The Advocate of Industry and Enterprise, and Journal of Mechanical and Other Improvements

NEW YORK, THURSDAY, APRIL 2, 1846.

PATTEN LAWS.

This page contains an article about patent laws. The text discusses the importance of patents in protecting inventions and the processes for obtaining and enforcing them. It mentions the need for a uniform system of patent laws and the role of courts in patent disputes.

Another article in the same issue discusses improvements in brick-making machinery and the importance of the invention for the efficiency of the process. The text describes the design of the machine, its advantages over previous models, and the potential for increased production and efficiency in the brick-making industry.

The page also includes a notice about the publication of articles on various topics, including brick-making, patent laws, and other mechanical improvements. It mentions the contributors and their areas of expertise, such as the author of the article on brick-making, John Hawkins, and the editor of the Advocate of Industry and Enterprise, John L. Smith.

The page is part of a larger publication that covers a wide range of topics related to industry, enterprise, and mechanical improvements. It contains articles on various subjects, such as inventions, patents, and industrial processes.

---

THE ADVOCATE OF INDUSTRY AND ENTERPRISE, AND JOURNAL OF MECHANICAL AND OTHER IMPROVEMENTS.

VOLUME I.

NEW YORK, THURSDAY, APRIL 2, 1846.

PATTEN LAWS.

This page contains an article about patent laws. The text discusses the importance of patents in protecting inventions and the processes for obtaining and enforcing them. It mentions the need for a uniform system of patent laws and the role of courts in patent disputes.

Another article in the same issue discusses improvements in brick-making machinery and the importance of the invention for the efficiency of the process. The text describes the design of the machine, its advantages over previous models, and the potential for increased production and efficiency in the brick-making industry.

The page also includes a notice about the publication of articles on various topics, including brick-making, patent laws, and other mechanical improvements. It mentions the contributors and their areas of expertise, such as the author of the article on brick-making, John Hawkins, and the editor of the Advocate of Industry and Enterprise, John L. Smith.

The page is part of a larger publication that covers a wide range of topics related to industry, enterprise, and mechanical improvements. It contains articles on various subjects, such as inventions, patents, and industrial processes.

---

The Advocate of Industry and Enterprise, and Journal of Mechanical and Other Improvements.

NEW YORK, THURSDAY, APRIL 2, 1846.

PATTEN LAWS.

This page contains an article about patent laws. The text discusses the importance of patents in protecting inventions and the processes for obtaining and enforcing them. It mentions the need for a uniform system of patent laws and the role of courts in patent disputes.

Another article in the same issue discusses improvements in brick-making machinery and the importance of the invention for the efficiency of the process. The text describes the design of the machine, its advantages over previous models, and the potential for increased production and efficiency in the brick-making industry.

The page also includes a notice about the publication of articles on various topics, including brick-making, patent laws, and other mechanical improvements. It mentions the contributors and their areas of expertise, such as the author of the article on brick-making, John Hawkins, and the editor of the Advocate of Industry and Enterprise, John L. Smith.

The page is part of a larger publication that covers a wide range of topics related to industry, enterprise, and mechanical improvements. It contains articles on various subjects, such as inventions, patents, and industrial processes.
EXTRAORDINARY PROTECTION.—We have seen in this number a new and important method of preserving works of art, and especially those whose intrinsic value makes them a subject of danger on the part of thieves. The objects to be protected are placed within a glass case or box: a thin and impervious film of solid carbonic acid is then spread over the objects, while a red cardboard is held in position over the glass by small weights, so as to prevent any disturbance of the mixture. The contents of the case are then warmed, and the mixture allowed to work. The result is an impermeable and impenetrable crust, a protection which will exclude all possible injury from any cause, and which is so perfectly colorless that it can neither be seen nor felt. We understand that the plan has been adopted with great success by a number of the most valuable museums in Europe.

