NEW MACHINE FOR MAKING ROPES.—Figure 1.

This machine is the invention of Henry A. Clum, of Waterbury, Wayne Co., N. Y., who has taken measures to secure a patent for the same. Its object is to make ropes, twisting the strands of a number of spools set in a large reel and managing the twist so as to form the rope in a very small space—yet controlling the degree of twist in the most perfect manner, as it is well known that on this depends the principal value of the rope—overstranding detracts from its strength. It can also make rope in a very rapid manner and it therefore combines a number of economical advantages.

Fig. 1 is a side elevation, and fig. 2 is an end view of the receiving reel on which the finished rope is wound. A, is a stout frame with uprights with supports to the machinery above B, is a driving pulley, and F is the centre shaft of a large circular spool frame of which C are the circular ends. This spool frame supports three spools D D D, the axis of which extends across from C to C, near the periphery of it, and they are made to revolve with it. Each spool D, however, is placed in a frame by itself and while the large spool frame revolves the smaller spools with their frames have another and a faster motion inside by a compensation gearing E. There are therefore two motions in the large frame, A, the motion of the frame itself and the spools with the smaller frames inside, which are driven at about four times the speed of the large spool frame.

This machine is particularly adapted for small wires and, as it can be made to revolve with it. Each spool D, however, is placed in a frame by itself and while the large spool frame revolves the smaller spools with their frames have another and a faster motion inside by a compensation gearing E. There are therefore two motions in the large frame, A, the motion of the frame itself and the spools with the smaller frames inside, which are driven at about four times the speed of the large spool frame.

A Good Deal. The most singular display of light ever witnessed, says the Cincinnati Nenepol, last night took place last evening about half past eight o'clock in the western horizon. A bright streak of light shot suddenly up from the waves of the Lake, and, after an altitude of about 45 degrees, burst assunder, and spread itself over the whole heavens, making everything appear in glittering splendor. It was followed by five other bursts of light, all of equal splendor, and 3,000 feet near the same place—it then gradually dispersed. The so-called "Northern Lights" have been often seen and admired, but we have never before lighted so bright a spectacle as the one described.

Bridging the Ohio. Mr. Elliot proposes to build a suspension bridge over the Ohio, between Cincinnati and Covington, to cost $600,000, and to not interfere with the navigation. The gigantic arch is to be 120 feet above the centre of the river at low water, or sixty-two feet above the great flood at 1200 springs; or the suspension of the wire cables 230 feet high—twelve cables four inches in diameter, capable of resisting a weight of 1500 tons. The lower House of the Ohio Legislature has passed a bill incorporating a company to build the bridge.

In a population of 12,000, 8,000 of whom, both sexes are engaged in making boats and about 3,000 pots were "reused" last year. The Middlesex Company at Lowell, Mass. make annually about 6,000,000 barrels of slates, 1,700,000 boxes of new goods, 850,000 value dye stuff, and $17,000 worth of soap.
The Ingenious and the Ingenious.

Zalophus Taylor is now President of the United States.

A new species of Cotton, called 'wiped,' is about to be introduced to the commerce of the world. We are glad to know that the enterprise of the publisher in furnishing such a cheap publication has been attended to by a large number of subscribers. This number presents well executed engravings of Nanga Fussa, London, and Washington, D.C., by P. Slane's usual interesting biography. In consequence of an unexpected attack of the press, we have been unable to get the news more correct than by the preceding numbers of the New York Times. It is hoped that the present number will be in circulation, and that the subscribers will be in possession, not only of one class, but of several. It is the purpose of this journal to advance the welfare of the gold or mining regions, it would be an excellent companion.

The New England Farmer for March is a most interesting number. This new valuable periodical...

New Cotton.

A new species of Cotton, called the Pro-Elephant, surpassing any of the species familiar to man, has been grown in Mississippi by Geo. Mitchell, of Warren County. The new species is closely allied to the Indian Cotton, and the short staple is far more beautiful, and far more silky than the best Peotot Grass.

How to behave at the Court of Denmark.

The following list of directions for personal appearance have been given by the Danish Nobility, and are printed in the bulletin sheet...

The glass bowl half-filled with tap water, and scented with a few drops of orange-flower water, is placed before each guest, into which he shall insert the extremities of his fingers, and then wipe them, also a small glass tumbler filled with tap water or something similar to it. In this way, he must rinse the wine, and a universal custom on the continent of Europe, a small quantity of wine is taken out of the bowl, and the water is allowed to run out to the mouth of the bowl—the mouth is then wiped, and the napkin is taken away with the bowl.

