1 Formulation Of Euler spiral

All angular measurements are in radians.

1.1 Symbols

R	- Radius of curvature
R_c	- Radius of Circular curve at the end of the spiral
θ	- Angle of curve from begining of spiral (infinite R_{c}) to a particular point on the spiral
θ_{s}	- Angle of full spiral curve
L	- Length measured along the spiral curve from its initial position
L_{s}	- Length of spiral curve
v	- velocity vector
V	- speed or amplitude of <i>v</i>
T	- unit tangential vector
X	- unit vector in x-direction, or Northing
Y	- unit vector in y-direction, or Easting
t	- time, measured from the instant a vehicle, which travels towards increasing curvature of the spiral, is at the beginning of the spiral
$t_{\rm s}$	- time required to travel the length $L_{\mbox{\scriptsize s}}$
z	- position vector whose coordinate is (x, y) . Origin is at the position when $t = 0$. The initial direction is aligned with x-axis.

1.2 Original Derivation

Euler spiral is defined as a curve whose curvature increases linearly with the distance measured along the curve.

An Euler spiral used is rail track / highway engineering typically connect between a tangent and a circular curve. Thus, the curvature of this Euler spiral starts with zero at one end and increases proportional with the curve distance.

Imagine a vehicle travel at constant speed V on the spiral, which starts at the origin. Let the initial tangent be parallel to x-axis and the initial direction of travel to be in +ve x direction.

For constant speed,

$$L \propto t = V.t$$

From the definition of the curvature,

$$1/R = d\theta/dL \propto L = cL$$

Where c is the coefficient $1/(R_cL_s)$

At
$$t = 0$$
, $1/R = 0$

$$\theta = \int d\theta/dL.dL$$

$$= \int cL.dL$$

$$= cL^2/2$$

$$\theta_s = cL_s^2/2$$

$$=L_s/(2R_c)$$

$$=>$$
 $1/R = 1/R_c = 2\theta_s / L_s$ at $t = t_s$

Or
$$L_s = 2R_c. \theta_s$$
 (1)

And
$$\theta = \theta_s \cdot (t/t_s)^2$$
 (2)

$$t_s = L_s / V \tag{3}$$

$$\mathbf{v} = \mathbf{V} \cdot \mathbf{T} \tag{4}$$

$$T = (\cos \theta) X + (\sin \theta) Y \tag{5}$$

$$z = \int v \, dt$$
 where \int is integrating from $t = 0$ to $t = t$ (6)

From (2) =>
$$t / t_s = (\theta / \theta_s)^{1/2}$$

$$\Rightarrow$$
 dt = $t_s d\theta / 2(\theta_s \cdot \theta)^{1/2}$

$$dt = L_s / V \cdot d\theta / 2(\theta_s \cdot \theta)^{1/2}$$
 (7)

Eqns (4), (5), (6) & (7) =>
$$z = L_{s.} \int \{ (\cos \theta) \cdot X + (\sin \theta) \cdot Y \} d\theta / \{ 2(\theta_{s.} \theta)^{\frac{1}{2}} \}$$

$$x = L_{s.} \int \{ \cos \theta / 2(\theta_{s.} \theta)^{\frac{1}{2}} \} d\theta$$

$$Now L_{s} / 2\theta_{s}^{\frac{1}{2}} = 2R_{c.} \theta_{s} / 2\theta_{s}^{\frac{1}{2}} = R_{c.} \theta_{s}^{\frac{1}{2}}$$

$$x = R_{c.} \theta_{s}^{\frac{1}{2}} \int \{ \cos \theta / \theta^{\frac{1}{2}} \} d\theta$$
(8)

Then expand $\cos \theta$ according to power series expansion (Taylor series)

$$\begin{split} \cos\theta &= 1 - \theta^2/2! + \theta^4/4! - \theta^6/6! + \dots \\ x &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ \cos\theta / \theta^{\frac{1}{2}} \right\} \ d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ (1 - \theta^2/2! + \theta^4/4! - \theta^6/6! + \dots) / \theta^{\frac{1}{2}} \right\} \ d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ (\theta^{-1/2} - \theta^{3/2}/2! + \theta^{7/2}/4! - \theta^{11/2}/6! + \dots) \right\} \ d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int PowerSeries(\theta) \ d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \left\{ (2/1.\theta^{1/2} - 2/5.\theta^{5/2}/2! + 2/9.\theta^{9/2}/4! - 2/13.\theta^{13/2}/6! + \dots) \right\} \end{split}$$

