
Introduction to Physical Chemistry – Lecture 8

I. LECTURE OVERVIEW

In this lecture we will discuss heat engines. The study
of heat engines is what originally led to the emergence of
thermodynamics as a branch of science. We will study a
particular heat engine known as the Carnot cycle, from
which it is possible to deduce the existence of entropy as
a state function. This is the way that entropy was actu-
ally discovered. Because this approach to entropy is not
obtained directly from the laws of probability, it suggests
a number of apparent ways to violate the Second Law of
Thermodynamics. We will discuss these paradoxes, and
how they may be resolved.

II. HEAT ENGINES

A heat engine is a device that absorbs heat energy from
a high temperature region, uses some of that heat energy
to do work, and then expels heat energy to a region of
lower temperature. This concept is illustrated in Figure
1.

The steam engine is a good example of a heat engine
(see Figure 2). The way it works is that a heat source,
say a fire, is used to heat water to boil. The steam then
pushes on a piston, which generates work that can be
used to produce motion. As the steam expands, it cools.
It is then recycled back to the heat source, where the
cycle can begin again.

The early steam engines were highly inefficient, con-
verting only a few percent of the heat absorbed into use-
ful work. The drive to improve the efficiency of steam

FIG. 1: A schematic of a heat engine operating between a heat
source at temperature TH , and a heat sink at temperature TC .
The heat engine takes in heat from the heat source, converts
some of that heat into work, and then dumps the remaining
energy into the heat sink.

FIG. 2: The steam engine as a heat engine. A heat source, say
a fire, is used to heat up a gas (boil water to create steam).
The heated gas expands and does work on a piston. The gas
cools as it does work. It then cools further while in contact
with a low temperature system (the surrounding air). The
gas returns to its original state (liquid water), and the cycle
begins again.

engines led to general studies of heat engines, which even-
tually gave birth to the science of thermodynamics.

In 1824, Sadi Carnot published a seminal paper, enti-
tled “Reflections on the motive power of fire,” in which
he constructed an idealized heat engine that is capable
of extracting the maximum amount of useful work from
a given amount of heat. This heat engine is known as a
Carnot cycle, and we will focus our attention on it next.

III. THE CARNOT CYCLE

The motivation behind the Carnot heat engine is as
follows: Given a heat source at a temperature TH , and
a heat sink at a temperature TC , where TH > TC , what
is the maximum amount of useful work that can be per-
formed by an engine that extracts heat from the heat
source at temperature TH , and dumps any unused en-
ergy as heat to the heat sink at the lower temperature
TC?

A. Reversibility as the key to maximizing engine
efficiency

Carnot’s central hypothesis is that the engine must op-
erate in a reversible manner at all times. To understand
this physically, consider a quantity Q of heat absorbed
by the engine. If the engine is at a lower temperature
than the heat source, the the engine will get hotter. But
this means that some of the heat energy is wasted in
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heating up the engine, rather than doing any kind of
useful work. Furthermore, during any expansion of the
piston, if the pressure of the gas pushing on the piston
is greater than the external pressure, then work is not
being extracted optimally from the gas. The reason for
this is that, during a change in volume dV , if the gas
pressure is Pgas, and the pressure of the surroundings
is Psurround, then the work done on the surroundings
is δW = PsurrounddV . If Pgas > Psurround, then the
maximum amount of work that could be extracted is
δWmax = PgasdV > PsurrounddV = δW . Therefore, the
amount of work actually extracted is less than optimal.

Similarly, during any compression of the piston, if
the pressure of the surroundings pushing on the pis-
ton is greater than the gas pressure, then an excess
amount of work is lost in compressing the gas. If the
change in the volume of the gas is given by −dV , then
δW = −PsurrounddV . If Psurround > Pgas, then δW <
−PgasdV , so that the surroundings loses more energy
than necessary to compress the gas. Again, this leads to
a less than optimal amount of work extracted from the
system.

