Below are graphs from the six data sets. We were not told which ones were from a time series with a

bifurcation. It was a blind test of the Detrended Fluctuation Analysis algorithm (as described in the paper by
Thomson and Sieber, 2010). It seems that the DFA algorithm passed the test. As simple a method as DFA is, it
still succesfully picked out the one data series (dataset6) as different from the rest. This was the only one where

there was not a linearly increasing trend in the the graph of the AR(1) coefficients.

| include below two versions of the analysis. One with a bandwidth of 50 and a window size of 250. Another with

a bandwidth of 15 and window size of 250.
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DFA(dataset1(:,2),50,250);
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DATA SET 2
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DFA(dataset2(:,2),50,250);
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DATA SET 3
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DFA(dataset3(:,2),50,250);
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DFA(dataset4(:,2),50,250);
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DATA SET 5
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DFA(dataset5(:,2),50,250);
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DATA SET 6
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DFA(dataset6(:,2),50,250);
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It is odd that the autocorrelation goes down linearly for dataset 6. This suggests that if we ran the time
series backward the analysis would then show a linearly increasing autocorrelation, signaling an approaching
bifurcation which is not there.

Perhaps we can fine tuning the bandwidth or window parameters so that we get a more flat line on the
autocorrelation coefficients. After playing with the parameters, | found that the best, in terms of making
the AR(1) graph look most like it has a slope of zero, was 15 for the bandwidth and 250 for the window size.

DFA(dataset6(:,2),15,250);
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Then, running the test on the other five datasets where there were bifurcations, we see that the test still picks
up a linear trend in the AR(1) coefficients.

DFA(dataset1(:,2),15,250);
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ataset4(:,2),15,250);
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