1 Formulation Of Euler spiral

All angular measurements are in radians.

1.1 Symbols

R - Radius of curvature

R, - Radius of Circular curve at the end of the spiral

0 - Angle of curve from begining of spiral (infinite R.) to a particular point on
the spiral

0O, - Angle of full spiral curve

L - Length measured along the spiral curve from its initial position

L, - Length of spiral curve

v - velocity vector

Vv - speed or amplitude of v

T - unit tangential vector

X - unit vector in x-direction, or Northing

Y - unit vector in y-direction, or Easting

t - time, measured from the instant a vehicle, which travels towards increasing

curvature of the spiral, is at the beginning of the spiral
ts - time required to travel the length L

z - position vector whose coordinate is (x, y). Origin is at the position when t =
0. The initial direction is aligned with x-axis.

1.2 Original Derivation

Euler spiral is defined as a curve whose curvature increases linearly with the distance
measured along the curve.
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An Euler spiral used is rail track / highway engineering typically connect between a tangent
and a circular curve. Thus, the curvature of this Euler spiral starts with zero at one end and
increases proportional with the curve distance.

Imagine a vehicle travel at constant speed V on the spiral, which starts at the origin. Let the
initial tangent be parallel to x-axis and the initial direction of travel to be in +ve x direction.

For constant speed,
Loct=V.t
From the definition of the curvature,
1/R =d6/dL « L = cL,
Where c is the coefficient 1/(R.Ly)
Att=0, 1/R=0
0=/ de/dL.dL
= [cL.dL
=cL?/2
0, = cLy/2
=L/ (2R,)

= 1/R=1/R. =20,/ Lsatt =t

Or L;=2R..0, (1)
And 0=0.(t/t)’ (2)
t,=L/V €)
v=V.T 4)
T=(cos 0).X+ (sin 0).Y (5)
z=]vdt where [ is integrating fromt=0tot=t (6)

From (2)=>1t/t,=(0/6,)"
=>  dt=t,d0/2(6.0)"
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dt=L,/V.do/2(6..0)" (7)
Eqns (4), (5), (6) & (7) =>
z=Ls. | { (cos 0).X + (sin 0).¥) } d0 / {2(6,. 0)* }
x =L, | {cos 0/2(6,. 0)"} dO
Now L,/26,*=2R.. 0,/20,”* =R.. 0"
X =R.. 0, [ {cos0/0"} do (8)
Then expand cos 6 according to power series expansion (Taylor series)
cos® = 1-07/2!+0%4! —0%6! + ...
x =R..0,*] {cos 6/6"} dB
=R.. 0,7 {(1 - 0421 +0%41-0%6! +...)/ 0"} dO
=R.. 0,2 ] {0 — 0221 +07%/4) —0"/6! + ...)} dO
=R.. 0, | PowerSeries(0) d®

=R.. 0, (2/1.8"2 = 2/5.0°%/21 +2/9.6”%/41 — 2/13.0"7/6! + ...)
)

Similarly to (8):
y =R..0,*] {sin®/06"} do
Then expand sin 0 according to power series expansion (Taylor series)
sin® = 0-0"/3!+0%5!-07/7! + ...
y =R..0,%[ {sin 0/0"} do
=R..0,2] {(6—0°31+06%51—-07/71+...)/ 0"} dO
=R.. 0,2 {(0"* - 0731 + 0”51 —0'¥%/71 + ..)} dO
=R.. 0,” | PowerSeries(0) dO

=R.. 0,7 (2/3.0°% = 2/7.07%31 +2/11.6"2/51 — 2/15.0"/71 + ..)
(10)
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While 0 = 0,.(L/ L,)?, or
0=L%/(2R.L,)

For computation, a spreadsheet can be performed for computed values of x and y for different and
uniform incremental values of 6 between 0 and 0..

1.3 Alternative and Derivation As Fresnel Integral

Follow the same process as in the last sub-section but simplify in a different manner:
For constant speed,
Loct=V.t
From the definition of the curvature,
1/R =d6/dL o« L =cL,
Where c is the coefficient 1/(R L)
Att=0, 1/R=0
6 =[de/dL.dL
= [cL.dL
=cL’/2
0, = cL/2
=L,/ (2R.)

