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Abstract

This project is devoted to the simplest notions of asymptotic analysis and their prop-
erties.
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1 Introduction

Asymptotic analysis is a method of classifying limiting behavior mostly by using the lan-
guage of asymptotic notations. Asymptotic notations (such as big-O and little-o) have been
developed to handle statements related to order of growth. The first who introduced and
systematically used them was Edmund Landau in early 1900’s. If we have a function, then
to approximate it, we mostly care about the large terms in its expression. In other words,
we care about the term with the largest order of magnitude and omit the small valued terms
(i.e. errors). This kind of analysis is considered to belong to asymptotics. The question is,
how close can we get to the exact values of a given function using asymptotic expansions
at extremely large values? There are 3 main asymptotic notations that we will use: ∼, o
and O. It should be mentioned that the symbol O(x) first appeared in the second volume of
Bachmann’s treatise on number theory (Bachmann 1894). Landau took this notation from
Bachmann’s book (Landau 1909, p. 883; Derbyshire 2004, p. 238). However, the symbol
o(x) indeed originate with Landau (1909) in place of the earlier notation {x} (Narkiewicz
2000, p. XI).

2 The Symbols ∼, o and O
Asymptotic notations that we are going to use are order relations: O-notation (big-oh),
o-notation (little-oh) and equivalence: ’∼’ notation :

Definition 2.1. f(x) = O{g(x)} (x → ∞) ⇔ ∃A > 0,∃x0,∀x > x0, |f(x)| ≤ A|g(x)|. In
other words, f(x) = O{g(x)}, as x → ∞, means that

∣∣∣f(x)
g(x)

∣∣∣ is bounded for sufficiently large
x. In this case, we say ”f is of order not exceeding g”.

Definition 2.2. f(x) = o{g(x)} (x → ∞) ⇔ ∀A > 0, ∃x0, ∀x > x0, |f(x)| < A|g(x)|. In
other words, f(x) = o{g(x)}, means that f(x)

g(x) → 0 as x → ∞. In this case, we say ”f is of
order (strictly) less than g”.

Definition 2.3. f(x) ∼ g(x) (x → ∞) ⇔ lim
x→∞

f(x)
g(x)

= 1. In this case, we say ”f is asymp-

totically equal to g”.

In all three cases, simply we can say: ”the function f(x) behaves asymptotically similarly
to the function g(x)”. Comparing all three definitions, we note that each is a particular case
of first one, and when applicable each is more informative than the first one. Explicitly, The
∼ formula gives much stronger assertion than the o-formula and then the O-formula.

Let us prove the following lemma:

Lemma 2.4. If lim
x→∞

f(x)
g(x)

= c, then f(x) = O(g(x)) as x →∞.

Proof. By definition of limit, for all ε > 0, there exists a δ > 0 such that
∣∣∣f(x)
g(x) − c

∣∣∣ < ε for
all large values of x. Thus by triangle inequality we have

∣∣∣∣
f(x)
g(x)

∣∣∣∣− |c| ≤
∣∣∣∣
f(x)
g(x)

− c

∣∣∣∣ < ε ⇒
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∣∣∣∣
f(x)
g(x)

∣∣∣∣ ≤ |c|+ ε ⇒ |f(x)| ≤ (|c|+ ε)|g(x)|.

Claim 2.5. The converse is not always true. That is, there exist functions when f(x) =
O(g(x)) is true by the formal definition of O-notation, but the above relation is not true.

Proof. For example, consider the functions ( [x] denotes the integer part of x):

f(x) =

{
2x if [x] is even,
x if [x] is odd.

g(x) =

{
x if [x] is even,
2x if [x] is odd.

So, for x 6= 0, the quotient function
f(x)
g(x)

defined as

f(x)
g(x)

=

{
1 if [x] is even,
1/2 if [x] is odd.

If [x] is even, then f(x) = 2x and g(x) = x. By definition, f(x) = O(g(x)) as x →∞.
If [x] is odd, then f(x) = x and g(x) = 2x. By definition, f(x) = O(g(x)) as x →∞.

Evidently, this discrete piecewise function is not continuous. Thus, lim
x→∞

f(x)
g(x)

does not

exists.

2.1 Basic Properties

Some properties, elementary operations, relations and special cases of these symbols are the
following:

• The relation ’∼’ is an equivalence relation, that is, it is reflexive, symmetric and tran-
sitive.