B. Definition of the Carnot cycle

We consider a heat engine containing an ideal gas that
can push on a piston (Figure 3 will be helpful here). In
the first step, the engine starts at the temperature TH of
the heat source, and is contacted with the heat source.
We assume that this heat source is massive, so that heat
flow to the engine does not effect the temperature of the
source (think of going to the “tayelet” in Tel-Aviv and
throwing a piece of ice into the Mediterranean. The heat
transferred from the sea water to melt the ice will neg-
ligibly affect the temperature of the sea). We reversibly
transfer a quantity QH of heat to the engine. As the gas
absorbs heat energy, it will expand and do work on the
surroundings. This expansion is isothermal, because the
heat source is so massive that it keeps the engine tem-
perature at TH (such a heat source is known as a thermal
bath). As mentioned previously, we assume that, in addi-
tion to being isothermal, this expansion is also reversible.

In the second step, the heat source is removed. The
engine must now be cooled to the temperature of the
heat sink. So, from TH , the gas is allowed to undergo
a reversible, adiabatic expansion, until it reaches a tem-
perature TC .

In the third step, the piston must be compressed (after
all, we want to bring the engine back to its starting state).
So, we extract an amount QC of heat from the working
fluid, resulting in a reversible, isothermal compression of
the fluid.

We are not quite done. The gas has been compressed,
but it is still at a temperature TC . So, after extracting
the amount QC of heat, the heat sink is removed, and the
gas undergoes a reversible, adiabatic compression until it
reaches a temperature TH and its original volume.

FIG. 3: The four steps of the Carnot heat engine.

This completes the Carnot cycle, which can now begin
again.

In summary, the Carnot cycle is a four step process:

1. Isothermal expansion at TH .

2. Adiabatic expansion from TH to TC .

3. Isothermal compression at TC .

4. Adiabatic compression from TC to TH .

C. Efficiency of the Carnot cycle

To compute the efficiency of the Carnot cycle, let us
assume that there are n moles of ideal gas driving the
piston.

At the beginning of the first step, the gas is at tem-
perature T1 = TH , and volume V1. The gas absorbs
a quantity QH of heat as part of an isothermal expan-
sion. Because ∆U = 0 for this step (why?), we have
that the amount of work performed on the surroundings
is W1 = QH . However, if V2 denotes the final volume of
the gas, then,

QH = W1 =
∫ V2

V1

PdV

=
∫ V2

V1

nRTH

V
dV

= nRTH ln
V2

V1
(1)

In the second step, the gas adiabatically expands from
V2 to some volume V3, such that its temperature is now
TC . If W2 denotes the amount of work performed on the
surroundings during this step, then from the First Law
we have W2 = −∆U = nC̄V (TH − TC) for this process.
The relationship between V2 and V3 is given by,

TC

TH
= (

V2

V3
)R/C̄V ⇒ V3 = V2(

TH

TC
)C̄V /R (2)
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In the third step, the gas is isothermally compressed to
some volume V4, during which a quantity QC is extracted
and dumped into the heat sink. If W3 denotes the amount
of work performed on the surroundings during this pro-
cess, then we have from the First Law that W3 = −QC

(because QC refers to the amount of heat transferred to
the heat sink. Therefore, since in the statement of the
First Law, a positive Q refers to heat being transferred
to the system, we need to put a “-” sign in front of QC).

Arguing similarly to the case for the isothermal expan-
sion, we have,

W3 = nRTC ln
V4

V3
⇒ QC = nRTC ln

V3

V4
(3)

In the final step, the gas returns to a volume V1 and
temperature TH , via an adiabatic compression. If W4 de-
notes the amount of work performed on the surroundings
during this process, then arguing as with the second step
we have W4 = −∆U = −nC̄V (TH − TC). The relation-
ship between V4 and V1 is given by,

V4 = V1(
TH

TC
)C̄V /R (4)

The total amount of work done during this cycle is,

Wtotal = W1 + W2 + W3 + W4

= QH −QC

= nR(TH ln
V2

V1
− TC ln

V3

V4
)

= nR(TH lnV2 − TC lnV3 − TH lnV1 + TC lnV4)

= nR(TH lnV2 − TC lnV2 −
C̄V TC

R
ln

TH

TC

−TH lnV1 + TC lnV1 +
C̄V TC

R
ln

TH

TC
)

= nR(TH − TC) ln
V2

V1

= nRTH(1− TC

TH
) ln

V2

V1

= (1− TC

TH
)QH (5)

where in the last two lines we used the fact that QH =
W1 = nRTH lnV2/V1.

