
Introduction to Physical Chemistry – Lecture 6

I. LECTURE OVERVIEW

In this lecture, we will discuss the concept of entropy,
which is perhaps the most difficult and yet most impor-
tant concept in thermodynamics. In introductory phys-
ical chemistry courses, it is traditional to begin the dis-
cussion of entropy from the perspective of heat engines,
in particular the Carnot cycle. This approach is more
consistent with the actual history of thermodynamics,
since entropy was first discovered from the study of heat
engines. While we will discuss the Carnot cycle later
in this course, I will take a shot at approaching entropy
from the perspective of statistical mechanics. While this
approach is somewhat more subtle and initially more dif-
ficult, I think it ultimately provides a physically clearer
picture. The statistical mechanical approach to entropy
provides the fundamental connection between tempera-
ture, energy, and entropy, and therefore leads to better
understanding of the laws of thermodynamics.

This lecture is HARD. This is probably the most dif-
ficult lecture in the whole course. In terms of what you
actually need to know for solving the homework prob-
lems and test questions, there is not that much mate-
rial in this lecture. The one equation you will need to
remember is dS = (δQ/T )rev (which will be explained
later). Despite this, I have decided to give a fairly thor-
ough theoretical treatment of entropy, because I think
it is better to get exposed to the reasoning behind var-
ious scientific concepts as soon as they are introduced,
even if one doesn’t fully grasp them at first. For those of
you who will continue in the physical sciences, you will
probably find that it will take several more exposures to
the concept of entropy, and in various contexts (thermo-
dynamics, statistical mechanics, probability theory, etc.)
before fully grasping it. Even at that point, subtle points
may still arise, either in a course or in the context of your
own research, that will force you to stop and think for a
while.

II. A MISSING THERMODYNAMIC
PRINCIPLE?

We begin our discussion with a box separated into two
compartments by a wall (see Figure 1). One side of the
box is filled with a gas (say an ideal gas such as air),
and the second side is empty. There are n moles of gas
inside the box, which has a volume V , and the gas is at
a temperature T and P .

If we now remove the wall, then the gas will expand
and eventually fill the whole compartment. Because no
work was done on the system, and because no heat was
added or removed, the First Law reads ∆U = 0 for this
process. If the gas is ideal, then this means the final

FIG. 1: An ideal gas confined to one side of a box disperses
throughout the whole box when the barrier is removed.

temperature of the gas (after dispersing throughout the
box) is the same as its starting temperature. The gas
has expanded to twice its volume of course, and so its
pressure has dropped to half its original value.

This process is clearly irreversible, since we will never
see the gas spontaneously move into one half of the box
(or at least, it will take much longer than the age of the
universe for this to happen). And yet, the First Law
of Thermodynamics gives us no information as to the
directionality of this process. All it says is that the in-
ternal energy of the gas is not affected by its dispersion
throughout the box.

Clearly, something is missing. There must be a princi-
ple that should be able to tell us whether or not the gas
will disperse throughout the box. To find this principle,
we look to the laws of probability.

III. THE PRINCIPLE OF MOST PROBABLE
STATES

Assume that we have a box containing N balls. Each
ball has an equal probability of being in the left or right
side of the box. The question we wish to answer is, how
many different ways are there of placing n balls on the
left side, and N − n balls on the right side?

The answer is a standard one from combinatorics, but
we will provide the derivation here: First of all, let us
label the balls 1 through N . We wish to place exactly
n balls on the left side, which automatically means that
N − n balls are placed on the right side. So, we pick
the first ball to be placed on the left side. Since there
are N balls, there are N possibilities for this first pick.
Let i1 denote the first ball placed on the left side. For
the second ball, there are N − 1 possibilities. Let i2
denote the second ball placed on the left side. Continuing



2

in this way, we obtain that for the nth ball, there are
N −n+1 possibilities. Therefore, we have that there are
N×N−1×· · ·×N−n+1 = N !/(N−n)! possibilities in
placing n balls on the left side. But we are not quite done,
for notice that our algorithm has generated a sequence
i1, . . . , in of balls placed on the left side. Note, however,
that we are interested in the number of distinct ways of
placing n balls on the left side. We are not interested in
the order in which those balls were placed. For example,
if we placed balls 1, 2, 3 on the left side, we don’t care
if the balls were placed in the order 1, 2, 3, or 3, 1, 2 or
2, 3, 1. The end result is the same. Therefore, for a given
configuration i1, . . . , in of n balls, any permutation of the
indices 1, . . . , n will still give the same final configuration
of balls on the left side. Since there are n! permutations
of the indices 1, . . . , n, a given set {i1, . . . , in} of balls
on the left side is generated in n! different ways by our
algorithm. Therefore, the number N !/(N − n)! must be
divided by n! to obtain the number of distinct ways of
placing n balls on the left side of the box.