• ’O’ is transitive but not symmetric, i.e. O(x) = O(x2) but O(x2) 6= O(x).

• Product: O(f(x)).O(g(x)) = O(f(x)g(x))

• Sum: O(f(x)) +O(g(x)) = O(|f(x)|+ |g(x)|) = O(max{f(x), g(x)})
• Multiplication by a constant: O(k.f(x)) = k.O(f(x)) = O(f(x)) (k 6= 0)

• Addition of a constant: O(k + f(x)) = k +O(f(x)) = O(f(x))

• O(f(x)) +O(f(x)) = O(f(x))

• Composition: O(O(f(x))) = O(f(x))

• (f(x) + g(x))k = O(f(x) + g(x))k = O((f(x))k) +O((g(x))k) (k > 0)

• The above properties also true for o-symbol.
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• If f(x) = o{g(x)} then, f(x) = O{g(x)} or simply:

• o{g(x)} = O{g(x)} but O{g(x)} 6= o{g(x)}.
• If f(x) ∼ g(x), then f(x) = g(x){1 + o(1)}.
• f(x) = o(1) (x →∞) means that f tends to 0 at ∞.

• f(x) = O(1) (x →∞) means that |f | is bounded at ∞.

Example 2.6. The following relations hold:

(i) (x + 1)2 ∼ x2,

(ii)
1
x2

= o

(
1
x

)
,

(iii) sinhx = O(ex) as x →∞.

Proof.

(i) lim
x→∞

(x + 1)2

x2
= lim

x→∞
x2 + 2x + 1

x2
= lim

x→∞ 1 +
2
x

+
1
x2

= 1.

(ii) lim
x→∞

1/x2

1/x
= lim

x→∞
1
x

= 0.

(iii)
ex − e−x

2
=

ex(1− e−2x)
2

≤ ex

2
.

2.2 Implied Constant

Sometimes, the symbol O is associated with a definite interval [a,∞) instead of a neight-
bourhood of ∞. Thus,

f(x) = O{g(x)} when x ∈ [a,∞)

simply means that
∣∣∣f(x)
g(x)

∣∣∣ is bounded throughout a ≤ x < ∞. However, other symbols ∼ and
o cannot be used in this way.

The statement above assure that there is a number K such that

|f(x)| ≤ K|g(x)| (x ≥ a),

without giving an information concerning the actual size of K. Of course, if it holds for a
certain value of K, then it also holds for every larger value. The least number is the supremum
(least upper bound) of

∣∣∣f(x)
g(x)

∣∣∣ in the interval [a,∞), which is called the implied constant of
the O term for this interval.
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The notations o(g) and O(g) can also be used to denote classes of functions f with the
properties f(x) = o(g(x)) and f(x) = O(g(x)) respectively, or even they can be used to denote
unspecified functions with these properties. Therefore, the statement ”f(x) = O(g(x))” is a
slightly abuse of notation: we are not really asserting the equality of two functions. For this
reason, some authors prefer a set notation and write f ∈ O(g), thinking of O(g) as the set
of all functions that have the same property.

Example 2.7. 1 If p has any fixed value, real or complex, prove that

(i) xp = o(ex), (ii) e−x = o(xp).

(iii) Prove also that lnx = o(xp), provided that Rep > 0.

Proof. Intuitively we know that lnx grows much more slowly than any power of x and any
power of x grows slowly than ex.
(i) Let p = a + ib be a complex number where a, b ∈ R.

xp = xa+bi ⇒ |xp| = xa

we know that, for positive x,

ex = 1 + x +
x2

2!
+

x3

3!
+ ... > 1 + x +

x2

2!
+

x3

3!
+ ... +

xc

c!

where c is an integer greater than a. Therefore,

lim
x→∞

xa

ex
≤ lim

x→∞
xa

1 + x + x2

2! + x3

3! + ... + xc

c!

= 0 ⇔ xp = o(ex) as x →∞.

(ii) We will use xp = o(ex). Take p = −q, we get x−q = o(ex) ⇒

lim
x→∞

x−q

ex
= 0 ⇒ lim

x→∞
e−x

xq
= 0 ⇔ e−x = o(xq) as (x →∞).

(iii) Changing variable y = lnx, and y = t/a we have

lim
x→∞

lnx

xa
= lim

y→∞
y

eay
=

1
a

lim
t→∞

t

et
= 0 by (i).

