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      INTRODUCTION

Elliptic curves over finite fields 

Have been in the centre of

attention of  Cryptographers since

the invention of

 “ Elliptic curves  cryptography ”.

         



Continue(introduction)

          It is not very hard to show 
that, unless the base field is 

extremely  small  such curves  
always have rational points other 

than O , the  point at infinity .



Continue(introduction)

Until now, this was possible only
using an obvious probabilistic method:given 
an equation for the curve, substitute random 
values for all coordinates but one and see if 

the remaining univariate equation can be 
solved for the last coordinate.



              

Continue(introduction)

M. Skalba proved that, 

           given a cubic polynomial

                      f(x) = x3 + Ax + B

                                over a field F with   
characteristic unequal to 2 or 3, with A ≠ 0, 

we have the identity

           f(X1(t
2))f(X2(t

2))f(X3(t
2)) =U(t)2  ...........(1)

for some nonconstant univariate rational

functions X1,X2,X3,U over F 



Continue(introduction)

Now assume that F is a finite field and that

  the curve E is defined over F by the equation

   y2=f(x), with f (as last side). The multiplicative

  Group F is cyclic, 

  The multiplicative group F is cyclic , and

 Therefore , as Skalba notes , if we specialise t

 in (1) to some value t0 in F ,  we find that 

 at least one of the f(Xi(t0
2)) is a square in F*. 

 However, no efficient deterministic algorithm is

  known to date to take the square root .



Continue(introduction)

           we show how to go on from this point 
to obtain a complete efficient deterministic

algorithm for constructing rational points 

on curves given by cubic Weierstrass 
equations over finite fields. We will reprove 

Skalba’s Result to obtain, for the case of 
finite fields  of odd characteristic, a 

parametrisation as in (1) that is invertible as 
a rational map 



                      Continue(introduction)            

The construction of this parametrisation 
in the

case of odd characteristic rests on the 
ability 

to solve deterministically and efficiently

equations of the form

              ax2 + by2 = c …………………(2)

over finite fields.



Quadratic EquationsQuadratic Equations

Lemma 2Lemma 2. There exists a deterministic 
   algorithm that, given a finite field F of
   q elements, and nonzero elements a    
   and z of F such that either
  (i) v2 (ord a) < v2 (ord z), 
         or
 (ii) ord a is odd,

      computes a square root of a, in  time   
      polynomial in log q.



Theorem 3  .

 There exists a deterministic algorithm that, 
given a finite field F

of q elements, and nonzero elements a0 , a1 , 
a2 , b of F such that a0 a1 a2 = b2 ,

returns an i in {0, 1, 2} and a square root of 
ai , in time polynomial in log q.



Theorem 4.

 There exists a deterministic algorithm that, 
given a finite field F

of q elements, and nonzero elements a, b, c 
of F, computes x, y  F such that∈

ax2 + by 2 = c.



continue(Weierstrass Equations)

        If E is nonsingular, then the projective 
closure È of E is a smooth projective curve of 

genus 1 over F with a specified rational point, so 
it is an elliptic curve over F, and every elliptic 

curve over F may be given in this way. The set of 
rational points on E has a natural abelian group 
structure , with the point O as identity element.



continue(Weierstrass Equations)

         We will be interested in methods to 
construct rational points on E other than O, or to 
show that no other points exist. 

By Hasse’s bound , we know  that the number N 
of rational points on É satisfies

                         |q + 1 − N | ≤  2 √  q.



continue(Weierstrass Equations)

            From this, it is easily verified that É has at 
least 2 rational points whenever  q ≥ 5. 

 On the other hand, if q ≤ 4, curves over F exist 
with only the trivial

rational point O, such as the curve y2 = x3 − x − 1 
over F3 , and the curve

y 2 + y = x3 + α over F4 = F2 (α).



Normal Forms.

         The equation (3) may be simplified 
depending on the characteristic of the base field. 
We give these forms in detail as we will use their 
properties 

       If the characteristic of F is not 2 or 3, then a 
linear change of coordinates transforms (3) into

y 2 = x3 + Bx + C =def f (x)..........................(4)



Continue(normal form)

For this form of the equation, the important associated 
quantities Δ (the dis-criminant ) and j (the j-invariant ) 
are easily computed: we have

        Δ = −16(4B 3 + 27C 2 )    , j = −1728(4B)3 /Δ.

Now E is singular if and only if Δ = 0, and thus if and 
only if the right hand side f (x) of (4) has a repeated 
zero; it has j-invariant 0 if and only if Δ = 0 and

B = 0.