Putting everything together, we get that the number
of different ways of placing n balls on the left side of the
box and N − n balls on the right side of the box is,(

N

n

)
=

N !
n!(N − n)!

(1)

In English, the expression
(
N
n

)
is read “N choose n.”

It is an expression that appears time and again in com-
binatorics and probability. For example, the binomial
expansion of (a + b)N is given by,

(a + b)N =
N∑

n=0

(
N

n

)
anbN−n (2)

It should be noted that since 0! = 1,
(
N
0

)
= 1.

Now, if we plot
(
N
n

)
versus n for various values of n,

we will notice that
(
N
n

)
reaches its maximum value at

n = N/2. We will also notice that as N increases, the
peak at n = N/2 becomes sharper and sharper.

What does this mean, physically? It means that the
number of ways of putting half of the balls in one side of
the box and half of the balls in the other side completely
dominates all other configurations, as the number of balls
goes to ∞. Therefore, as the number of balls becomes
very large, by far the most probable configuration is the
one where half of the balls are on one side and half the
balls are on the other (you can think of this in terms of
flipping a coin, where “heads” corresponds to putting a
ball in the left side of the box, and “tails” corresponds to
putting a ball on the right side. By definition of probabil-
ity, as the number of coin flips goes to ∞, the fraction of
“heads” goes to 1/2, so that exactly half the balls will be
placed in the left side of the box, and half will be placed
in the right side of the box).

Going back to the example of the ideal gas dispersing
throughout the box, we postulate that this happens be-
cause the ideal gas is simply going into its most probable

state. That is, it is far more likely for the gas to be evenly
distributed throughout the box than it is for it to remain
on one side. As the number of particles in the gas be-
comes infinite, the probability of the gas staying in only
one side of the box goes to 0.

If we extend this to be a general principle, we can
formulate the following

Hypothesis: A system comes to thermodynamic equilib-
rium when it is in its most probable state, or equivalently,
when it is in a configuration for which the number of ways
of achieving that configuration is maximized.

For a given configuration, the number of ways of
achieving the configuration is denoted by Ω. Ω is re-
ferred to as the degeneracy of the system for the given
configuration.

Returning to the example of the balls in the box, we
have N + 1 distinct configurations, where n represents
the configuration where n balls are on the left side of the
box, and N − n balls are on the right side of the box.
The degeneracy for this configuration, denoted Ω(n), is
given by,

Ω(n) =
(

N

n

)
(3)

Because Ω(n) is maximized when n = N/2, our system
comes to thermodynamic equilibrium when n = N/2.

IV. ENTROPY: A NEW STATE FUNCTION

A. Definition of entropy

Given a system, we let Ωequil denote the degeneracy
of the system when it is in thermodynamic equilibrium
(that is, Ωequil is the degeneracy of the most probable
configuration of the system). We would like to use Ωequil

to construct a state function for the system. In anticipa-
tion of what is to follow, we will call this state function
the entropy, and denote it by S. We don’t know yet what
the functional relationship between S and Ωequil will be,
so for now we write S = f(Ωequil). Note that, by def-
inition, S does indeed only depend on the state of the
system, and not how the system got there, hence S is a
state function.

To begin, we would like the entropy to be an exten-
sive variable. This means that, if we have two systems
in their respective equilibrium states, and if S1 is the
entropy of system 1, and S2 is the entropy of system 2,
then we would like the total entropy to be S1 + S2. Let
Ω1 denote the degeneracy of system 1 in its equilibrium
state, and let Ω2 denote the degeneracy of system 2 in
its equilibrium state. Then the total degeneracy of the
combined system is Ω12 = Ω1Ω2. Since we would like
S12 = S1 + S2, then we have f(Ω1Ω2) = f(Ω1) + f(Ω2).
We will show later that this implies that f(Ω) = C lnΩ,
where C is some constant.



3

FIG. 2: Two systems in thermal contact will exchange ther-
mal energy in such a way as to maximimize the total degen-
eracy of states Ω1Ω2.

Therefore, the entropy S of a system in thermody-
namic equilibrium is given by S = C lnΩ, where C is
a constant which we will determine later.