Example 2.8. Show that

cos{O(x−1)} = O(1), sin{O(x−1)} = O(x−1),

and
cos{x + α + o(1)} = cos(x + α) + o(1),

where α is a real constant.
1In the following exercises 2.7 - 2.10, it is assumed that large positive values of the independent variable x

are considered.
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Proof. The first two relations are trivial, because | cosx| ≤ 1 and | sinx| ≤ 1 for real x. To
prove the third one, note that:

cos(x + α + h(x))− cos(x + α) = 2 sin
h(x)

2
sin(x + α +

1
2
h(x)).

If h(x) = o(1), then
∣∣∣sin h(x)

2

∣∣∣ ≤ |h(x)|
2 = o(1) and we get cos(x + α + h(x)) = cos(x + α) +

o(1), x →∞, which is equivalent to desired relation.

Example 2.9. Show that

(i) O(x)O(y) = O(xy), (ii) O(x)o(y) = o(xy), (iii) O(x) +O(y) = O(|x|+ |y|).
Proof. (i) Let f(x) = O(x) and g(y) = O(y) be two functions of x and y respectively. We
have:

f(x) = O(x) ⇔ |f(x)| ≤ A|x|,
g(y) = O(y) ⇔ |g(y)| ≤ B|y|,

for some A,B > 0. Multiplying side by side:

|f(x)||g(y)| ≤ AB|x||y| ⇒ |f(x)g(y)| ≤ AB|xy| ⇔ f(x)g(y) = O(xy).

(ii) Let f(x) = O(x) and g(y) = o(y) then,

f(x) = O(x) ⇔ |f(x)| ≤ A|x|,
g(y) = o(y) ⇔ lim

y→∞
g(y)
y

= 0

lim
x,y→∞

|f(x)g(y)|
|xy| ≤ A lim

y→∞
|g(y)|
|y| = 0

(because
|f(x)|
|x| ≤ A and

|g(y)|
|y| → 0) ⇒

lim
x,y→∞

f(x)g(y)
xy

= 0 ⇔ f(x)g(y) = o(xy) as x →∞.

(iii) Let f(x) = O(x) and g(y) = O(y) be two functions. We have:

f(x) = O(x) ⇔ |f(x)| ≤ A|x|,
g(y) = O(y) ⇔ |g(y)| ≤ B|y|.

for some A,B > 0. Adding side by side:

|f(x)|+ |g(y)| ≤ A|x|+ B|y| ≤ C|x|+ C|y| = C{|x|+ |y|} for C > A, B.

Since |f(x) + g(y)| ≤ |f(x)|+ |g(y)|, we get:

|f(x) + g(y)| ≤ C{|x|+ |y|} ⇔ f(x) + g(y) = O(|x|+ |y|).
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Example 2.10. What are the implied constants in the relations

(i) (x + 1)2 = O(x2), (ii) (x2 − 1
2
)1/2 = O(x), (iii) x2 = O(ex),

for the interval [1,∞)?

Proof. (i) We have

lim
x→∞

∣∣∣∣
(x + 1)2

x2

∣∣∣∣ = 1 where x ∈ [1,∞)

Since (x+1)2

x2 is a decreasing function of x ∈ [1,∞), it takes its maximum value at x = 1. Thus

(x + 1)2

x2
≤ (1 + 1)2

12
= 4,

and the implied constant is 4.
(ii) We have

lim
x→∞

∣∣∣∣∣

√
x2 − (1/2)

x

∣∣∣∣∣ = lim
x→∞

∣∣∣∣∣

√
1− 1

2x2

∣∣∣∣∣ = 1.

As x ∈ [1,∞),
√

1− 1
2x2 ∈ [

√
1/2, 1) means that its implied constant is 1.

(iii) We have lim
x→∞

x2

ex
= 0. Let f(x) =

x2

ex
. In order to find its maximum point, we can

find the roots of its derivative for x ∈ [1,∞):

(
x2

ex

)′
=

2x− x2

ex
= 0

for x = x0 = 0 and x = x1 = 2. The function gets its local maximum values at x0 or x1.
Since x0 = 0 /∈ [1,∞), but x1 = 2 ∈ [1,∞), f(2) = 4/e2 ≈ 0.54 is the implied constant.

