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1 Formulation Of Euler spiral 

 
All angular measurements are in radians. 
 

1.1 Symbols 

 
R   - Radius of curvature 

 

Rc   - Radius of Circular curve at the end of the spiral 

 

θ  - Angle of curve from begining of spiral (infinite Rc) to a 

particular point on the spiral 

 

θs   - Angle of full spiral curve 

 

L - Length measured along the spiral curve from its initial  

position 

 

Ls   - Length of spiral curve 

 

v   - velocity vector 

 

V   - speed or amplitude of v 

 

T   - unit tangential vector 

 

X   - unit vector in x-direction, or Northing 

 

Y   - unit vector in y-direction, or Easting 

 

t  - time, measured from the instant a vehicle, which travels 

towards increasing curvature of the spiral, is at the beginning of 

the spiral 

 

ts   - time required to travel the length Ls 

 

z  - position vector whose coordinate is (x, y). Origin is at the 

position when t = 0. The initial direction is aligned with x-axis. 

 
 

1.2 Original Derivation 

 
Euler spiral is defined as a curve whose curvature increases linearly with the 
distance measured along the curve. 
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An Euler spiral used is rail track / highway engineering typically connect between a 
tangent and a circular curve. Thus, the curvature of this Euler spiral starts with zero 
at one end and increases proportional with the curve distance. 
 
Imagine a vehicle travel at constant speed V on the spiral, which starts at the origin. 
Let the initial tangent be parallel to x-axis and the initial direction of travel to be in +ve 
x direction. 
 

For constant speed,  

 

L ∝ t = V.t 
 

From the definition of the curvature, 

 

1/R = dθ/dL ∝ L = cL,  
 

Where c is the coefficient 1/(RcLs) 

  

At t = 0, 1/R = 0 

 

θ = ∫ dθ/dL.dL 
 

   =  ∫ cL.dL 
 

   = cL
2
/2 

 

θs = cLs
2
/2 

 

    = Ls / (2Rc) 

 

=> 1/R = 1/Rc = 2θs / Ls at t = ts 
    

Or Ls = 2Rc. θs      (1) 

    

And θ = θs.(t/ ts)
2
      (2) 

 

ts = Ls / V       (3) 

 

v = V.T       (4) 

 

T = (cos θ).X + (sin θ).Y     (5) 

    

z = ∫ v dt   where ∫ is integrating from t = 0 to t = t  (6) 

    

From (2) => t / ts = (θ / θs)
½
 

 

=> dt = ts dθ / 2(θs.θ)
½
      

    

dt = Ls / V . dθ / 2(θs.θ)
½
    (7) 
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Eqns (4), (5), (6) & (7) => 

 

z = Ls. ∫ { (cos θ).X + (sin θ).Y) } dθ / {2(θs. θ)
½
 }  

    

x = Ls. ∫ {cos θ / 2(θs. θ)
½
} dθ 

 

Now Ls / 2θs
½
 = 2Rc. θs / 2θs

½
 = Rc. θs

½
 

 

x  = Rc. θs
½
  ∫ {cos θ / θ½} dθ     (8)  

 

Then expand cos θ according to power series expansion (Taylor series) 
 

cos θ =  1 – θ2/2! + θ4/4! – θ6/6! + … 
 

x  = Rc. θs
½
 ∫ {cos θ / θ½} dθ     

 

    = Rc. θs
½
 ∫ {(1 – θ2/2! + θ4/4! – θ6/6! + …) / θ½} dθ  

 

    = Rc. θs
½
 ∫ {(θ-1/2 – θ3/2/2! + θ7/2/4! – θ11/2/6! + …)} dθ  

 

    = Rc. θs
½
 ∫ PowerSeries(θ) dθ 

    

    = Rc. θs
½
 (2/1.θ1/2 – 2/5.θ5/2/2! + 2/9.θ9/2/4! – 2/13.θ13/2/6! + …) 

        (9) 

 

Similarly to (8): 

 

y  = Rc. θs
½
 ∫ {sin θ / θ½} dθ      

 

Then expand sin θ according to power series expansion (Taylor series)  
 

sin θ =  θ – θ3/3! + θ5/5! – θ7/7! + … 
 

y  = Rc. θs
½
 ∫ {sin θ / θ½} dθ     

 

    = Rc. θs
½
 ∫ {(θ – θ3/3! + θ5/5! – θ7/7! + …) / θ½} dθ  

 

    = Rc. θs
½
 ∫ {(θ1/2 – θ5/2/3! + θ9/2/5! – θ13/2/7! + …)} dθ  

 

    = Rc. θs
½
 ∫ PowerSeries(θ) dθ 

    

    = Rc. θs
½
 (2/3.θ3/2 – 2/7.θ7/2/3! + 2/11.θ11/2/5! – 2/15.θ15/2/7! + …) 

        (10) 

 

 

While θ = θs.(L/ Ls)
2
, or

 

 

θ = L2 / (2Rc.Lc) 
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For computation, a spreadsheet can be performed for computed values of x and y for different 

and uniform incremental values of θ between 0 and θs.
 