New Fire Department.

A citizen of Middletown, Conn., proposes (without precedent) that the city council might designate some day of the year as a day to be devoted to the invention of the first fire engine. This suggestion is most acceptable, and the city council might designate some day of the year as a day to be devoted to the invention of the first fire engine.

A large colony of Beelzebub is about to estab...
The Holographic Image of the "Carpe Noctem" and the Sensitivity of Every Important Mineral in the Universe (Continued)

W. H. HUNTINGTON, "CARPETOLOGY" (Continued)

APARTHUS-STONE

As is well known, this mineral occurs in a variety of different colors, ranging from light yellow to deep red. It is found in quartz veins and is often associated with feldspar and quartzite. Its hardness is about 7 on the Mohs scale, and it is often used as a gemstone.

AZURE (PIERCE)

Azure is a crystal variety of calcium, occurring in shades of blue. It is often found in veins of limestone and is valued for its beauty and durability. Its hardness is about 4 on the Mohs scale.

CUMMINS LIMESTONE

Cummens limestone is a sedimentary rock composed primarily of calcium carbonate. It is often used as a building material and is found in various parts of the world, including the United States, Brazil, and China.

SIMULATING SMUG

Smug is a term used to describe a person who is false or deceitful. It is often used in a negative context to describe a person's behavior or attitude.
New Railways...—Figure 3.

1, 12, or other chains attached to G, F, G, S, and passing under D, E, over pulleys E, E, down into a pit below and have weight hung on their ends. G is a bent wire inserted into the mouth of F, is the side sliding block and are hooked over the ends of H, so that when the sliding blocks F and G are drawn forward, H will be held down, but it will draw H and will be set free from the bolt which connects it to G; in G, see fig. 2.

The stopped and the locomotive to approach, the switch rails C, C, on the track R, R, have a cushion on the lower part of the locomotive

Improvement in Striking Bells. — T. Harris of this city, has made an improvement in striking bells, by mounting the bell so as to be moved by a ratchet and allow each name of from 240 to 260 tons on the circumference of the bell — a new spot every stroke. This is a good improvement for striking large bells; because the iron is all in one piece. Even the struck always on one spot, which was the same every time made above the orifice.

New Permanent Notches. — The perpetual notion which we noticed some time ago, has been carried in at the fall of the river. A Mr. Harris of the Augusta Sentinel, is to be a "wheel", about 6 inches in diameter, which acts itself in motion, and runs with increased velocity, until stopped by the application of external power. —

NEW RAILROAD SWITCH...—Figure 1.

This Switch is the invention of William C. Harris of Bettendorf, Iowa. Its object is to shift the rail or rails by the locomotive, as the change of the track will be effected without any attention of the switchman for the locomotive comes up on the line on which the train has run. Fig. 1, is a horizontal ground plan, and fig. 2, a side view. The same letters indicate like objects on both figures. A, are the rails of the out turn. B, are the rails of the main track, and C, are the switch rails. D, are nosed cover of the form seen in the Figure 2.

ThisSwitchisitheinventionofWilliamC.

Harris of Bettendorf, Iowa. Its object is to shift the rail or rails by the locomotive, as the change of the track will be effected without any attention of the switchman for the locomotive comes up on the line on which the train has run. Fig. 1, is a horizontal ground plan, and fig. 2, a side view. The same letters indicate like objects on both figures. A, are the rails of the out turn. B, are the rails of the main track, and C, are the switch rails. D, are nosed cover of the form seen in the Figure 2.
Electricity and Cokes.

It has been proved beyond doubt that our health and feelings are greatly influenced by electrical conditions. The colonel of one of the number of papers which has come to our knowledge during the recent epidemic in this city, and that those states of air which lessen the activity of our bodies are more or less injurious. It is certain that a marked relation between chlorides and electricity has been abounded, and that the recent extreme period of exposure to these facts is exhibited in the reports of the Registrar-General which claim to be considered at least something more than mere coincidences. Thus during a period of weeks, beginning with September 2, when comparing the health of our patients with that of a place like this, and the electrical activity in the atmosphere, it was found that in the first week the number of cases was seven, while electricity could only be discovered in the air on two occasions; in the second week, cases, with a little electricity; in the third week, three cases; with a total absence of electricity; and in the succeeding weeks, while the number of cases varied between five and twenty cases per week, there was one single indication of electricity could be found. This remarkable absence of electric phenomena appears to be an almost unique occurrence.

