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1. Introduction.  

In present article some properties of  Dirichlet series of a kind  
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are considered, where coefficients  are complex numbers. These properties concern 

mean values and an order of Dirichlet series (see [1, 2]). As a mean value is called the 

following expression 
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In [1, p. 325] they are studied mean values of the series having a finite order. In the 

same place function )(σμ  denoting an order of Dirichlet series on straight line 

σ=sRe  is entered. In the theory of Riemann zeta-function exists, thereupon a 

hypothesis named Lindelöf hypothesis, asserting, that 0)( =σμ  on a semi plane of 

mean values (see [2, p. 137]). The question on communication of mean values with 

various analytical properties of Dirichlet series has been studied in [1,2,4,6]. In works 

[2,3,4,6,7,8,9,10] mean values of Dirichlet series have been enclosed to a question on 

an arrangement of zeros of Dirichlet series and arithmetic appendices are given also. 

Generally consideration of mean values of Dirichlet series is connected with the big 

difficulties. Only in a few special cases exact results are known. Rather easily, but the 

proof of that is not trivial at 2/1>σ   
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(see [2]). Using functional equation, Hardy and Littlewood have proved, under the 

same conditions, the following result (see [2, p. 56]): 
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 For mean values of higher degrees of the zeta-function it is known very little 

(see [2, p.60], also [12]). In connection with the Lindelöf Hypothesis it is known, that 

it is equivalent to the statement   
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for any natural k and 2/1>σ  (see [2, p. 136]). In the work [1] connection of mean 

values of Dirichlet series with convergence and regularity is studied. The theorem 

asserting is proved, that the Dirichlet series (1) converges in a semi plane of mean 

values if it represents regular function on this semi plane. In the present work the 

converse problem in more general conditions is considered somewhat. Namely, 

considering a semi plane of mean values, we define it as a semi plane mσσ >  where 

the series below converges:  
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Not assuming that Dirichlet series defines function of a finite order and that there is a 

finite limit 
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 (see [1])), we prove, that for one class of Dirichlet series from regularity of the sum 

of the series (1) in above certain semi plane follows, that it has there not only a finite 

order (see [1, p. 334]), but for it is carried out as well a relation similar (2), true at 

mσσ >  for any natural k. We shall define at first a class of Dirichlet series, for which 

we shall establish our results.  



   Let r  be a natural number, and  - denotes set of all such natural numbers 

for which the canonical factorization contains only prime numbers not exceeding 

)(rN
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We shall say, that the series (1) belong to class , if for every J r  the series 
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converges absolutely at mσσ > . We shall notice, that many well-known Dirichlet 

series as the zeta - and L  - functions which coefficients are multiplicative functions, 

belong to class . J

  Theorem. Let a function  of the class  defined, for )(sf J 0σσ > , by an 

absolutely converging Dirichlet series (1), be regular on semi plane mσσ >  where the 

series   
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converges.  Then at mσσ > :  

  1) for any natural k the relation  
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takes place, where ),( kC σ  is some positive constant; 

  2) 0)( =σμ ; 

  3) the series (1) converges. 

 The theorem proof leans on some new results in the theory of distribution of curves 

in the infinite dimensional unite cube.  

2. The basic auxiliary lemmas. 

Definition 1. Let NN →:σ   be any one to one mapping of a set of natural 

numbers. If there will be natural number  such, that m nn =)(σ  for any  then we  

say, that 

mn >

σ  is finite permutation. A subset Ω⊂A  we call finite-symmetric if for any 

element An ∈)(= θθ  and any finite permutation σ  we have An ∈)(= )(σθσθ . 



Let  denote a set of all finite permutations. This is a group which contains 

each group of permutations of degree  as a subgroup (we consider each permutation 

Σ

n

σ  of degree  as finite permutation in sense of definition 1, for which n mm =)(σ  when  

nm > ). Set Σ  is countable set and we can arrange its elements in a sequence. 

 Let ,Ω∈ω  }|{=)( Σ∈Σ σσωω  and )(ωΣ′  means the closed set of all limit points 

of the sequence )(ωΣ . For real t  we denote })({=}{ ntt λΛ , where )(= nλΛ . Below we 

denote μ  product of linear Lebesgue measures  set on the segment [0,1]: m

.= ⋅⋅⋅××mmμ  

Lemma 1. Let Ω⊂A  be a finite-symmetric subset of zero measure and )(= nλΛ  

be any unbounded monotonously increasing sequence of positive real numbers every 

finite subfamily of elements of which linearly independent over the field of rational 

numbers. Let AB ⊃  any open subset with εμ <)(B  and  
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Then, we have εcEm 6)( 0 ≤  where c  the absolute constant and m  denotes line 

Lebesgue measure. 

Proof. Let ε  is any small positive number. As numbers nλ  are linearly 

independent, for any finite permutation σ  we have )()( )(21 nn tt σλλ ≠ , when 21 tt ≠ . 