3 Extensions of Asymptotic Relations

3.1 Extension in Real Variables

For asymptotic approximations, there is no need for the asymptotic variable x to be contin-
uous; it can pass to infinity through any set of values. For instance:

Example 3.1.

sin
(

πn +
1
n

)
= O

(
1
n

)
(n →∞)

provided that n is an integer.
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Proof. We have

sin
(

πn +
1
n

)
= sin(πn) cos

(
1
n

)
+ cos(πn) sin

(
1
n

)
= (−1)n sin

(
1
n

)

Since lim
x→0

sinx

x
= 1 , we have lim

n→∞
sin

(
1
n

)

1/n
= 1. So,

∣∣sin (
πn + 1

n

)∣∣
∣∣ 1
n

∣∣ =
sin

(
1
n

)

1/n
is bounded.

Hence, sin
(

πn +
1
n

)
= O

(
1
n

)
(n →∞)

It is not obligatory to consider the behavior of functions only as x →∞. We can also do
this when x tends to any finite point. For example:

Example 3.2. Show that
x2 − c2

x2
∼ 2(x− c)

c
= O(x− c) = o(1) as x → c (c 6= 0).

Proof.

lim
x→c

x2 − c2

x2

2(x− c)
c

= lim
x→c

c(x + c)
2x2

=
2c2

2c2
= 1 ⇔ x2 − c2

x2
∼ 2(x− c)

c
(x → c).

∣∣∣∣
2(x− c)

c

∣∣∣∣ ≤ A|x− c| for ∀A ≥ c

2
⇔ 2(x− c)

c
= O(x− c) (x → c).

lim
x→c

2(x− c)
c

= 0 ⇔ 2(x− c)
c

= o(1) (x → c).

The limiting point, here c, is called the distinguished point of the asymptotic or order
relation.

Example 3.3. Show that

ln {1 +O(z)} = O(z) (z → 0).

Proof. Let g(z) = O(z), The Maclaurin expansion of ln (1 + z) is:

ln (1 + z) =
∞∑

s=1

(−1)s+1

s
zs, |z| < 1

So, if |g(z)| < 1, g(z) = O(z), we have:

ln{1 + g(z)} =
∞∑

s=1

(−1)s+1

s
gs(z).
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Setting as = (−1)s+1

s and n = 1, we get by Theorem 4.3

ln {1 + g(z)} = O(g(z)), z → 0.

Substituting g(z) = O(z), we get:

ln {1 +O(z)} = O{O(z)} = O(z).

3.2 Extension in Complex Variables

We can extend previous definitions to the complex case.

Let S be an infinite sector α ≤ arg z ≤ β.

Definition 3.4. If ∃K > 0, not depending on arg z, such that:

|f(z)| ≤ K|g(z)| (z ∈ S(R)),

where S(R) denotes the intersection of S with the annulus |z| ≥ R, then we say that

f(z) = O{g(z)} as z →∞ in S,

or
f(z) = O{g(z)} in S(R).

The set S(R) is called an infinite annular sector or, simply, annular sector.
The least number K satisfying the above equation is called the implied constant for S(R).

Theorem 3.5. Let
∞∑

s=0

asz
s converge when |z| < r. Then for fixed n,

∞∑
s=n

asz
s = O(zn), z → 0,

in any disk |z| ≤ p such that p < r.

Proof. Let p′ ∈ (p, r). Then asp
′s → 0 as s → ∞ ; hence |asp

′s| is bounded by a constant
A > 0 :

|as|p′s ≤ A (s = 0, 1, 2, 3...).

Using this inequality, we obtain
∣∣∣∣∣
∞∑

s=n

asz
s

∣∣∣∣∣ ≤
∞∑

s=n

|asz
s| ≤

∞∑
s=n

A

p′s
.|z|s =

= A.

∞∑
s=n

( |z|
p′

)s

= A

[( |z|
p′

)n

+
( |z|

p′

)n+1

+
( |z|

p′

)n+2

+ ...

]
=
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= A

( |z|
p′

)n

1− |z|
p′

=
Ap′(1−n)

p′ − |z| |z|
n ≤ Ap′(1−n)

p′ − p
|z|n.

Since, p′ > p, K =
Ap′(1−n)

p′ − p
is a positive constant (independent of z). That means:

∞∑
s=n

asz
s = O(zn), z → 0.

Example 3.6. Show that e− sinh z = o(1) as z → ∞ in the half-strip {z: Rez ≥ 0, |Imz| ≤
1
2π − δ < 1

2π}.
Proof. Let H be the half strip and z = x + iy, x, y ∈ R with x ≥ 0, |y| ≤ π

2 − δ < π
2 .