And therefore the Electric Bell of Mr. C. C. Rogers, Jefferson, Michigan, which I had in my possession in 1847, in its present state of efficiency of its meritorious, and the one that we have had on the market for some time, has not been proved to be a true scientific principle, should claim particular attention.

A Gold Winter.

This has been one of the severest winters on record. The snow flakes have been dancing away South on their cold but dewy pinions. At Chicago in Illinois two men and a horse were found frozen to death on the road by the side of a snowdrift. At Angles in Washington City this State, the snow was yesterday ranged for 12 inches, and the electrometer of the University was 18 to 38 degrees below zero, and has been as low as 20 degrees. It had never snowed above 90 feet. The way we have been going this winter, perhaps some other place has been giving it a hard rub this winter.

Dr. Bohlen, librarian of the Hartford, Ct., Athenaeum, who is now at a point 18 years of age, and has kept a record of the weather for a number of years, has become a member of a new society called the "Babylonians," a sect of all the known and living people, and has been the object of much attention. He has written a book of the history of the world, and has been the subject of much public discussion. He has also written a book of the history of the world, and has been the subject of much public discussion. He has also written a book of the history of the world, and has been the subject of much public discussion.

The First Pacific Whaler.

The New Bedford Mercury states that the Franklin, the American-whale ship that first steered for the Pacific was the ship Rebecca, of 455 tons (then considered a large ship). She sailed from New Bedford in September, under the command of Capt. Kearsley. It was considered an enterprise of great peril. She performed the voyage, and returned home, after an absence of fifteen months, with a full cargo of oil obtained on the coast of Chili and Peru. Capt. Joseph Kearsley, who commanded the New Bedford at an advanced age, was a boatswain in H.M.S. Fusilier, during the American Revolution. The whaling fleet of the United States now consists of 560 ships, 20,000 tons, and 13,000 are the subject of this article, and we have been able to obtain the reports of the whaling vessels, and have made for themselves a considerable number of facts. In 1848 Mr. Davenport of Philadelphia, had an electro-magnetic engine in public operation. In 1820 Professor Jocelyn, of St. Petersburg, Russia, propounded a boat on the New York Queen of the rate of about four miles an hour. In 1840 a paper was printed in this city by an electro-magnetic engine, and in 1841 and 1842, nothing was talked of but galvanic engines. Great numbers were made about this time in this country, but we believe there is not a single one of them at present in operation. In 1842 two small vessels were taken out in England to propel small vessels by electro-magnetic, and at that time all the steam vessels were to be propelled by electro-magnetic engines. The dream of Hornaday, and the idea of the scientific, the reverse fortune has happened with it. In 1842 Dr. Liebig warned his countrymen against the employment of electro-magnetic as a motive power, saying the question only was in the light of an amazing, and as evidence in trade and science.
Magneto-Motive Force.

To return to the subject of investigation.

It is important to note that the characteristic of a magnet is that it possesses a magnetic force, which is directed along the axis of the magnet. This force is the result of the alignment of magnetic domains in the material, which creates a net magnetic field. The magnitude of this force is proportional to the number of domains and their alignment. The direction of the force is determined by the direction of the alignment of the domains.

In the case of a bar magnet, the force is directed along the axis of the magnet, with the North pole attracting the South pole of another magnet, and vice versa. The strength of the force depends on the material and the size of the magnet. The force can be measured using a magnetic field meter or a gauss meter.

The study of magnets and magnetism is important in various fields, including physics, engineering, and technology. Understanding the behavior of magnets is crucial for the development of magnetic materials, magnetic devices, and magnetic technologies.

In summary, the study of magnets and magnetism is essential for the development of technological applications, such as magnetic storage devices, magnetic levitation systems, and magnetic resonance imaging. The properties of magnets and their magnetic forces are fundamental to many aspects of modern technology and science.
TO CORRESPONDENTS.

S. R. P. of St. Louis, we have shipped you on the 16th Day, by the ship Indiana, and it is probable in the hands of the consignee, at New York, on the 29th of the same month. We shall forward through Messrs. M. H. who are, and always have been, your friends. You will find a copy of your communication forwarded from St. Louis to Baltimore, but you will find New York the best place to send your letters to.

