Group Report 1: Where am I?

Yellow team: Ivan, Mamus, and Vivian.

Our focus point was the distal end of Croom's Hill Groove. We used three different methods/approach to identify our destination which includes Google earth, GPS and method of estimated (natural way). We used the GPS, Google earth, proximate measures, timer, camera and a compass as our tools. Below is a description of our identification by the use of longitude, latitude, elevation and distance.

Latitude:

GPS reading: 51.47728
Google earth: 51.477543

Estimation:

EQUATOR
A

b

Using Google Earth, we measured the distance from to the Equator to the closest approximate point to Croom's Hill, Greenwich England. At this point we then used general knowledge (with a little help from Google) to establish the distance from the Earth's core to the surface. Using the Pythagorean Theorem, we found the angle between $A B$ and $A C$, which represents the an estimation of latitude for the purposes of this experiment.

In the diagram,
$a=3441.58$ miles (distance from Equator to Greenwich, England
b=3975 miles (distance from Earth's center to its surface)
c= side needed in order to complete equation finding angle of latitude.
$c=\sqrt{ } 1915 \wedge 2+3975 \wedge 2$
c $=5257.860$...

Finding λ
$\lambda=\sin (a / c)$
$\lambda=\sin (3441.58 / 5257.86)$
$\lambda=$.inverse of $\sin (.608)$
$\lambda=37.45^{\circ}$

Therefore the angle of latitude using estimation is 37.45°.

Longitude:

GPS: 00.000765
Google earth: 00.007876

Estimation:

For every 15° of longitude, there is a 60 mins difference in time. We were 8 minutes away from the prime meridian of 0°, so our calculation of the longitude degree was as follows:
$15^{\circ}=60 \mathrm{mins}$
???=8mins
$(15 * 60) / 8$
2°

Elevation:

GPS: 18.5 ft but we changed this to 60ft through computer calculator.
Google earth: 59 ft

Estimation:

By the natural arm method, we estimated the angle from Greenwich to our destination to be 60°. As shown on the triangle below we used the cosine and Pythagorean theory to find our elevation.

$A C / B C=\operatorname{Cos} a^{\circ}$
$60 \mathrm{ft} / \mathrm{BC}=\operatorname{Cos} 60^{\circ}$
$B C=60 \operatorname{Cos} 60^{\circ}$
BC=60(0.5)
$B C=30 f t$
$a^{2}+b^{2}=c^{2}$
$60^{2}+30^{2}=c^{2}$
$3600+90=c^{2}$
$\sqrt{4500}=c$
$\mathrm{C}=67.08 \mathrm{ft}$ (our angle of elevation)

Distance:

Google earth: 540m

Estimation:

We used Ivan's feet which we approximated to be 1 step is equivalent to 1 meter. Evan walked 10 steps in $07: 48 \mathrm{sec}$, which we approximated to be 8 secs, so it takes one person to walk 10 meters in 8 secs. We walked from our point (Croom's Hill Grove) to in approximately 8 mins. So below are the calculations of the distance it took us from our point to the prime meridian.

10meter=8seconds
???=480seconds (8*60)
$(10 m * 480 \mathrm{~s}) / 8 \mathrm{~s}=675 \mathrm{~m}$

Below are pictures of the North aside and a description.

North side description:

- Narrow road
- Houses in form of flats with tiles on the roof
- Cars parked on the right side of the street, near houses.

South side description:

- A garden
- Garbage
- Dead end with a small/shallow wall.

Weaknesses:

- Time was not accurate, as it depends on ones pace of walking, the answer (time it took us to walk) could vary depending on one's speed.
- The GPS is not as accurate. Their accuracy will be within about 10 to 50 feet (3 to 15 meters), 95% of the time.