Therefore, the total amount of useful work extracted
from a Carnot cycle is given by (1 − TC/TH) times the
amount of heat input. And so, the efficiency εCarnot of
the Carnot engine is given by,

εCarnot =
Wtotal

QH
= 1− TC

TH
(6)

We will soon prove that this is the maximal possible
efficiency of any heat engine. Note in particular that
if TC > 0, then the engine efficiency will be less than
1. Therefore, it is impossible for any heat engine that
operates between temperatures greater than absolute zero

FIG. 4: A plot of temperature T and volume V of the ideal
gas as it moves through a Carnot cycle.

to convert all of the heat energy into useful work. Some
of the energy will invariably be lost as heat.

For convenience sake, we show a (T, V ) diagram illus-
trating the path that the gas in the Carnot engine traces
during the course of the Carnot cycle.

D. The Carnot cycle in reverse

We should also point out that the Carnot engine may
be run in reverse. That is, the Carnot engine can remove
heat from a cold source at temperature TC , and with a
work input from the surroundings, it can dump the heat
into a higher temperature bath. A device that functions
in this way is known as a heat pump.

An air conditioner is nothing more than a heat pump,
since it extracts heat from a room that we want to keep
cool and dumps it to the outside air. If the air conditioner
can extract heat at a rate equal to the rate at which heat
flows into the room from the outside, then the room will
remain at its cool temperature.

For a Carnot engine, note that QH = Wtotal +
QC . Since Wtotal = (1 − TC/TH)QH , we have QH =
Wtotal/(1− TC/TH), so that,

Wtotal

1− TC/TH
−Wtotal = QC ⇒

Wtotal =
QC

1

1− TC
TH

− 1
⇒

Wtotal =
QC

TH

TH−TC
− TH−TC

TH−TC

⇒

Wtotal = QC(
TH

TC
− 1) (7)

and so, the Carnot heat pump must perform TH/TC − 1
units of work for every unit of heat energy removed from
the cool temperature region.
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FIG. 5: Illustration of how two reversible heat engines with
differing efficiencies leads to a device that facilitates the spon-
taneous flow of heat from a region of low temperature to a
region of high temperature.

Note that the greater the discrepancy between TH and
TC , the harder the heat pump has to work per unit of
heat extracted.

E. The Carnot cycle and engine efficiency

We can prove that the efficiency of the Carnot heat
engine is maximal. That is, given any other heat engine
that extracts heat from a temperature source TH and
deposits heat to a temperature source TC , the efficiency
ε of this engine must satisfy ε ≤ 1− TC/TH .

To show this, let us consider two reversible heat en-
gines, with efficiencies ε1 and ε2 (we can assume re-
versibility, since an irreversible heat engine will operate
below optimal efficiency). We claim that ε1 = ε2.

To show this, let us run the engine with efficiency
ε1 in reverse, so that it operates as a heat pump (see
Figure 5). If we extract an amount of energy QC,1

from the cold source, then we need to input a quantity
W1 = ε1/(1− ε1)QC,1 of work. We also dump a quantity
QH,1 = QC,1/(1− ε1) of heat to the hot source.

Now, we transfer this heat to the hot source of the
second engine, and use some of the heat to extract work.
If we want the work extracted to equal the work input to
the first engine, then we have that the heat input must
be,

QH,2 =
W1

ε2
=

ε1
ε2

1
1− ε1

QC,1 (8)

and the amount of heat dumped to the cold source is,

QC,2 = (1− ε2)QH,2 =
ε1
ε2

1− ε2
1− ε1

QC,1 (9)

Therefore, the net amount of heat extracted from the

cold source is,

QC,1 −QC,2 = QC,1
ε2 − ε1

ε2(1− ε1)
(10)

while the net amount of heat deposited to the hot source
is,

QH,1 −QH,2 = QC,1
ε2 − ε1

ε2(1− ε1)
(11)

Note then that if ε2 > ε1, the two engines combined
will, without any net input or output of work, transfer
heat from a cold source to a hot source. The combined
engines will essentially result in the spontaneous flow of
heat energy from a cold region to a hot region, which
contradicts the definition of temperature.