E. H. M. of III. It does not always occur that a few engine steam is not at any high consumption, and Mr. C. deserves a great deal of credit for his commencement of operation. We have seen engines throw higher after being worked out than they were before. The Jts. which you have seen is evidences of too much water, and is considered by all who have seen it as the most valuable machine now in use at the Patent office. It seems to be a splendid idea that you proposed in regard to the construction of such a machine. We had better decide ourselves, and as we are going out, if you could send us a model, with all your ideas combined in it—your engine is now the best in the world. We hope our communications will be read by all who are interested in such a question.

R. S. N. of Y. It is not probable that any part of the apparatus you refer to has been secured by letters patent. If we judge correctly from your statement that no patent could be secured for it.

Subscribers take Notice.

We hope those of our patrons who have paid but one dollar towards their subscription for the present volume of the Scientific American will bear in mind that the time for which they have paid expires with the next number. To those whose subscriptions are not paid with No. 55 we enclose a prospectus; and, you will find that you place your own names upon it, and send to us with the balance of your year's subscription, but we also make it a condition that you will order your friends to send us their subscriptions before you join, and therefore, avail yourself of our current terms as per advertisement on the following page. Notice the present offer.

Two adjacent pages of our work are at this time in the hands of the undersigned and by a majority of the manufactories and manufacturers. It seems to be considered the best work that has been published for the machine, machinery, machines, or engines, ever made or invented, and greatly needed by the public.

In the few advertisements in this paper are regarded with more attention than those in closely printed cards.

Advertisements are inserted in this paper at the following rates:

One square, at nine times one insertion, $6.00
Two squares, at half the above, $1.00
Three squares, for one month, $1.50
Four squares, for two months, $2.00
Five squares, for three months, $2.50
Six squares, for six months, $3.00

TERMS—CASH IN ADVANCE.

BRITISH PATENTS—MESSRS. MCDONOUGH & CO.

PATENT SOLUTIONS.

[Olive branch is a common name for a number of species of flowering plants, including the olive tree, which is native to the Mediterranean region. It is a tree that typically grows to a height of 10-15 meters and is often cultivated for its fruit, the olive, which is used to make olive oil. The olive tree is also valued for its wood, which is used in furniture, flooring, and other applications. It is a hardy tree that can withstand drought and poor soil conditions, making it a popular choice for landscaping and horticulture.]

STEAM ENGINES.

[Steam engines are a type of engine that convert heat energy into mechanical work, typically using steam as the working fluid. They are a fundamental component of many industrial applications, including the operation of trains, factories, and power plants. Steam engines are characterized by their use of water and steam, which are heated to produce high-pressure steam that drives a piston or turbine to generate power. They have been replaced by more efficient and powerful engines in many applications, but they remain important in certain contexts, such as in the operation of certain types of machinery.]

L. N. FOWLER.

DICK'S ANTI-FRICATION PRESS.

[The Anti-Friction Press is a type of printing press that was used to print newspapers, books, and other printed materials. It was invented by James Dicks, a printer, in the late 19th century and was designed to reduce friction between the paper and the printing surface, which improved the quality and durability of the printed product. The anti-friction press was a significant improvement over the traditional letterpress, which relied on friction to transfer ink from the type to the paper. It was widely used in the printing industry and remains a valuable tool for collectors and historians interested in printmaking and the history of typography.]

L. N. FOWLER.

STEAM BOILERS.

[Steam boilers are a type of heating system that uses water to produce steam, which is then used to power engines or steam turbines in a variety of applications, including the operation of locomotives and power plants. Steam boilers are typically classified by their pressure and temperature, with high-pressure boilers being used in power plants and low-pressure boilers being used in domestic and commercial applications. They are an essential component of many industrial processes and remain a key technology in the production of electrical power and in the operation of machinery and equipment.]
This is a rotary engine invented by Walter Forrest of Bath, England and patented in the name of the inventor himself. It has been described by the following diagram, and will just as soon be conveyed by the reader to the place as if it had been bought or seen by the reader. Is it a steel or iron steam engine?...

...is a side view of the steam wheel, and the manner of working, assembly, and construction of the valves, and their mode of action in the steam-way. A, is the steam wheel revolving upon its axle B. C D E F G H I J, are six flaps valves, having steam-tight joints, and fixed to six blocks on the periphery of the steam wheel; three of the valves are shown open, and three closed. A is a fixed flap for securing the steam wheel, which is composed of an upper and lower piece accurately fitting sides of the chamber, and connected together by means of steam being conducted to or received from as an easy adjustment. When the lower curved surface may become worn, the piece of the opposite curvature in the steam wheel in its revolutions.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.

...is the position of the part of the steam wheel.