Similarly to (8):

$$y = R_c. \theta_s^{1/2} \int \{ \sin \theta / \theta^{1/2} \} d\theta$$

Then expand $\sin \theta$ according to power series expansion (Taylor series)

$$\begin{split} \sin\theta &= \theta - \theta^3/3! + \theta^5/5! - \theta^7/7! + \dots \\ y &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ \sin\theta / \theta^{\frac{1}{2}} \right\} d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ (\theta - \theta^3/3! + \theta^5/5! - \theta^7/7! + \dots) / \theta^{\frac{1}{2}} \right\} d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int \left\{ (\theta^{1/2} - \theta^{5/2}/3! + \theta^{9/2}/5! - \theta^{13/2}/7! + \dots) \right\} d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \int \text{PowerSeries}(\theta) d\theta \\ &= R_c. \ \theta_s^{\frac{1}{2}} \left\{ (2/3.\theta^{3/2} - 2/7.\theta^{7/2}/3! + 2/11.\theta^{11/2}/5! - 2/15.\theta^{15/2}/7! + \dots) \right\} (10) \end{split}$$

While
$$\theta = \theta_s \cdot (L/L_s)^2$$
, or $\theta = L^2 / (2R_c \cdot L_c)$

For computation, a spreadsheet can be performed for computed values of x and y for different and uniform incremental values of θ between 0 and θ_s .

1.3 Alternative and Derivation As Fresnel Integral

Follow the same process as in the last sub-section but simplify in a different manner:

For constant speed,

$$L \propto t = V.t$$

From the definition of the curvature,

$$1/R = d\theta/dL \propto L = cL$$
,

Where c is the coefficient $1/(R_cL_s)$

At
$$t = 0$$
, $1/R = 0$

$$\theta = \int d\theta/dL.dL$$

$$= \int cL.dL$$

$$= c L^{2}/2$$

$$\theta_s = cL_s^2/2$$

$$=L_s/(2R_c)$$

$$=> 1/R = 1/R_c = 2\theta_s / L_s \text{ at } t = t_s$$

Or
$$L_s = 2R_c \cdot \theta_s$$
 (11)

And
$$\theta = \theta_s \cdot (t/t_s)^2$$
 (12)

$$L = V.t$$

$$\Rightarrow$$
 $t = L / V$

$$t_s = L_s / V$$

$$dt = dL / V$$
 or $V.dt = dL$ (13)

$$\Rightarrow \qquad \theta = \theta_{\rm s.}(L^2 / L_{\rm s}^2) \tag{14}$$

$$\Rightarrow \qquad \theta = L^2 / (2R_c.L_s) \tag{15}$$

$$\mathbf{v} = \mathbf{V}.\mathbf{T} \tag{16}$$

$$T = (\cos \theta).X + (\sin \theta).Y \tag{17}$$

$$z = \int v \, dt$$
 where \sim is integrating from $t = 0$ to $t = t$ (18)

$$z = \int V\{ (\cos \theta) \cdot X + (\sin \theta) \cdot Y \} dt$$

$$x = \int V \cos \theta dt$$

$$= \int \cos \left[L^2 / (2R_c.L_s) \right] dL$$
 (19)

The format is similar to Fresnel integral C(L)

Then expand $\cos \theta$ according to power series expansion (Taylor series)

$$x = \int PowerSeries(L) dL$$

The expansion is however less convenient than the previous sub-section, unless $(2R_c.L_s) = 1$

Similarly to (8):

$$y = \int V \sin \theta \, dt$$

$$= \int \sin \left[L^2 / (2R_c.L_s) \right] dL$$
 (20)

This format is similar to Fresnel integral S(L)