B. The connection between entropy and
temperature

Figure 2 illustrates two systems at fixed volume, both
in their equilibrium states with internal energies E1 and
E2, respectively, which are placed in thermal contact
with each other. The definition of thermal contact means

that the two systems can exchange energy with each
other. If these two systems are isolated from the rest
of the environment, then no matter what exchange of en-
ergy occurs, the total energy in the system must remain
E ≡ E1 +E2 at all times. Therefore, if E′

1 and E′
2 denote

the energies of systems 1 and 2 respectively at any given
time, then we have E′

1 + E′
2 = E, so that E′

2 = E − E′
1.

Now, we know that energy will flow from the hotter
system to the colder system. As explained in earlier lec-
tures, this follows directly from the definition of temper-
ature. However, we also know that the combined system
will evolve in time to achieve a configuration with the
maximal degeneracy. This of course dictates a direction
of energy flow, since energy flow between the two systems
will occur in such a way as to maximize the degeneracy
of the combined system. Clearly, then, there must be a
connection between entropy and temperature. We will
determine this connection now:

Let Ω1(E′
1) denote the degeneracy of system 1 when

it is in its equilibrium state at total energy E′
1. Let

Ω2(E′
2) denote the degeneracy of system 2 when it is

in its equilibrium state at total energy E′
2. The degen-

eracy of the combined systems, with system 1 at energy
E′

1, and system 2 at energy E′
2, is Ω1(E′

1)Ω2(E′
2). Now,

if the two systems are in thermal contact, so that en-
ergy can flow between them, we know that energy will
flow between them in such a way that Ω1(E′

1)Ω2(E′
2) is

maximized, subject to the constraint E′
1+E′

2 = E. Rede-
noting E′

1 by E′, we then have that we wish to maximize
Ω1(E′)Ω2(E − E′).

Differentiating Ω1(E′)Ω2(E − E′) with respect to E′

gives,

d

dE′ [Ω1(E′)Ω2(E − E′)] = Ω′1(E
′)Ω2(E − E′)− Ω1(E′)Ω′2(E − E′)

= Ω1(E′)Ω2(E − E′)(
Ω′1(E

′)
Ω1(E′)

− Ω′2(E − E′)
Ω2(E − E′)

)

= Ω1(E′)Ω2(E − E′)[(
d lnΩ1

dE′
1

)E′
1=E′ − (

d lnΩ2

dE′
2

)E′
2=E−E′ ]

= Ω1(E′)Ω2(E − E′)
1
C

[(
dS1

dE′
1

)E′
1=E′ − (

dS2

dE′
2

)E′
2=E−E′ ] (4)

Note then that when (d/dE′)[Ω1(E′)Ω2(E − E′)] is
positive, it implies that to maximize the degeneracy of
the combined systems, E′ must increase, so that energy
must flow from system 2 into system 1. However, the
statement that (d/dE′)[Ω1(E′)Ω2(E − E′)] is positive
is equivalent to the statement that (dS1/dE′

1)E′
1=E′ −

(dS2/dE′
2)E′

2=E−E′ is positive. Therefore, energy flows
from system 2 into system 1 when (dS1/dE′

1)E′
1=E′ −

(dS2/dE′
2)E′

2=E−E′ > 0.

Following a similar line of reasoning, we get that

energy flows from system 1 into system 2 when
(dS1/dE′

1)E′
1=E′ − (dS2/dE′

2)E′
2=E−E′ < 0. Finally, the

combined system has achieved thermodynamic equilib-
rium (that is, (d/dE′)[Ω1(E′)Ω2(E − E′)] = 0) when
(dS1/dE′

1)E′
1=E′ − (dS2/dE′

2)E′
2=E−E′ = 0. So let’s sum-

marize the results of this analysis, and compare with
what we know about temperature, to see if we can guess
the desired relationship.

1. Energy flows from system 2 into system 1 when
(dS1/dE′

1)E′
1=E′ > (dS2/dE′

2)E′
2=E−E′ . This
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statement must be equivalent to the statement that
T1 < T2.

2. Energy flows from system 1 into system 2 when
(dS1/dE′

1)E′
1=E′ < (dS2/dE′

2)E′
2=E−E′ . This

statement must be equivalent to the statement that
T1 > T2.

3. Thermal equilibrium is achieved when
(dS1/dE′

1)E′
1=E′ = (dS2/dE′

2)E′
2=E−E′ . This

statement must be equivalent to the statement
that T1 = T2.