Continue(normal form)

In characteristic 3, we must admit a third coefficient; we 
can transform (3)

into

     y 2 = x3 + Ax2 + Bx + C =def f (x) ...................(5)

with associated quantities

                Δ = A2 B 2 − A3 C − B 3  ,    j = A2 /Δ.

   Again, E is singular if and only if f has a double zero. 
Also, we find that for a nonsingular equation we have

                j = 0 if and only if A = 0.



Continue(normal form)

In characteristic 2, no coefficient of (3) can be omitted 
in all cases. However,

we can obtain one of the following two normal forms, 
depending on whether a1  is zero:

Y2 + a3 Y = X 3 + a4 X + a6       if a1 = 0 initially........(6)

 Y2 + XY = X3 + a2 X
2 + a6    ifa1= 0 initially......... (7)



Continue(normal form)

            In these normal forms, we have Δ = (a3 )
4 and 

Δ = a6 , respectively, which gives

an easy criterion for singularity of E. Furthermore, for 
nonsingular equations,

the two cases correspond to j being respectively zero 
or nonzero.



Elliptic Curves in Odd 
Characteristic



Lemma 5

For any u, v, w  F satisfying u + v + w + A = 0, ∈

we have

f (u)f (v)f (w) = (uv + uw + vw − B)3  

                                   f((uvw + C) /(uv + uw + vw − B)

                                                         ..........................(9)



Lemma 6.

Put h(u, v) = u2 + uv + v 2 + A(u + v) + B, and define

S : y 2 h(u, v) = −f (u)           ............................(12)

ψ : (u,v,y)→(v, −A − u − v, u + y2, f (u +y2 )h(u, v) y-1

                                                                        ..........................(13)

                                Then ψ is a rational map from the 
surface S to V that is invertible on its image.

   



Lemma 7

There exists a deterministic algorithm that, given a 
finite field F of

q elements, where q is odd, a nonsingular cubic 
Weierstrass equation y 2 = f (x)

over F, and an element u  F such that∈

f (u) ≠ 0 and 3/2u
2 + 1/2Au + B − 1/4 A

2 ≠ 0 



Continue(lemma 7)

computes a rational map,

φ : A1  S→

defined over F that is invertible on its image, in 
time polynomial in log q. Here

the surface S is as defined in (12).



Lemma 9

 Let F be a finite field of q elements, let u0  F ∈
satisfy the requirements of Lemma 7, and let φ : 
A1 → S be the corresponding map. Let ψ be the

map from Lemma 6.

Then there is a subset T  F of cardinality at least ⊆
(q − 4)/16, such that for

all distinct t, t/  T , the points ψ ◦ φ(t) and ψ ◦ φ(t∈ / ) 
are disjoint.



Elliptic Curves in Characteristic 2



Lemma 10.

           If f is linear in X, then there exists a          
deterministic polynomial-time algorithm that   
returns a point of Y 2 + Y = f (X) over a finite 

field F.



Lemma 11

Let F be a field of characteristic 2. There exist rational 
maps φ1 :

S1 → V1 and φ2 : S2 → V2 over F which are invertible 
on their images, given by 

                    φ1 : (x, y, w) → (x, y, xy(x + y)−1 , w)

                    φ2 : (x, y, w) → (x, y, x + y, w) .



Theorem 12

There exists a deterministic polynomial-time algorithm 
that,

given a finite field F of characteristic 2 with more than 
4 elements and an elliptic

curve E over F, computes a nontrivial rational point on 
E.



Theorem 13

Let F be a finite field of order q = 2r with q > 4. The 
number of

disjoint points of V1 that arise from Theorem 12 is at 
least (q − 4)/6.



               

Theorem 1. 

There exists a deterministic algorithm that, 
given a finite field F of q elements and a 
cubic Weierstrass equation f(x, y) over F:

                    

       



Continue (Theorem 1)

         (i) detects if f(x, y) is singular, and 
if so, computes the singular points and 
gives A rational  parametrisation of all 
rational points on the curve f(x, y) = 0;



                   Continue (Theorem 1)          

(ii) if f(x, y) is nonsingular and

 |F| > 5, computes an explicit rational 
map  from the affine line over F to an 

affine threefold V

that is given explicitly in terms of the 
coefficients of f;

          



Continue (Theorem 1)

      (iii) given a rational point on the threefold V , 
computes a rational point on the

elliptic curve E : f(x, y) = 0, in such a way that at

least (q − 4)/8 rational points on E are obtained 

from the image of the map , and at least (q−4)/3

if F has characteristic 2;

               and performs all these tasks in time

polynomial in log q.
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