Then expand $\sin \theta$ according to power series expansion (Taylor series)

$$y = \int PowerSeries(L) dL$$

1.4 Fresnel integral

$$x = C(L) = \int \cos L^2 dL$$

$$y = S(L) = \int \sin L^2 dL$$

$$x = \int \cos L^2 dL$$

$$\cos \theta = 1 - \theta^2/2! + \theta^4/4! - \theta^6/6! + \dots$$

$$x = \int (1 - L^4/2! + L^8/4! - L^{12}/6! + ...) dL$$

=
$$L - L^5/(5.2!) + L^9/(9.4!) - L^{13}/(13.6!) + ...$$

$$y = \int \sin L^{2} dL$$

$$Sin\theta = \theta - \theta^{3}/3! + \theta^{5}/5! - \theta^{7}/7! + ...$$

$$y = \int (L^{2} - L^{6}/3! + L^{10}/5! - L^{14}/7! + ...) dL$$

$$= L^{3}/3 - L^{7}/(7.3!) + L^{11}/(11.5!) - L^{15}/(15.7!) + ...$$

1.5 Simplifying By Transformation / Geometric Similarity (Mapping Euler Spiral To Cornu Curve)

The integral in the last section can be simplified if we match the original spiral curve by a smaller spiral curve of a scale-down version of which $2R_c'L_s'=1$, where R_c' and L_s' are the scaled down radius and spiral length respectively. This can be done by scaling down by factor $\sqrt{(2R_cL_s)}$ so that:

$$R_c' = R_c / \sqrt{(2R_c L_s)}$$
$$= \sqrt{(R_c / (2L_s))}$$

$$L_s' = L_s / \sqrt{(2R_c L_s)}$$
$$= \sqrt{(L_s / (2R_c))}$$

Then

$$2R_c'L_s'=2. \ \sqrt{(R_c/(2L_s). \sqrt{(L_s/(2R_c))})}$$

= 2/2
= 1

Example 1

Given
$$R_c = 300 m$$
, $L_s = 100 m$, Then

$$\theta_s = L_s / (2R_c)$$
= 100 / (2 x 300)
= 0.1667 radian, i.e. 9.5493 degrees

$$2R_cL_s = 60,000$$

We scale down the Euler spiral by $\sqrt{60,000}$, i.e. $100\sqrt{6}$ to the Cornu spiral that has:

$$R_c' = 3/\sqrt{6m},$$

 $L_s' = 1/\sqrt{6m},$
 $2R_c'L_s' = 2 \times 3/\sqrt{6} \times 1/\sqrt{6}$
 $= 1$

And

$$\theta_s = L_s' / (2R_c')$$
= $1/\sqrt{6} / (2 \times 3/\sqrt{6})$
= 0.1667 radian, i.e. 9.5493 degrees

The two same angles θ_s confirm the geometric similarity. The locus of the scale-down curve can thus be determined from Fresnel Integral.

Example 2

Given $R_c = 50m$, $L_s = 100m$,

Then

$$\theta_s = L_s / (2R_c)$$
= 100 / (2 x 50)
= 1 radian, i.e. 57.296 degrees

$$2R_cL_s = 10,000$$

We scale down by $\sqrt{10,000}$, i.e. 100 to the transition spiral to the Cornu spiral that has:

$$R_c' = 0.5m,$$
 $L_s' = 1m,$
 $2R_c'L_s' = 2 \times 0.5 \times 1$
 $= 1$

And

$$\theta_s = L_s' / (2R_c')$$

$$= 1/100 / (2 \times 1/200)$$

The two same angles θ_s confirm the geometric similarity. The locus of the scale-down curve can thus be determined from Fresnel Integral.

1.6 Other Properties Of Cornu Spiral

Cornu Spiral is a special case of the transition spiral / Euler spiral which has 2Rc.Ls = 1

$$\theta_{\rm s} = L_{\rm s} / 2R_{\rm c} = L_{\rm s}^2$$

And

$$\theta = \theta_{\rm s.}(L^2 / L_{\rm s}^2)$$

$$=L^2$$