or A wrΩ H respectively.

Definition
Let A and H be groups and Ω a set with H acting on it. Let K be the direct product

of copies of Aω := A indexed by the set Ω. The elements of K can be seen as arbitrary sequences (aω) of elements of
A indexed by Ω with component wise multiplication. Then the action of H on Ω extends in a natural way to an action
of H on the group K by

.
Then the unrestricted wreath product A WrΩ H of A by H is the semidirect product K ⋊ H. The subgroup K of
A WrΩ H is called the base of the wreath product.
The restricted wreath product A wrΩ H is constructed in the same way as the unrestricted wreath product except
that one uses the direct sum

as the base of the wreath product. In this case the elements of K are sequences (aω) of elements in A indexed by Ω of
which all but finitely many aω are the identity element of A.
The group H acts in a natural way on itself by left multiplication. Thus we can choose Ω := H. In this special (but
very common) case the unrestricted and restricted wreath product may be denoted by A Wr H and A wr H
respectively. We say in this case that the wreath product is regular.
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Notation and Conventions
The structure of the wreath product of A by H depends on the H-set Ω and in case Ω is infinite it also depends on
whether one uses the restricted or unrestricted wreath product. However, in literature the notation used may be
deficient and one needs to pay attention on the circumstances.
• In literature A≀ΩH may stand for the unrestricted wreath product A WrΩ H or the restricted wreath product

A wrΩ H.
• Similarly, A≀H may stand for the unrestricted regular wreath product A Wr H or the restricted regular wreath

product A wr H.
• In literature the H-set Ω may be omitted from the notation even if Ω≠H.
• In the special case that H = Sn is the symmetric group of degree n it is common in the literature to assume that

Ω={1,...,n} (with the natural action of Sn) and then omit Ω from the notation. That is, A≀Sn commonly denotes
A≀{1,...,n}Sn instead of the regular wreath product A≀SnSn. In the first case the base group is the product of n copies
of A, in the latter it is the product of n! copies of A.

Properties
• Since the finite direct product is the same as the finite direct sum of groups it follows that the unrestricted

A WrΩ H and the restricted wreath product A wrΩ H agree if the H-set Ω is finite. In particular this is true when Ω
= H is finite.

• A wrΩ H is always a subgroup of A WrΩ H.
• Universal Embedding Theorem: If G is an extension of A by H, then there exists a subgroup of the unrestricted

wreath product A≀H which is isomorphic to G.[1]

• If A, H and Ω are finite, then
|A≀ΩH| = |A||Ω||H|.[2]

Canonical Actions of Wreath Products
If the group A acts on a set Λ then there are two canonical ways to construct sets from Ω and Λ on which A WrΩ H
(and therefore also A wrΩ H) can act.
• The imprimitive wreath product action on Λ×Ω.

If ((aω),h)∈A WrΩ H and (λ,ω')∈Λ×Ω, then

.
• The primitive wreath product action on ΛΩ.

An element in ΛΩ is a sequence (λω) indexed by the H-set Ω. Given an element ((aω), h) ∈ A WrΩ H its
operation on (λω)∈ΛΩ is given by

.
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Examples
• The Lamplighter group is the restricted wreath product ℤ2≀ℤ.
• ℤm≀Sn (Generalized symmetric group).

The base of this wreath product is the n-fold direct product
ℤm

n = ℤm × ... × ℤm
of copies of ℤm where the action φ : Sn → Aut(ℤm

n) of the symmetric group Sn of degree n is given by
φ(σ)(α1,..., αn) := (ασ(1),..., ασ(n)).

[3]

• S2≀Sn (Hyperoctahedral group).
The action of Sn on {1,...,n} is as above. Since the symmetric group S2 of degree 2 is isomorphic to ℤ2 the
hyperoctahedral group is a special case of a generalized symmetric group.[4]

• Let p be a prime and let n≤1. Let P be a Sylow p-subgroup of the symmetric group Spn of degree pn. Then P is
isomorphic to the iterated regular wreath product Wn = ℤp ≀ ℤp≀...≀ℤp of n copies of ℤp. Here W1 := ℤp and Wk :=
Wk-1≀ℤp for all k≥2.[5][6]

• The Rubik's cube group is a subgroup of small index in the product of wreath products, (ℤ3≀S8) × (ℤ2≀S12), the
factors corresponding to the symmetries of the 8 corners and 12 edges.
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