Note that a relationship between temperature and en-
tropy that guarantees the equivalence of all three state-
ments is to define the temperature T via,

1
T

=
∂S

∂E
(5)

This is the fundamental connection between entropy
and temperature that we have been looking for. It also
reveals that although it is a more difficult concept to
grasp, entropy is more fundamental than temperature.

The principle of most probable states allows us to un-
ambiguously define a direction of energy flow between two
systems in thermal contact. Because the direction of en-
ergy flow is what allows us to define a temperature scale,
we see that temperature must be directly connected to en-
tropy.

V. THE SECOND LAW OF
THERMODYNAMICS

A. Entropy change of a process

If we consider a system at constant volume, as with
the previous section, then we obtain for an infinitesimal
change in the system state that dS = dE/T . Since E
is the total energy of the system, we have that E = U ,
so that dS = dU/T . Furthermore, since for a system
at constant volume we have dU = δQ, we obtain that
dS = δQ/T .

This expression, while correct, leaves out a crucial
point: When computing entropy changes infinitesimally,
the path taken must be a reversible one. That is,
dS = (δQ/T )rev, meaning that heat transfer occurs in
such a way that the system is in a thermodynamic equi-
librium state at all times.

This is a subtle point, and therefore worth explain-
ing: In the previous section, we defined entropy to be a
state function that depends on the energy of the system.
Volume was not explicitly included, since we were deal-
ing with a constant volume process. Nevertheless, we
can introduce a volume dependence as well, and write
S = S(E, V ). However, we also have that S = C lnΩ,
where Ω is the degeneracy of the system at energy E
and volume V . For S to be well-defined, that is, for it
to have one unambiguous value, it follows that Ω must

itself be a function of E and V . As we saw with the
example of the gas dispersing throughout the box, for
a given energy there are many different configurations
with different degeneracies that are consistent with the
given energy and volume. Therefore, to make S a state
function that depends only on E and V , we have to se-
lect one configuration out of all possible configurations.
The configuration we select is the one with the maximum
degeneracy.

However, this means that entropy is only a relevant
concept for a system in thermodynamic equilibrium.
Therefore, if we wish to compute the entropy change of
a system as it moves from one equilibrium state to an-

other by computing an integral of the form
∫ State 2
State 1 dS,

then we are implicitly considering infinitesimal changes
to the system that lead to infinitesimal changes to the
degeneracy of its most probable state. Since each most
probable state defines an equilibrium state of the sys-
tem, we are effectively moving along a path that takes us
through a continuum of equilibrium states. And so, we
have dS = (δQ/T )rev.

Going back to the example with the gas in the box,
when the wall is in place, the entropy of the system is
given by S = S(E, V ). When the wall is removed, the
entropy becomes S = S(E, 2V ). Note that the entropy
is simply determined by the most probable state of the
gas when it is allowed to disperse throughout the whole
box. That the gas is not in that state when the wall is
first removed is not a problem with the definition of en-
tropy, rather, it simply takes time for the gas to disperse
throughout the box and achieve a new equilibrium state.
From the point of view of the formula dS = (δQ/T )rev,
however, this means that removing the wall does not
define a valid path for computing the entropy change
associated with isothermally doubling the volume of an
ideal gas. The reason for this is that the most probable
state of the system does not change smoothly, but rather
jumps suddenly, making S discontinuous for this path.
So, we have to find another path if we wish to compute
the change in S by integration.

B. The first and second laws of thermodynamics

For a process that occurs at constant volume, we have
dU = TdS, if the process is reversible. Allowing for PV -
work gives,

dU = TdS − PdV (6)

which is the first law of thermodynamics for reversible
processes. The expression,

dS = (δQ/T )rev (7)

is known as the Second Law of Thermodynamics.
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C. Determination of C

To determine the constant C in the formula for en-
tropy, let us return to the example of the ideal gas ex-
panding to fill out the whole box. Based on the formula
for S, we have ∆S = C lnΩ2 − C lnΩ1 = C ln(Ω2/Ω1),
where Ω1 denotes the degeneracy of the gas when con-
fined to one half of the box, and Ω2 denotes the degen-
eracy when the gas is allowed to disperse throughout the
box. Now, for the purposes of this problem, there is
only one way of putting all the gas moleclues on the
left side of the box (we simply put all of them on the
left side!). However, for the most probable configuration
when the gas is dispersed throughout the container, there
are N !/(N/2)!2 ways of putting half the gas molecules on
the left side of the box, and half on the right side. This
gives Ω2/Ω1 = N !/(N/2)!2, and so,

∆S = C(lnN !− 2 ln(
N

2
)!) (8)

To evaluate this expression, we use an approximation
known as Stirling’s formula, which says that for large N ,
lnN ! ≈ N lnN −N . The precise formulation, which we
will prove in the appendices, is that limN→∞(N lnN −
N)/ lnN ! = 1.