= 1/R=1/R,=20,/L,att=t,

Or L,=2R..6 (11)

And 0=0.(t/t)’ (12)
L=Vt

= t=L/V
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tt=Ls/V

dt=dL/V or V.dt=dL (13)
=  0=0,(L*/Ly) (14)
=  0=L*/(2R.Ly) (15)
y=V.T (16)
T=(cos 0).X+ (sin 0).Y (17)

z=Jvdt where ~ is integrating fromt=0tot =t (18)
z=]V{(cos 0).X + (sin 9).Y } dt
x =]V cos 0 dt
=J cos [L?/ (2R..Ly)] dL (19)
The format is similar to Fresnel integral C(L)
Then expand cos 0 according to power series expansion (Taylor series)
x = | PowerSeries(L) dL

The expansion is however less convenient than the previous sub-section, unless (2R..L;) = 1

Similarly to (8):
y=Vsin 0 dt
=['sin [L*/ (2R..Ly)] dL (20)

This format is similar to Fresnel integral S(L)
Then expand sin 0 according to power series expansion (Taylor series)

y = | PowerSeries(L) dL

1.4 Fresnel integral

x=C(L)=]cos L* dL
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y=S(L)=]sin L*dL
x =] cos L* dL
cos O = 1 —0%2!+0%41 —0%6! + ...
x=](1=L*2! +L¥%41 —L'%6! +...)dL
=L L5210+ L°/(9.4) - LP/(13.6!) + ...
y =] sin L*dL
Sind = 0-0%31+0%5!1-0"/7" + ...
y=] @=L+ L5 —L"%71+ ..)dL

=13 -L7/(7.3) +L"/(11.5) - L"/(15.71) + ...

1.5 Simplifying By Transformation / Geometric
Similarity (Mapping Euler Spiral To Cornu
Curve)

The integral in the last section can be simplified if we match the original spiral curve by a
smaller spiral curve of a scale-down version of which 2R.'L/= 1, where R, and L, are the
scaled down radius and spiral length respectively. This can be done by scaling down by factor
V(2R L) so that:

R.'=R./ V(2R.L,)
=(Ro/ (2Ly)

L, =L,/ V2R.Ly)
=V(L,/ (2R.)

Then
2R.L¢=2.V(R./ (2Ly) . V( L,/ (2R,)
=2/2
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Example 1

GivenR, = 300m,
L,=100m,
Then
0= Ls/ (2R,)

=100/ (2 x 300)

=0.1667 radian, i.e. 9.5493 degrees

2R L = 60,000
We scale down the Euler spiral by V60,000, i.e.100V6 to the Cornu spiral that has:
R, =3/N6m,
L, = 1/N6m,
2R./L, =2 x 36 x 16
=1
And
0= L'/ (2R,

= 1/N6 /(2 x 3/\6)
= 0.1667 radian, i.e. 9.5493 degrees
The two same angles 6, confirm the geometric similarity. The locus of the scale-down curve

can thus be determined from Fresnel Integral.

Example 2

GivenR, = 50m,
L;=100m,
Then
0= Ls/ (2R,)

= 100/ (2 x 50)
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= 1 radian, i.e. 57.296 degrees

2R.L;=10,000
We scale down by V10,000, i.e.100 to the transition spiral to the Cornu spiral that has:

R, =0.5m,
s = lm,
2R.'L,' =2x05x1

=1
And
0= L'/ (2R.)

=1/100/ (2 x 1/200)
= 1 radian, i.e. 57.296 degrees

The two same angles 6, confirm the geometric similarity. The locus of the scale-down curve

can thus be determined from Fresnel Integral.

1.6 Other Properties Of Cornu Spiral

Cornu Spiral is a special case of the transition spiral / Euler spiral which has 2Rc.Ls = 1
0,=L,/2R.=L;

And
0=0.(L"/LY

=12
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