We have

lim
z→∞ |e

− sinh z| = lim
z→∞

∣∣∣∣e−
ez−e−z

2

∣∣∣∣ =

lim
z→∞

∣∣∣∣e
e−x−iy−ex+iy

2

∣∣∣∣ = lim
z→∞ e

Re
(

e−x−iy−ex+iy

2

)
.

Note that

Re

(
e−x−iy − ex+iy

2

)
= Re

(
e−xe−iy − exeiy

2

)
=

e−x cos(−y)− ex cos y

2
=

cos y

2
(e−x − ex).

Hence, we get:

lim
z→∞ |e

− sinh z| = lim
z→∞ e

cos y
2

(e−x−ex)

While, |y| ≤ π
2 − δ, we have cos y ≥ cos(π

2 − δ) = sin δ. Therefore

lim
z→∞ e

cos y
2

(e−x−ex) = lim
z→∞ e−

cos y
2

(ex−e−x) ≤

lim
z→∞ e−

sin δ
2

(ex−e−x) = 0.

Since, lim
z→∞ |e

− sinh z| = 0, we get lim
z→∞ e− sinh z = 0.

This is equivalent to e− sinh z = o(1) as z →∞ in H.
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4 Integration and Differentiation of Asymptotic and Order
Relations

4.1 Integration

Asymptotic and order relations may be integrated if the integrals are convergent. For exam-
ple,

Proposition 4.1. Let f is an integrable function such that f(x) ∼ xv as x →∞, for v ∈ C.
If we integrate the function f , we get:

∫ x

a
f(t)dt ∼





a constant, if Rev < −1;
xv+1

v + 1
, if Rev > −1;

ln x, if v = −1.

and
∫ ∞

x
f(t)dt ∼ − xv+1

v + 1
Rev < −1

Proof. (i) First, let Rev > −1. Since f(x) ∼ xv, we can write f(x) = xv{1 + δ(x)}, where
|δ(x)| < ε when x > x0 > a > 0, for any ε > 0. Then,

∫ x

a
f(t)dt =

∫ x0

a
f(t)dt +

∫ x

x0

f(t)dt

=
∫ x0

a
f(t)dt +

∫ x

x0

tv{1 + δ(t)}dt

=
∫ x0

a
f(t)dt +

∫ x

x0

tvdt +
∫ x

x0

tvδ(t)dt

=
∫ x0

a
f(t)dt +

xv+1 − x0
v+1

v + 1
+

∫ x

x0

tvδ(t)dt.

and by multiplying both sides by
v + 1
xv+1

we get:

v + 1
xv+1

∫ x

a
f(t)dt =

v + 1
xv+1

∫ x0

a
f(t)dt +

xv+1 − x0
v+1

xv+1
+

v + 1
xv+1

∫ x

x0

tvδ(t)dt

=
v + 1
xv+1

∫ x0

a
f(t)dt + 1− x0

v+1

xv+1
+

v + 1
xv+1

∫ x

x0

tvδ(t)dt

v + 1
xv+1

∫ x

a
f(t)dt− 1 =

v + 1
xv+1

∫ x0

a
f(t)dt− x0

v+1

xv+1
+

v + 1
xv+1

∫ x

x0

tvδ(t)dt

∣∣∣∣
v + 1
xv+1

∫ x

a
f(t)dt− 1

∣∣∣∣ ≤
∣∣∣∣
v + 1
xv+1

∫ x0

a
f(t)dt

∣∣∣∣ +
∣∣∣∣
x0

v+1

xv+1

∣∣∣∣ +
∣∣∣∣
v + 1
xv+1

∫ x

x0

tvδ(t)dt

∣∣∣∣ .
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Since
∫ x0

a f(t)dt is a constant (not depending on variable x), the first two terms on the right-
hand side of the last equation vanish as x →∞, then we have:

∣∣∣∣
v + 1
xv+1

∫ x

a
f(t)dt− 1

∣∣∣∣ ≤
∣∣∣∣
v + 1
xv+1

∫ x

x0

tvδ(t)dt

∣∣∣∣

≤
∣∣∣∣
v + 1
xv+1

∣∣∣∣
∫ x

x0

|tv|.δ(t)dt.

Since |δ(t)| < ε, |tv| = tRev and |xv+1| = xRev+1,

∣∣∣∣
v + 1
xv+1

∫ x

a
f(t)dt− 1

∣∣∣∣ <
|v + 1|
xRev+1

∫ x

x0

tRev.εdt

<
|v + 1|
xRev+1

ε.