Using Stirling’s formula, we get that, for large N ,

lnN !− 2 ln(
N

2
)!) = N lnN −N −N ln

N

2
+ N

= N ln
N

N/2
= N ln 2 (9)

and so,

∆S = NC ln 2 (10)

We now compute the same entropy change using the
infinitesimal expression for entropy change: First we al-
low the gas to undergo an adiabatic, reversible expansion
from its initial volume to its final volume. Since the gas
cools in this process, we then heat it back up to it original
temperature.

During the adiabatic expansion phase, δQ = 0, and
hence dS = 0 ⇒ ∆S = 0. However, from the rela-
tion T2/T1 = (V̄1/V̄2)R/C̄V , we have that after the adi-
abatic expansion the gas has cooled to a temperature
T2 = T1(1/2)R/C̄V , where T1 is its starting temperature.

Therefore, in the second phase, the gas must be heated
reversibly from T1(1/2)R/C̄V to T1. In this phase, we have
dU = δQ = TdS ⇒ dS = nC̄V dT/T , and so integrating
we obtain,

∆S = nC̄V ln
T1

T2

= nC̄V ln 2R/C̄V

= nR ln 2 (11)

Since we have ∆S = NC ln 2 = nNAC ln 2 by using the
degeneracy formula, we obtain C = R/NA = k, giving,

finally, the famous Boltzmann formula for entropy,

S = k lnΩ (12)

It should be noted that this formula is written as the
epitaph on Boltzmann’s grave.

What might seem a bit strange by this computation of
C is the connection between two very different ways of
determining ∆S. This apparent difference is only an il-
lusion, however. The reason for this is that the ideal gas
law itself is derivable from the principle of most prob-
able states, assuming we have a set of non-interacting
point particles. Therefore, all formulas (adiabatic expan-
sion/compression, heating, etc.) associated with comput-
ing ∆S for an ideal gas are equivalent to formulas making
explicit use of degeneracy of configurations. By formu-
lating our expressions in terms of temperature, energy,
etc., this equivalency is well-masked. Statistical mechan-
ics is the tool that allows us to “remove the mask,” so
to speak, and to explicitly reveal the connection between
the underlying molecular dynamics of a large number of
particles and the thermodynamic properties of the result-
ing system.

As a result of the statistical mechanical approach to
entropy taken in this lecture, you have already had an
initial taste of this important field. If time permits, I
will provide further exposure at the end of the semester
and explicitly derive the ideal gas law.

D. Ensembles, statistical mechanics, and various
formulas for entropy

Our development of the concept of entropy involved
a constant volume, isolated system. When energy flow
was allowed, it was with another such system, so that
the composite system was itself isolated. Therefore, to-
tal energy remained a constant in the system, and we
defined entropy as a function of the degeneracy of the
most probable state at the given energy.

In statistical mechanics, this construct is known as a
microcanonical ensemble. There are a number of other
useful ensembles in statistical mechanics. Two such en-
sembles are the canonical ensemble and the grand canon-
ical ensemble.

In the canonical ensemble, the system is placed in a
thermal bath, and heat transfer is allowed between sys-
tem and surroundings. Therefore, the system is closed,
but not isolated. Because heat transfer is allowed, the
total energy inside the system will in general fluctuate.
The goal of the canonical ensemble is to determine the
probability that the system will have a given energy.

In the grand canonical ensemble, the system is also
placed in a thermal bath, and heat transfer is allowed. In
addition, the system is open, so that particles can move
in and out of the system. Therefore, both the energy and
the total particle number inside the system will fluctuate.
The goal of the grand canonical ensemble is to determine
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the probability that the system will have a given energy
and particle number.

