$\begin{array}{l} \textbf{Definition.} \ W = X \Box Y \ is \ the \ graph \ where \\ V(X \Box Y) \ is \ all \ (a, y) \ such \ that \ a \in V(X), \ y \in V(Y) \\ E(X \Box Y) = \{((a, y), (a, z)) \ | \ (y, z) \in E(Y)\} \cup \\ \quad \{((a, y), (b, y)) \ | \ (a, b) \in E(X)\}. \end{array}$

Note this gives nm vertices in $V(X \Box Y)$ and V(X) disjoint copies of Y and V(Y) disjoint copies of X.

Definition. $Y \xrightarrow{f} X$ is a graph homomorphism if for every edge $(a,b) \in E(Y)$ there is an edge $(f(a), f(b)) \in E(X)$.

Definition. A covering map is a homomorphism $Y \xrightarrow{f} X$ such that for every vertex $v \in V(Y)$ the edges $(v, v_i) \in E(Y)$ incident to v map bijectively to the edges $(f(v), f(v_i))$ incident to f(v).

A covering is n sheeted if for every $a \in X$ there are n vertices a^s , s = 1, ..., n such that the $f^{-1}(a) = a^s$.

Theorem 1. Given covering maps $Y \xrightarrow{g} X$ and $Z \xrightarrow{h} W$ then $Y \Box Z \xrightarrow{g \circ h} X \Box W$ is a covering map.

Sketch of Proof

The |V(Z)| disjoint $Y \subset Y \Box Z$, cover the $X \subset X \Box Z$. The edges $((k^s, z), (l^s, w)) \in E(Y \Box Z)$ cover $(k, z), (l, w) \in E(X \Box Z)$ where $f(k^s) = k \ \forall s$.

Figure 1: $Q_3 \to K_4$ is a covering map, so $Q_3 \square K_2 \to K_4 \square K_2$ is also.

Hence $Y \square Z \xrightarrow{f} X \square Z$ Then the composition $Y \square Z \xrightarrow{f} X \square Z \xrightarrow{g} X \square W$ gives that $Y \square Z \xrightarrow{f \circ g} X \square W$ is a covering map. **Definition.** W = [Z, X] is the graph where V(W) is the set of homomorphisms $Z \xrightarrow{f} X$ and E(W) is the set of homomorphisms $Z \Box K_2 \xrightarrow{f} X$ connecting the two vertices corresponding to each homomorphism, $Z_i \xrightarrow{f} X$ where $Z_i \subset Z \Box K_2$.

Due to the similarity of [Z, X] to the set theoretic exponent, we refer to [Z, X] as the graph exponential.

If $Y \xrightarrow{f} X$ is a covering map, then is there a covering map $[Z, Y] \xrightarrow{f'} [Z, X]$?

There is a covering map $[K_2, C_6] \rightarrow [K_2, C_3]$

There is no covering map $[K_2, C_8] \rightarrow [K_2, C_4].$

Definition. Let $C_4(X)$ denote the set of injective maps of C_4 into X. That is, all maps of C_4 into X such that all the vertices of C_4 map to distinct vertices of X.

Theorem 2. Let $Y \xrightarrow{f} X$ be an *n* sheeted covering map. Then $[K_2, Y] \xrightarrow{f} [K_2, X]$ is a covering map if and only if $C_4(Y) \to C_4(X)$ is *n* to 1.

Sketch of Proof

A vertex $v \in V([K_2, Y])$ is of the form $K_2 \to Y$. An edge $e \in E([K_2, Y])$ is of the form $K_2 \Box K_2 \to Y$. The homomorphism $K_2 \Box K_2 \to Y$ produces as its image C_4 or P_3 or P_2 .

Since $Y \xrightarrow{f} X$ is a covering map, there is a bijection between the edges incident to $v \in V([Z, Y])$ and incident to $f(v) \in V([Z, X])$ formed by the homomorphisms $K_2 \Box K_2 \to P_2$ or P_3 in Y and X.

Since $\exists W \neq C_4$ such that $W \to C_4$ then [Z, Y] covers [Z, X] if and only if $f^{-1}(C_4(X)) = C_4(Y)$, that is, when there is an n to 1 function between $C_4(Y)$ and $C_4(X)$.