 
 

1.3 Alternative and Derivation As Fresnel Integral 

 
Follow the same process as in the last sub-section but simplify in a different manner: 

 
For constant speed,  

 

L ∝ t = V.t 
 

From the definition of the curvature, 

 

1/R = dθ/dL ∝ L = cL,  
 

Where c is the coefficient 1/(RcLs) 

   

At t = 0, 1/R = 0 

 

θ = ∫ dθ/dL.dL 
 

   =  ∫ cL.dL 
 

   = cL
2
/2 

 

θs = cLs
2
/2 

 

    = Ls / (2Rc) 

 

=> 1/R = 1/Rc = 2θs / Ls at t = ts 
    

Or Ls = 2Rc. θs     (11) 

    

And θ = θs.(t/ ts)
2
     (12) 

 

L = V.t 

 

� t = L / V 

 

ts = Ls / V 

 

 dt = dL / V or V.dt = dL  (13) 

 

� θ = θs.(L
2
 / Ls

2
)    (14) 

 

� θ = L2 / (2Rc.Ls)    (15) 
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v = V.T      (16) 

 

T = (cos θ).X + (sin θ).Y    (17) 

    

z = ∫v dt   where ~ is integrating from t = 0 to t = t (18) 
    

z = ∫ V{ (cos θ).X + (sin θ).Y } dt 
    

x = ∫ V cos θ dt 
 

   = ∫ cos [L2 / (2Rc.Ls)] dL    (19) 

 

The format is similar to Fresnel integral C(L) 

 

Then expand cos θ according to power series expansion (Taylor series) 
 

x = ∫ PowerSeries(L) dL 
    

The expansion is however less convenient than the previous sub-section, unless (2Rc.Ls) = 1 

 

Similarly to (8): 

 

y = ∫ V sin θ dt 
 

   = ∫ sin [L2 / (2Rc.Ls)] dL    (20)  

 

This format is similar to Fresnel integral S(L) 

 

Then expand sin θ according to power series expansion (Taylor series) 
 

y = ∫ PowerSeries(L) dL 
 

1.4 Fresnel integral 

 

x = C(L) = ∫ cos L2 dL  

 

y = S(L) = ∫ sin L2 dL  
 

x = ∫ cos L2 dL 
 

cos θ =  1 – θ2/2! + θ4/4! – θ6/6! + … 
 

x = ∫ (1 – L4/2! + L8/4! – L12/6! + …) dL 
 

   = L – L
5
/(5.2!) + L

9
/(9.4!) – L

13
/(13.6!) + …  
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y = ∫ sin L2 dL 
 

Sinθ =  θ – θ3/3! + θ5/5! – θ7/7! + … 
 

y = ∫ (L2 – L6/3! + L10/5! – L14/7! + …) dL 
 

   = L
3
/3 – L

7
/(7.3!) + L

11
/(11.5!) – L

15
/(15.7!) + …  

 

1.5 Simplifying By Transformation / Geometric Similarity (Mapping 
Euler Spiral To Cornu Curve) 

 

The integral in the last section can be simplified if we match the original spiral curve 

by a smaller spiral curve of a scale-down version of which 2Rc'Ls'= 1, where Rc' and Ls' 

are the scaled down radius and spiral length respectively. This can be done by 

scaling down by factor √(2RcLs) so that: 

 

Rc' = Rc / √(2RcLs) 

      = √( Rc / (2Ls) 

 

Ls' = Ls / √(2RcLs) 

      = √( Ls / (2Rc) 

 

Then 

2Rc'Ls'= 2. √( Rc / (2Ls) . √( Ls / (2Rc) 

 = 2 / 2 

 = 1 

Example 1 

 

Given Rc = 300m,  

Ls = 100m,  

Then 

θs =  Ls / (2Rc) 
 

    = 100 / (2 x 300) 

 

    = 0.1667 radian, i.e. 9.5493 degrees 
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 2RcLs = 60,000 

We scale down the Euler spiral by √60,000, i.e.100√6 to the Cornu spiral that has: 

 Rc' = 3/√6m,  

Ls' = 1/√6m,  

 2Rc'Ls'  = 2 x 3/√6 x 1/√6 

  = 1 

And 

θs =  Ls' / (2Rc') 
 

    = 1/√6 / (2 x 3/√6) 
 

    = 0.1667 radian, i.e. 9.5493 degrees 

 

The two same angles θs confirm the geometric similarity. The locus of the scale-down 

curve can thus be determined from Fresnel Integral. 

 

Example 2 

 

Given Rc = 50m,  

Ls = 100m,  

Then 

θs =  Ls / (2Rc) 
 

    = 100 / (2 x 50) 

 

    = 1 radian, i.e. 57.296 degrees 

 

2RcLs = 10,000 

We scale down by √10,000, i.e.100 to the transition spiral to the Cornu spiral that has: 

 Rc' = 0.5m,  

Ls' = 1m,  

 2Rc'Ls'  = 2 x 0.5 x 1 

  = 1 

And 

θs =  Ls' / (2Rc') 
 

    = 1/100 / (2 x 1/200) 
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    = 1 radian, i.e. 57.296 degrees 

 

The two same angles θs confirm the geometric similarity. The locus of the scale-down 

curve can thus be determined from Fresnel Integral. 

 

1.6 Other Properties Of Cornu Spiral 

 
Cornu Spiral is a special case of the transition spiral / Euler spiral which has 2Rc.Ls = 
1 
 

θs = Ls / 2Rc = Ls
2
 

 

And 

θ = θs.(L
2
 / Ls

2
) 

 

   = L
2
 

 

 