We will not discuss these ensembles in this course, be-
cause to do so would take us far beyond the scope of this
course. Even our discussion of the microcanonical ensem-
ble was for the specific purpose of defining the concept
of entropy. We will point out, however, that these vari-
ous ensembles may ultimately be shown to be equivalent
to one another. Depending on the particular problem at
hand, one ensemble may simply be easier to work with
than another. We will also point out that the canoni-
cal ensemble gives a different looking formula for entropy
than the microcanonical ensemble: If pi denotes the prob-
ability of the system being in state i, then the entropy is
given by,

S = −k
∑

i

pi ln pi (13)

This formula is known as the Gibbs’ entropy formula.
In the context of the microcanonical ensemble, the

Gibbs’ entropy formula is identical to the Boltzmann for-
mula. For, given a system in thermodynamic equilibrium
with degeneracy Ω, each of the system states consistent
with the equilibrium configuration are equally probable,
hence have a probability of 1/Ω. Therefore, pi = 1/Ω,
where i runs from 1 to Ω. So, by the Gibbs’ formula,

S = −kΩ
1
Ω

ln
1
Ω

= k lnΩ (14)

which is exactly the Boltzmann expression.
In 1948, Claude Shannon developed Information The-

ory, used to analyze data transmission error-prone com-
munication channels. Shannon made use of a quantity
now called the Shannon entropy. The Shannon entropy
is also called uncertainty, and is denoted by H instead of
S (this should not be confused with enthalpy. These are
two different sets of notations in two distinct but related
fields). The Shannon entropy is defined as,

H = −
∑

i

pi log2 pi (15)

Note that we make use of the base-2 logarithm instead
of the natural logarithm. Because log2 x = lnx/ ln 2,
the Shannon entropy differs from the Gibbs formula
by a multiplicative constant (specifically k ln 2). In
contrast to Gibbs’ entropy, which has units of [En-
ergy]/[Temperature] (e.g. J/K), Shannon entropy is mea-
sured in bits.

We can make a much stronger statement about Shan-
non’s Information Theory than the above paragraph sug-
gests: Although it was a theory originally motivated by
the study of communication channels, it is in fact the
mathematical generalization of thermodynamics that has
made thermodynamics applicable to nearly every branch
of science and engineering. Shannon’s approach has be-
come so powerful that thermodynamics is now regarded
as a subfield of Information Theory. Information Theory

itself has now emerged as one of the key scientific devel-
opments of the 20th century, on a par with Einstein’s
Theory of Relativity and Quantum Mechanics.

E. When is the concept of entropy useful?

Hopefully, this lecture has made it clear that the Sec-
ond Law of Thermodynamics is not so much a law as it
is a reasonable assumption about what the equilibrium
state of a system should look like. So, the question that
arises, is when would entropy be expected to be a useful
concept?

Returning to the example of the box, if we have rel-
atively few particles, say two, then there are as many
ways of putting the balls on one side of the box as there
are of having half the balls on one side and half on the
other. Therefore, we are as likely to have both balls on
the same side of the box as on different sides. Certainly,
we could argue that the concept of entropy is not useful
for predicting the configuration of the balls in the box.

As the number of balls grows larger and larger, the
probability of having half the balls on one side of the box
and half the balls on the other side goes to 1. There-
fore, the principle of most probable states, and therefore
of entropy, becomes a useful concept as the number of
particles in the system goes to ∞.

In fact (and this is a major point of confusion), strictly
speaking, the principle of most probable states is only
correct in the limit of infinite particles. In this case, the
probability of observing the system in any state other
than its most probable one goes to 0 (the ideal gas in
the box example is again useful here). However, for a fi-
nite system, there is a positive, if small, probability that
the system will be observed in one of its less probable
states. So, returning to the example of the gas in the
box, because there are a finite number of particles in the
box, there is a finite probability that all the gas parti-
cles will be found on the left side of the box. Applying
the observation that “something that can happen even-
tually will,” we will find that at some point a gas evenly
dispersed throughout a box will spontaneously segregate
itself to one side (and then redisperse again, of course).

Boltzmann, in the course of developing a theory of di-
lute gases, derived a quantity analogous to the entropy,
which he called H. In his famous H-theorem, Boltzmann
showed that H never decreases (corresponding to a sys-
tem going to its most probable state). One of the criti-
cisms of Boltzmann’s work was that an evenly dispersed
gas will, given sufficient time, segregate itself into one
corner of a room. At the time, Boltzmann had no defini-
tive response to this criticism, except to point out that
on average, one would have to wait for longer than the
age of the universe to observe such a segregation. How-
ever, this response was not sufficient to counter criticism
of Boltzmann’s work, which went largely unaccepted dur-
ing his lifetime. Boltzmann eventually committed suicide
as a result. The apparent contradictions in Boltzmann’s
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theory were eventually resolved, and his theory of dilute
gases is now accepted as largely correct. Boltzmann is
now regarded as having made some of the most funda-
mental breakthroughs in thermodynamics and statistical
mechanics.