Dr. R. D. Birch, of Boston, has discovered a new and most efficacious mode of preparing for experiments the cells of the galvanic battery, for the purpose of increasing their power and length of duration. The following is his apparatus:—

The chemist takes a number of crocks, and fills each with a small quantity of sand, and into the bottom of the crock he places a small vessel filled with water. The crock is then placed over the vessel, and water is added to the crock until it is nearly full. A piece of cotton is then placed upon the surface of the water, and the crock is then covered with a piece of cellophane. The crock is then placed in a warm oven, and after being thus dried, the cotton is removed, the cellophane is replaced, and the crock is then placed in a cold room. The crock is then opened, and the water is removed, and the crock is then placed in a room of the desired temperature, and the experiments are then made.

Mr. R. D. Birch, of Boston, has also discovered a new and most efficacious mode of preparing for experiments the cells of the galvanic battery, for the purpose of increasing their power and length of duration. The following is his apparatus:—

The chemist takes a number of crocks, and fills each with a small quantity of sand, and into the bottom of the crock he places a small vessel filled with water. The crock is then placed over the vessel, and water is added to the crock until it is nearly full. A piece of cotton is then placed upon the surface of the water, and the crock is then covered with a piece of cellophane. The crock is then placed in a warm oven, and after being thus dried, the cotton is removed, the cellophane is replaced, and the crock is then placed in a cold room. The crock is then opened, and the water is removed, and the crock is then placed in a room of the desired temperature, and the experiments are then made.

The magnetoelectric.—We are informed that the Franklin Institute has recently adopted a new and very useful mode of protecting works of art, and especially those whose intrinsic value makes them a subject of danger on the part of thieves. The objects to be protected are placed within a glass case or box: a thin and impervious film of solid carbonic acid is then spread over the objects, while a red cardboard is held in position over the glass by small weights, so as to prevent any disturbance of the mixture. The contents of the case are then warmed, and the mixture allowed to work. The result is an impermeable and impenetrable crust, a protection which will exclude all possible injury from any cause, and which is so perfectly colorless that it can neither be seen nor felt. We understand that the plan has been adopted with great success by a number of the most valuable museums in Europe.

Mr. R. D. Birch, of Boston, has discovered a new and most efficacious mode of preparing for experiments the cells of the galvanic battery, for the purpose of increasing their power and length of duration. The following is his apparatus:—

The chemist takes a number of crocks, and fills each with a small quantity of sand, and into the bottom of the crock he places a small vessel filled with water. The crock is then placed over the vessel, and water is added to the crock until it is nearly full. A piece of cotton is then placed upon the surface of the water, and the crock is then covered with a piece of cellophane. The crock is then placed in a warm oven, and after being thus dried, the cotton is removed, the cellophane is replaced, and the crock is then placed in a cold room. The crock is then opened, and the water is removed, and the crock is then placed in a room of the desired temperature, and the experiments are then made.

Mr. R. D. Birch, of Boston, has also discovered a new and most efficacious mode of preparing for experiments the cells of the galvanic battery, for the purpose of increasing their power and length of duration. The following is his apparatus:—

The chemist takes a number of crocks, and fills each with a small quantity of sand, and into the bottom of the crock he places a small vessel filled with water. The crock is then placed over the vessel, and water is added to the crock until it is nearly full. A piece of cotton is then placed upon the surface of the water, and the crock is then covered with a piece of cellophane. The crock is then placed in a warm oven, and after being thus dried, the cotton is removed, the cellophane is replaced, and the crock is then placed in a cold room. The crock is then opened, and the water is removed, and the crock is then placed in a room of the desired temperature, and the experiments are then made.
This is an excerpt from a historical newspaper article. The text appears to be discussing various topics, including a machine that removesicia from wheat, a description of a church-yard, and various other subjects. The writing style is formal and typical of 19th-century American literature. The article contains multiple references to scientific and technological advancements of the time. The text is written in complete sentences with proper punctuation, indicating it is a well-structured article. The language is formal and the content is informative, suggesting it is an article intended for a general audience.