[
tRev+1

Rev + 1

]x

t=x0

<
|v + 1|
xRev+1

ε.
xRev+1 − x0

Rev+1

Rev + 1

< |v + 1|ε.1−
x0

Rev+1

xRev+1

Rev + 1
.

Since
x0

Rev+1

xRev+1
> 0,

∣∣∣∣
v + 1
xv+1

∫ x

a
f(t)dt− 1

∣∣∣∣ < |v + 1|. ε

Rev + 1
,

and that means:

lim
x→∞

v + 1
xv+1

∫ x

a
f(t)dt = 1 ⇔

∫ x

a
f(t)dt ∼ xv+1

v + 1
(x →∞).

(ii) If v = −1, then f(x) ∼ 1
x . We write f(x) = 1

x(1 + δ(x)) where |δ(x)| < ε. So,
∣∣∣∣
∫ x

a
f(t)dt− ln x

∣∣∣∣ =
∣∣∣∣
∫ x

a

δ(t)
t

dt− ln a

∣∣∣∣ ≤ ε(lnx + | ln a|) ≤ (ε + 1) lnx.

Other cases are similar.

Example 4.2. Show that if f(x) is continuous and f(x) = o{g(x)} as x →∞, where g(x) is
a positive nondecreasing function of x, then

∫ x
a f(t)dt = o{xg(x)}.

Proof. We have

f(x) = o{g(x)} as (x →∞) ⇔ lim
x→∞

f(x)
g(x)

= 0 ⇒

∀ε > 0, ∃δ > 0 such that

∣∣∣∣
f(x)
g(x)

∣∣∣∣ < ε ⇒ |f(x)| < ε|g(x)|, for x > x0 ⇒
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∣∣∣∣
∫ x

x0

f(t)dt

∣∣∣∣ ≤
∫ x

x0

ε|g(t)|dt ≤ εg(x)(x− x0) ≤ εg(x)x ⇒
∣∣∣∣
∫ x

a
f(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ x0

a
f(t)dt

∣∣∣∣ +
∣∣∣∣
∫ x

x0

f(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ x

x0

f(t)dt

∣∣∣∣ +
∣∣∣∣
∫ x

x0

f(t)dt

∣∣∣∣ ≤ 2εxg(x) for a < x0 < x,

∣∣∣∣
∫ x

x0

f(t)dt

∣∣∣∣ ≤ 2εxg(x) ⇒ lim
x→∞

∫ x
x0

f(t)dt

xg(x)
= 0 ⇔

∫ x

x0

f(t)dt = o{xg(x)}.

Example 4.3. If u and x lie in [1,∞), show that
∫ ∞

x

dt

t(t2 + t + u2)
1
2

=
1
x

+O
(

1
x2

)
+O

(
u2

x3

)
.

Proof.
∫ ∞

x

dt

t(t2 + t + u2)1/2
− 1

x
=

∫ ∞

x

dt

t(t2 + t + u2)1/2
−

∫ ∞

x

1
t2

dt

=
∫ ∞

x

(
1

t(t2 + t + u2)1/2
− 1

t2

)
dt

=
∫ ∞

x

t− (t2 + t + u2)1/2

t2(t2 + t + u2)1/2
dt

=
∫ ∞

x

t2 − (t2 + t + u2)

t2(t2 + t + u2)1/2(t + (t2 + t + u2)1/2)
dt

=
∫ ∞

x
− t + u2

t2(t2 + t + u2)1/2(t + (t2 + t + u2)1/2)
dt

Taking modulus, we obtain
∣∣∣∣∣
∫ ∞

x

dt

t(t2 + t + u2)1/2
− 1

x

∣∣∣∣∣ =
∫ ∞

x

t + u2

t2(t2 + t + u2)1/2(t + (t2 + t + u2)1/2)
dt

=
∫ ∞

x

t + u2

t3 (1 +
1
t

+
u2

t2
)
1/2

(t + (t2 + t + u2)1/2)
︸ ︷︷ ︸

greater than 1

dt

Since (1 + 1
t + u2

t2
)
1/2

(t + (t2 + t + u2)1/2) is not less than 1 for u, t ∈ [1,∞), we have
∣∣∣∣∣
∫ ∞

x

dt

t(t2 + t + u2)1/2
− 1

x

∣∣∣∣∣ ≤
∫ ∞

x

t + u2

t3
dt =

∫ ∞

x

dt

t2
+

∫ ∞

x

u2

t3
dt =

1
x

+
u2

2x2

Since
1
x

= O
(

1
x2

)
and

u2

2x2
= O

(
u2

x3

)
, given equality holds.
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4.2 Differentiation