We can resolve the criticism of Boltzmann’s theory,
and of the concept of entropy in general, if we understand
that the principle of most probable states is something
that is only correct for systems with an infinite number
of particles. Going back to the example of the gas in the
box, it is true that the gas will eventually segregate to
one side. However, as the number of particles in the gas
increases to∞, the time we would have to wait to observe
this increases to ∞ as well. An even stronger statement
is that as the number of particles in the gas goes to ∞,
the fraction of time that the gas spends not being evenly
distributed between the left and right sides goes to 0.

Summarizing, then, the Second Law of Thermodynam-
ics is only strictly correct for systems that are infinitely
large. In practice, the Second Law may be safely applied
to systems that have large numbers of particles, since the
time scale on which we would observe significant viola-
tions of the principle of most probable states is itself very
large.

F. Other statements of the second law

One phrasing of the second law of thermodynamics
that you may have heard is that “Entropy is always in-
creasing,” or that “systems tend to maximum disorder.”
If we decide to assign entropy to measure the amount of
“disorder” in a system, then the principle of most prob-
able states tells us why this is true.

But there is a bit of a problem here, because entropy
is defined in terms of the most probable state of a given
system. That is, entropy is defined with respect to an
equilibrium state of a system, so if a system’s entropy
is increasing, then it is clearly not in equilibrium. In
this case, the concept of entropy makes no sense, which
means that the statement “entropy is increasing” makes
no sense either.

To resolve this apparent difficulty, let us go back to
Figure 2, and consider two systems in thermal contact.
As long as there is irreversible energy flow between the
two systems, the composite system is not at equilibrium,
and hence the concept of entropy for the composite sys-
tem makes no sense. However, the concept of entropy
may make sense for the systems separately. That is, if
at some time during the energy transfer, system 1 has
energy E1, it is possible that system 1 is in its most
probable state at energy E1. Therefore, system 1 may be
in an internal thermal equilibrium at energy E1, with a
temperature T1 defined by 1/T1 = ∂S1/∂E1. Similarly,
system 2, at some energy E2, may be in its most probable
state at energy E2.

What we are illustrating here is that a system that is
not in its equilibrium state may therefore be divided into

subsystems which are themselves in thermal equilibrium
at their respective energies. The different subsystems
must have different temperatures (otherwise there would
be no energy flow, and so we would be at global equilib-
rium). By making this assumption of local equilibrium,
we can define an entropy for each subsystem, and define
the total entropy to be the sum of the entropies of the
individual subsystems.

Returning to our two system example, we can show
that the total entropy S12 = S1 + S2 is always in-
creasing. If system 1 is at temperature T1, and sys-
tem 2 is a temperature T2, then dU1 = T1dS1, and
dU2 = T2dS2. By conservation of energy, dU1 = −dU2,
so T1dS1 = −T2dS2 ⇒ dS2 = −(T1/T2)dS1. There-
fore, dS1 + dS2 = (1− T1/T2)dS1 = (1/T1 − 1/T2)dU1 =
(1/T2 − 1/T1)dU2. Now, if dU1 > 0, then T1 < T2, so
(1/T1 − 1/T2)dU1 > 0. If dU1 < 0, then T1 > T2, so
(1/T1 − 1/T2)dU1 > 0.

Therefore, in any case, the total entropy S1 + S2 is
increasing, until it reaches a maximum. Hence, for an
isolated system (the composite system of systems 1 and
2), the entropy is never decreasing.

APPENDIX A: DERIVATION OF S FROM Ω

In this section we will show that, given a function f
satisfying f(xy) = f(x) + f(y), it follows that f(x) =
C lnx, where C is some constant.

To show this, let us fix y, and differentiate both sides
with respect to x. We obtain,

yf ′(xy) = f ′(x) (A1)

Setting x = 1 gives,

yf ′(y) = f ′(1) ⇒ df

dy
=

f ′(1)
y

(A2)

Setting C = f ′(1), we may integrate to obtain,

f(y) = C ln y (A3)

Since y is just a “dummy” variable, this proves the claim.