Therefore, ε1 = ε2, which means that all reversible
heat engines operating between a given heat source and
a given heat sink must have the same efficiency. Since
we have computed the efficiency for one such engine as
1− TC/TH , it follows that the maximal efficiency of any
engine operating between temperatures TH and TC must
be 1− TC/TH .

IV. THE CARNOT CYCLE AND ENTROPY

We can use the Carnot cycle and the fact that all re-
versible heat engines have the same efficiency to arrive
at the existence of a state function defined by dS =
(δQ/T )rev. We will do this in several steps:

A. Step 1: Proof that
H

(δQ/T )rev = 0

We first wish to show that, given a closed system, the
integral of δQ/T over any cyclic, reversible process is 0.
By a cyclic process we mean a process that has the same
starting and ending points.

To prove this, consider a system undergoing a cyclic
process. For convenience, we can represent the state of
the system at any time by its temperature T and volume
V . Therefore, as the system undergoes a cyclic process,
it traces out a closed curve in T,V-space (see Figure 6).

Now, this closed curve encloses a region of space, de-
noted R, which we can divide into lots of smaller sub-
regions. Let us label these regions R1, R2, . . . , RN . For
each region Ri, we let ∂Ri denote the boundary of region
Ri. If ∂R denotes the boundary of R, then we claim that,∮

∂R

(δQ/T )rev =
N∑

i=1

∮
∂Ri

(δQ/T )rev (12)

Figure 7 may be helpful in seeing this. The central
point is that, where two regions touch each other, the
integral over the boundary of each region is traced out in
opposite directions, so that the contributions to the total
integral cancel. Carrying through these cancellations, we
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FIG. 6: Illustration of a cyclic reversible path in T,V-space.

FIG. 7: Partitioning of a closed region and the cancellation of
integrals over adjoining boundaries of the various subregions.

get that the only portions of the boundaries of the var-
ious regions that actually contribute to the sum are the
boundaries that lie on the boundary of the whole region.
And so, summing up the integrals over the boundaries
of the various subregions, we get the integral over the
boundary of the whole region.

The trick is to now fill the region R with appropriate
subregions Ri. So, we choose to fill R with lots of in-
finitesimally small subregions whose boundaries are de-
fined by a Carnot process (depending on the direction of
our original cycle, our Carnot processes may need to be
either heat engines or heat pumps). That is, the bound-
aries of each of these subregions is given by a vertical line
going from some temperature Th and volume V1 to the
same temperature Th and some volume V2 > V1 (isother-
mal expansion), another curve going from Th and V2 to
Tc and V3 > V2 (adiabatic expansion), another vertical
line going from Tc and V3 to Tc and V4 < V3 (isothermal
compression), and finally a curve going from Tc and V4

to Th and V1 < V4 (adiabatic compression).
By making each of these regions infinitesimally small,

so that Th − Tc, V2 − V1, V3 − V2, V4 − V3, V1 − V4

are all small, we can fill up our region with lots of
these little “Carnot” subregions. Denoting such a sub-
region by Ri,Carnot, all we need to do is show that∮

Ri,Carnot
(δQ/T )rev = 0 to prove our claim.

Now, for a Carnot cycle, note that,∮
(δQ/T )rev =

QH

TH
− QC

TC
(13)

Since the efficiency of a Carnot engine is 1 − TC/TH ,
we have QC = (TC/TH)QH , giving,∮

(δQ/T )rev = 0 (14)

Therefore,
∮

∂R
(δQ/T )rev = 0, as we wished to show.

B. Step 2: Construction of S

We may use the result of the previous section to con-
struct a new state function, the entropy. As with energy,
we do not need to define an absolute value for entropy
(although the Third Law provides us with a convenient
reference point), rather, we only need a way to compute
entropy differences.