Even if functions are differentiable, differentiation of asymptotic relations is not always per-
missible. For instance, if f(x) = x + sin x, then f(x) ∼ x as x → ∞, but it is not true for
the derivatives, i.e. f ′(x) 6∼ 1, because limx→∞ f ′(x) does not exists. In order to assure the
differentiation, monotonicity conditions for the derivative must be satisfied:

Theorem 4.4. Let f(x) be continuously differentiable and f(x) ∼ xp as x →∞, where p ≥ 1
is a constant. Then f ′(x) ∼ pxp−1, provided that f ′(x) is nondecreasing for large x.

Proof. Let f(x) = xv{1 + α(x)}, such that |α(x)| ≤ ε when x > x0 > 0, where ε ∈ (0, 1) an
arbitrary number. If h > 0, then

hf ′(x) ≤ f(x + h)− f(x) =
∫ x+h

x
f ′(t)dt =

∫ x+h

x
(tp{1 + α(t)})′dt

=
∫ x+h

x
ptp−1dt + (x + h)pα(x + h)− xpα(x)

≤ hp(x + h)p−1 + 2ε(x + h)p

By setting h = ε1/2x, we get an upper bound for the derivative

f ′(x) ≤ pxp−1{(1 + ε1/2)p−1 + 2p−1ε1/2(1 + ε1/2)p} (x > x0).

and similarly we get a lower bound for the derivative as follows

f ′(x) ≥ pxp−1{(1− ε1/2)p−1 − 2p−1ε1/2} (x > x0/(1− ε1/2)).

So,

[{(1−ε1/2)p−1−2p−1ε1/2}−1]pxp−1 ≤ f ′(x)−pxp−1 ≤ [{(1+ε1/2)p−1+2p−1ε1/2(1+ε1/2)p}−1]pxp−1

Since both expressions in square brackets tend to 0 as ε → 0, we obtain the desired assertion.

Theorem 4.5. Let f(z) be analytic in a region containing a closed annular sector S, and

f(z) = O(xp) ( or f(z) = o(zp))

as z →∞ in S, where p ∈ R fixed. Then

f (m)(z) = O(zp−m) ( or f (m)(z) = o(zp−m))

as z →∞ in any closed annular sector S’ properly interior to S and having the same vertex.

Proof. To prove the statement, we will use Cauchy’s integral formula for mth derivative of
an analytic function, given by

f (m)(z) =
m!
2πi

∫

C

f(t)dt

(t− z)m+1
, C : |t− z| = |z| sin δ,
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Figure 1: Annular sectors S,S′′.

Let S be defined by α ≤ arg z ≤ β, |z| ≥ R, and let S′′ be the closed annular sector
defined by

α + δ ≤ arg z ≤ β + δ, |z| ≥ R′

where δ ∈ (0, π/2) and R′ = R/(1− sin δ); see Figure ??. By taking δ small enough we can
ensure that S′′ contains S’.

0 < |z|(1− sin δ) ≤ |t| ≤ |z|(1 + sin δ).

Hence t ∈ S whenever z ∈ S′′. Further, if K is the implied constant of f(z) = O(zp) for S,
then

|f (m)(z)| ≤
∣∣∣∣
m!
2πi

∫

C

f(t)dt

(t− z)m+1

∣∣∣∣ ≤
m!
2π

∣∣∣∣
∫

C

f(t)dt

(t− z)m+1

∣∣∣∣

=
m!
2π

.
2πK|z|p(1± sin δ)p

(|z| sin δ)m
= K ′|zp−m|

where K ′ is constant. The proof in the case when the symbol O replaced by o is similar.
The above inequality shows that the implied constant in S′′, does not exceed K ′. However,

as δ → 0, K ′ →∞ . Therefore, the equation is NOT valid in S.

Example 4.6. Suppose that f(x) = x2 + O(x) as x → ∞, and f ′(x) is continuous and
nondecreasing for all sufficiently large x. Show that f ′(x) = 2x +O(x1/2).

Proof. We have

f ′(x) = lim
h→0

f(x)− f(x− h)
h

≥ f(x)− f(x− h)
h

.