APPENDIX B: THE ZEROTH LAW OF
THERMODYNAMICS

The Zeroth Law of Thermodynamics states that if sys-
tem A is in thermal equilibrium with system B, and if
system B is in thermal equilibrium with system C, then
system A is in thermal equilibrium with system C. With-
out this law, it would be impossible to construct a ther-
mometer. The reason is simple: If we let system A be our
thermometer, and if system A is in thermal equilibrium
with system B, then this means that the reading on sys-
tem A gives us the temperature of system B. If system
B is in thermal equilibrium with system C, then these
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two systems must be at the same temperature, hence the
thermometer should give the same temperature for sys-
tem C as it did for system B. Therefore, system A and
system C must be in thermal equilibrium.

To prove the Zeroth Law, consider three systems A, B,
C, with energies EA, EB , and EC , respectively, and as-
sume that A and B are in thermal equilibrium, and B and
C are in thermal equilibrium. Then from the derivation
earlier in this lecture, we have that, (dSA/dE′

A)E′
A=EA

=
(dSB/dE′

B)E′
B=EB

= (dSC/dE′
C)E′

C=EC
, so that systems

A and C are in thermal equilibrium. This establishes the
Zeroth Law.

APPENDIX C: PROOF OF STIRLING’S
FORMULA

In this section we prove that limN→∞[N lnN −
N ]/ lnN ! = 1. To do this, we first prove the following:

Claim: Let a1, a2, . . . , an, . . . , and b1, b2, . . . , bn, . . . be
two sequences of positive numbers with the following two
properties: (1) limn→∞ an = ∞. (2) limn→(bn/an) = 1.
Then,

lim
N→∞

∑N
n=1 bn∑N
n=1 an

= 1 (C1)

Proof: Since limn→∞(bn/an) then, given ε > 0, there
exists m > 0 such that 1 − ε < bn/an < 1 + ε for all
n > m. Then, for all N > m, we have,

b1 + · · ·+ bm + (1− ε)(am+1 + · · ·+ aN )
a1 + · · ·+ am + am+1 + · · ·+ aN

<
b1 + · · ·+ bm + bm+1 + · · ·+ bN

a1 + · · ·+ am + am+1 + · · ·+ aN
<

b1 + · · ·+ bm + (1 + ε)(am+1 + · · ·+ aN )
a1 + · · ·+ am + am+1 + · · ·+ aN

⇒
b1+···+bm

am+1+···+aN
+ 1− ε

a1+···+am

am+1+···+aN
+ 1

<
b1 + · · ·+ bN

a1 + · · ·+ aN
<

b1+···+bm

am+1+···+aN
+ 1 + ε

a1+···+am

am+1+···+aN
+ 1

(C2)

Since limN→∞ aN = ∞, we get,

lim
N→∞

b1 + · · ·+ bm

am+1 + · · ·+ aN
= lim

N→∞

a1 + · · ·+ am

am+1 + · · ·+ aN
= 0

(C3)
so that,

1− ε ≤ lim
N→∞

b1 + · · ·+ bN

a1 + · · ·+ aN
≤ 1 + ε (C4)

Since this is true for any ε > 0, it follows that
limN→∞(b1 + · · ·+ bN )/(a1 + · · ·+aN ) = 1, as we wished
to show.

To use this to prove Stirling’s formula, note that
lnN ! = ln(1×2×3×· · ·×N) = ln 1+ln 2+· · ·+ln N , so we
can define an = ln n, so that lnN ! = a1 + · · ·+aN . Also,
defining bn = [n lnn−n]−[(n−1) ln(n−1)−(n−1)], note
that N lnN − N = b1 + · · · + bN (since limx→0 x lnx =
limx→∞(1/x) ln(1/x) = limx→∞− lnx/x = 0, it follows
that 0 ln 0− 0 = 0).

Therefore, since limn→∞ lnn = ∞, we need only show
that limn→∞([n lnn − n] − [(n − 1) ln(n − 1) − (n −

1)])/ lnn = 1 to prove Stirling’s formula. So, to prove
this limit, note that,

[n lnn− n]− [(n− 1) ln(n− 1)− (n− 1)]
= ln n + (n− 1)[ln n− ln(n− 1)]− 1

= ln n + (n− 1) ln(1 +
1

n− 1
)− 1

= ln n + ln(1 +
1

n− 1
)n−1 − 1 (C5)

so that,

lim
n→∞

[n lnn− n]− [(n− 1) ln(n− 1)− (n− 1)]
lnn

= 1 + lim
n→∞

1
lnn

[ln(1 +
1

n− 1
)n−1 − 1]

= 1 + 0 ∗ (ln e− 1) = 1 (C6)

where we have used the fact that limn→∞(1+1/n)n = e.
With this, Stirling’s formula is established.