So, given two states, labelled 1 and 2, of a system, with
entropies S1 and S2 respectively, we define the entropy
difference S2 − S1 via,

S2 − S1 =
∫ State2

State1

(
δQ

T
)rev (15)

In order for this integral to be well-defined, however,
the path from State 1 to State 2 must not be important.
Therefore, we need to show that the integral of (δQ/T )rev

is independent of path.
To prove this, consider two paths, denoted Γ1 and Γ2,

from State 1 to State 2. If Γ−1
2 denotes the reverse of

Γ2, then the path given by Γ1 followed by Γ−1
2 is a path

that starts and ends at State 1. If we denote this path
by Γ1Γ−1

2 , then we have,∮
Γ1Γ

−1
2

(
δQ

T
)rev = 0 (16)

But, we then have,

0 =
∮

Γ1Γ
−1
2

(
δQ

T
)rev

=
∫

Γ1

(
δQ

T
)rev +

∫
Γ−1

2

(
δQ

T
)rev

=
∫

Γ1

(
δQ

T
)rev −

∫
Γ2

(
δQ

T
)rev

⇒
∫

Γ1

(
δQ

T
)rev =

∫
Γ2

(
δQ

T
)rev (17)

and so the difference in entropy is well-defined.
Note then that without knowing about statistical me-

chanics, we were able to deduce the existence of entropy
from certain basic postulates regarding heat flows.
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V. PERPETUAL MOTION MACHINES AND
MAXWELL’S DEMON

Notice that the way that we developed entropy in this
lecture relied on the idea that heat has a preferred di-
rection of flow, and that there is a quantity called tem-
perature that can be used to define the direction of this
flow. Without the statistical-mechanical basis of tem-
perature, however, it is not clear why a property such as
temperature should even exist for a material, and it is
not immediately clear why heat should have a preferred
direction of flow.

Therefore, before the advent of statistical mechanics,
the concept of entropy was obtained by relying on reason-
able hypotheses obtained through extensive observations
of physical systems. However, there was no proof that
these assumptions should always hold, and therefore led
people to come up with devices that could seemingly vi-
olate the Laws of Thermodynamics. Such devices are
known as perpetual motion machines.

A perpetual motion machine is a device that can run
forever. There are two kinds of perpetual motion ma-
chines that violate the laws of thermodynamics:

A perpetual motion machine of the first kind violates
the law of conservation of energy. That is, it is a machine
that essentially runs spontaneously, without any external
input of energy.

A perpetual motion machine of the second kind violates
the principle that heat can only flow from a region of high
temperature to a region of low temperature. This type of
machine takes in energy from a low temperature source,
uses the energy to perform work, and then dumps the
excess heat to a high temperature source.

A highly problematic construct for thermodynamics,
which in principle could form the basis for constructing a

perpetual motion machine of the second kind, is a device
known as Maxwell’s Demon.

Imagine a box filled with an ideal gas at some temper-
ature, and imagine that we now place a dividing wall in
the center of the box. Maxwell’s Demon is a little ma-
chine attached to a door covering a hole in the wall. The
Demon detects when a particle from one side of the box
approaches the hole, and, if there is no particle coming
from the other side, will open the door and allow the par-
ticle to cross to the other side. If we set the operational
parameters of the Demon to be such that only particles
from the left side of the box can cross to the right side of
the box, then Maxwell’s Demon will eventually bring all
of the gas to one side of the box, in apparent violation of
the Second Law.

Until the advent of Statistical Mechanics, and later
Information Theory, there was no concrete refutation of
Maxwell’s Demon. It was simply assumed that such a de-
vice could not be constructed in such a way as to violate
the Second Law of Thermodynamics.

With the probabilistic interpretation of entropy pro-
vided by Statistical Mechanics and then Information
Theory, the answer that finally emerged is this: For
Maxwell’s Demon to function properly, it has to know
when a particle from one side of the box is approaching,
and when a particle from the other side is not. To know
this, the Demon needs a way to detect the presence or ab-
sence of particles in some way. This can be accomplished
by bouncing a radar signal, etc. The central point is that
the Demon must consume energy, because the Demon
must make use of a medium with which to acquire the
information it requires to function. It turns out that the
minimal amount of energy that Maxwell’s Demon con-
sumes is such that the Second Law of Thermodynamics
is not violated.