Let α(x) = f(x)− x2 = O(x) as x →∞, so f(x− h) = α(x− h) + (x− h)2 and f(x + h) =
α(x + h) + (x + h)2. Then
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f ′(x) ≥ α(x) + x2 − α(x− h)− (x− h)2

h
= 2x− h +

α(x)− α(x− h)
h

Similarly,

f ′(x) ≤ α(x + h) + (x + h)2 − α(x)− x2

h
= 2x + h +

α(x + h)− α(x)
h

.

Since α(x) = f(x)− x2 = O(x), we have |α(x)| ≤ Kx, K > 0 ⇒

−Kx ≤ α(x) ≤ Kx, also
−K(x− h) ≤ α(x− h) ≤ K(x− h) and
−K(x + h) ≤ α(x + h) ≤ K(x + h).

Therefore,

2x + h +
K(x + h) + Kx

h
≥ f ′(x) ≥ 2x− h +

−Kx−K(x− h)
h

2x + h + K +
2Kx

h
≥ f ′(x) ≥ 2x− h + K − 2Kx

h

h + K +
2Kx

h
≥ f ′(x)− 2x ≥ −h + K − 2Kx

h

Since K > 0,

h + K +
2Kx

h
≥ f ′(x)− 2x ≥ −h−K − 2Kx

h
⇔

|f ′(x)− 2x| ≤ h + K +
2Kx

h
.

Choosing h = x1/2 and assuming x > 1, we get:

|f ′(x)− 2x| ≤ x1/2 + K + 2Kx1/2 = x1/2(2K + 1) + K,

|f ′(x)− 2x| ≤ x1/2(2K + 1) + Kx1/2,

|f ′(x)− 2x| ≤ x1/2(3K + 1) ⇔
f ′(x)− 2x = O(x1/2) ⇒ f ′(x) = 2x +O(x1/2).

Example 4.7. Let f(z) be analytic in a region containing a closed annular sector S, and

f(z) ∼ zp as z →∞ in S,

where p is any nonzero real or complex constant. Show that f
′
(z) ∼ pzp−1 as z →∞ in any

closed annular sector C properly interior to S and having the same vertex.
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Proof. We have
f(z) = (1 + o(1))zp, as z →∞, z in C,

or same as
f(z) = zp + g(z), where g(z) = o(zp).

By Theorem 4.4,
g(z) = o(zp) implies g′(z) = o(zp−1).

Hence,
f ′(z) = pzp−1 + g′(z) = pzp−1 + o(zp−1)

if and only if
f ′(z) ∼ pzp−1 as z →∞ in C

5 Asymptotic Solution of Transcendental Equations:

Transcendental equations are equations involving functions other then simple polynomi-
als, which can not be expressed as a combination of elementary functions. These equations
may contain trigonometric, algebraic, exponential, logarithmic and inverse trigonometric etc.
terms. It is rarely possible to express the solutions of these functions explicitly. Therefore,
we will use asymptotic approach to approximate the values of variables.

5.1 Real Variables

Example 5.1. Consider the equation:

x tanx = 1

Proof. The aim is the determination of the large positive roots of the equation:

tanx =
1
x

Taking inverse of the tangent function, since the period of the tangent function is π, we get

x = tan−1

(
1
x

)
+ nπ

where n ∈ Z and the inverse tangent function has its principal value. So,

tan−1

(
1
x

)
∈

(
−π

2
,
π

2

)

is bounded. Further,

lim
n→∞

x

nπ
= lim

n→∞
tan−1

(
1
x

)

nπ
+ 1 = 1

We derive
x ∼ nπ as n →∞.
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This is the first approximation to the root. Note that,

tan−1 x =
∫

dx

1 + x2
=

∫ (
1− x2 + x4 − . . .

)
= x− x3

3
+

x5

5
− . . .

To derive higher approximations we expand tan−1(1/x) in a form appropriate for large x,
given by

tan−1

(
1
x

)
=

1
x
− 1

3x3
+

1
5x5

− 1
7x7

+ . . . (x > 1)

Hence

x = tan−1

(
1
x

)
+ nπ = nπ +O

(
1
x

)
= nπ +O

(
1
n

)

gives us a higher approximation.
The next two substitutions produce

x = nπ +
1

nπ
+O

(
1
n3

)
, x = nπ +

1
nπ

− 4
3(nπ)3

+O
(

1
n5

)
. . .

and so on. Continuation of this process produces a sequence of approximations with errors
of diminishing asymptotic order.
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