
User Guide for Logging

This is guide is just a simple summary about Log Service, invoking log APIs, checking log files and
changing configuration parameters. For detail information, please find in the following document:

http://upload.wikimedia.org/wikipedia/mediawiki/4/4f/SAI-AIS-LOG-A.02.01.pdf

Log Service
Log Service is one function integrated in coremw. Logging information is a high-level cluster-significant,

function-based (as opposed to implementation-particular) information suited for us, or automated tools to
review current and historical logged information to trouble shoot issues such as misconfigurations, network
disconnects and unavailable resources.

Log Stream
A log stream is a conceptual flow of log records. The Log Service enables applications to express and

forward log records through well-known log streams that lead to particular output destinations such as a
named file.
 There are four kind of log stream(alarm,system,notification,application). There is exactly one log stream
for each of the alarm, notification, and system log stream types, However, there can be any number of
application log streams.

Log API

Function Name Description

saLogInitialize()

This function initializes the Log Service for the invoking process and
registers the various callback functions. This function must be invoked
prior to the invocation of any other Log Service functionality

saLogSelectionObjectGet()

This function returns the operating system handle, selectionObject,
associated with the handle logHandle. The operating system handle
returned by saLogSelectionObjectGet() is valid until saLogFinalize() is
invoked on the same handle logHandle.

saLogStreamOpen_2()
saLogStreamOpenAsync_2()

This function open a stream and return log stream handle.
For the three well-known log streams, the returned log stream handle

refers to the existing alarm, notification, or system log streams, which
are created when the Log Service is initialized in the cluster. These log
streams persist over the lifetime of the Log Service in the cluster.

saLogWriteLog() and
saLogWriteLogAsync()

These API functions are used to log a record. Writing a log record to a
log file is an atomic operation, so that concurrent writes must be
properly handled.

saLogStreamClose()

The invocation of this API function closes the log stream which was
opened by an earlier invocation of saLogStreamOpen_2() or
saLogStreamOpenAsync_2(). This call frees all resources allocated for
this process by the Log Service on the log stream.
If the invocation of the saLogStreamClose() function completes
successfully, and the log stream is an application log stream, and no
other process has that application log stream open, the Log Service
behaves as follows:

http://upload.wikimedia.org/wikipedia/mediawiki/4/4f/SAI-AIS-LOG-A.02.01.pdf

The log stream is deleted.
 The log file associated with that application log stream is closed and
renamed with a <closetime> that indicates when the last user of the log
stream closed the stream.
 The log file configuration file associated with the deleted log stream
is closed and persists indefinitely.

saLogFinalize()

The saLogFinalize() function closes the association between the
invoking process and the Log Service. The process must have invoked
saLogInitialize() before it invokes this function.
 If the saLogFinalize() function completes successfully, it releases all
resources acquired when saLogInitialize() was called.
 If a process terminates, the Log Service implicitly finalizes all
instances of the Log Service that are associated with the process.

SaLogStreamOpenCallbackT
SaLogWriteLogCallbackT
SaLogFilterSetCallbackT
saLogDispatch()

Please refer to the up attachment.

Imm Command Usage

 immfind | grep Log
we could check all the existing objects with this command and we can get Log stream
object domain as follows:

 immlist
For example: immlist safLgStrCfg=saLogAlarm,safApp=safLogService
We can use this command to check configuration parameters of each log stream.

 immcfg
We take “saLogStreamSeverityFilter” as example.
The parameter “saLogStreamSeverityFilter” ranges from 0 to 127.
Each bit stands for a type of severity and from low to high is:

 emerg alert crit error warn notice info

 In each bit, 1 stands for “enable” while 0 stands for “disable”. The log stream of
different severity type could be created only when the corresponding bit is set to 1.
For example:
immcfg –a saLogStreamSeverityFilter=7 safLgStrCfg=saLogSystem,safApp=safLogService

The value turns to 0000111, only low three bits are enabled, which means only log
stream of emerg, alert and crit level log could be created, the others are filtered out.

Note:

 The parameter “saLogStreamSeverityFilter” of Alarm and Notificaion stream
can not be configured, it must be 127.

 Just configuration parameter of System Stream can be changed by immcfg
command.

 For Application Stream, we have to use another immadm command because
application stream is runtime object. If the application stream object is exsting,
we could modify its parameter. When the process has invoken the API
saLogStreamClose() and , it means that this application stream has been
deleted, so we can’t change parameters any more.

 immadm
For example:
immadm -o 1 -p saLogStreamSeverityFilter:SA_UINT32_T:15 safLgStr=App_name

This command is used to configure saLogStreamSeverityFilter value of Application
log. The saLogStreamSeverityFilter value function of each bit is the same as the three
other streams.

Demo Command
saflogger is an executable command by opensaf, we use it to verify the logging

function simply.
saflogger [options] [message ...]

 OPTIONS
 -l or --alarm write to alarm stream
 -n or --notification write to notification stream
 -y or --system write to system stream (default)
 -a NAME or ---application=NAME write to application stream NAME

 -s SEV or --severity=SEV use severity SEV, default info
 valid severity names: emerg, alert,crit,
 error, warn, notice, info

 -i INT or --interval=INT write with interval INT (only with --
count, default 1s)

 -c CNT or --count=CNT write CNT number of times, -1
 forever (with interval INT)

For example:
 saflogger --alarm --severity=emerg

the log file name format is saLogAlarm_system time.log

 saflogger --application=App-name --severity=emerg

A new Application log is created when a new Application log stream is written, and

the log file name format is Appname_start-time_end-time.log

	Log Service
	Log Stream
	Log API
	Imm Command Usage
	Demo Command