Really, otherwise we would receive equality ss tt λλ 21 = , for enough big natural , i.e. s

.,=)( 21 Zkktt s ∈− λ  Further, writing down the same equality for some other whole 

mr >  we have an equality  
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which contradicts linear independence of numbers nλ . Hence for any pair of various 

numbers  and  one have 1t 2t .}|}){({})({ )(21 Σ∈∉ σλλ σ nn tt  By the lemma condition there 

will be a family of open spheres  (in Tikhonov's topology) such, that each 

sphere does not contain any other one from this family (the sphere, containing in other 

one can be rejected), thus  

,..., 21 BB
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Now we take some permutation Σ∈σ  defined by equalities ,=(1) 1nσ  knk =)(...,σ  whe- 

re the natural numbers are picked up as is indicated below. At first we take  such, 

that  

kn N
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where  is a projection of the sphere  in the subspace of first  coordinate axes 

and 

NB′ 1B N

11 =)( εμ B . We can cover NB′  by cubes with ribs δ  and a total measure not 

exceeding 13ε . We shall put  and define the numbers , using following 

inequalities  
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Now we take any cube with rib δ  and the centre kmm ≤≤1)(α . Then point })({
mntλ  will 

belong to this cube, if  
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From definition of a fractional part at  for some whole 1=m r  we have:  
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The measure of a set of such  does not exceed the value . The number of such 

intervals corresponding to different values of 
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The total measure of corresponding intervals does not exceed  
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Now we shall consider one of intervals (4); taking , we shall have  2=m
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][= nnts λλ ≤ . As we consider conditions (4) and (5) simultaneously we should 

estimate a total measure of those intervals (5) which have nonempty intersection with 

intervals of a kind (4), using conditions (3). The number of intervals of a kind (5) with 

lengths , having with one interval of a kind (4) nonempty intersection, does not ex- 1
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Then the measure of set of values  for which conditions (4) and (5) are 

simultaneously satisfied does not exceed  
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It is possible to continue these reasoning considering all conditions of a kind  
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Then we find the following estimation for the measure )(δm  of a set of those t  for 

which the points })({
mntλ  fall in considered cubes with a rib δ :  
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Spending simple transformations, we find, considering conditions (3): 
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By summing over all such cubes, for a measure of set of those  for which t

1})({ Bt
mn ∈λ , we receive such an upper bound 0>,3 ccε≤ . We shall notice, that the 

sequence )(= nλΛ  defined above depends on δ . We for each sphere  shall fix some 

sequence , using conditions (3). Considering all such spheres we denote 

. As the set 
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1,2,...}=|{=0 kkΛΣ A  is finite-symmetric the measure of set of values t  

interesting us can be estimated using any sequence kΛ  since, as it has been shown 

above, the sets  for different values t  have empty intersections. Further, set 

 has, for any point 

})({ ΛΣ t

})({ ΛΣ t 0Et∈ , nonempty intersection only with finite number of 



spheres . Really, otherwise, some limit point kB θ  (which contains in open set B ) 

 belongs to, say, . Let  - minimal distance from point )(ΛΣ sB d θ  to the bound of . 

Then for infinite number of indexes , since some number , all spheres will be 

contained in a sphere of radius , with centre 

sB

kn k

/2< d θ . Hence, for enough large , all 

such spheres will contained in the sphere  that contradicts the assumption. From 

here, in turn follows, that the set  can be presented in the form of union of subsets 
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So, we have  
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  The following step of our auxiliary tools-construction of some trigonometrical 

series. Let ασσαδσα >−=> ,, mm , and  
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where r=1,2, …. We shall write down canonical factorization of number n in the form 
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где .2/)(log πλ pp =  Now we shall enter on the consideration the function  
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From uniqueness of canonical factorization follows   
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In the conditions of the theorem we have ).,,,()( 1 RLg μθ ΣΩ∈  Really, from (6), apply- 

ing Cauchy inequality, we receive  
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and the demanded result follows from the theorem of Fatou (see [1, p. 387]). If we 

enter the designation  then we shall have ))()(()( 1 θθθ −−=∑ r
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  Lemma 2. Let E  be a subset of such real numbers  where the series  10, ≤≤ tt
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  Proof. Let  to denote a set of points of divergence of 0A )(θg . Under Egorov's 

theorem (see [5, p. 166]) this series converges almost uniformly out of some set 

0=)(, 11 Ω′Ω′ μ . We can assume the set 10 Ω′∪A  to be finite-symmetric (otherwise it is 

possible to take a set of all finite permutations of all its elements). There will be found 

some countable family of spheres with a total measure not exceeding ε  the union of 

which contains the set 10 Ω′∪A . For every natural n we define the set )( ΛΣ′ tn  as a set of 

all limit points of the sequence 
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)(sup)( )(nDmDm ≤ })({' ΛΣ tn  is a closed set. Clearly, that if we shall "restrict" 

sequences , leaving only components }{ Λt }{ ntΛ  with indexes, bigger than  and we 

shall designate the truncated sequence as 

n

}{ ′Λt  the set )}({' ′ΛΣ t  also will be closed. 



Now we consider products  for every . We have, as }{[0,1] ′Λ× tn t )(θrg  converges 
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Apparently from the construction of X , the equality   
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As the set  is closed, there is only finite set }}{{[0,1] ′Λ× tn R  of natural numbers 

such, that . Consider now the set of restricted points rRr
n Bt U ∈
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spheres . Let rB }|{= rr BB ∈′′ θθ . Then the intersection of them, being an open set, 

contains the point . So, we have  }{ ′Λt
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for each considered point . The similar relation is true in the case when the point 

 shall be replaced by any limit point 
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for each limit point ω . From this it follows, that εμ ≤′)(B . The set B′  is open set and 

. Now we can apply the lemma 3 and receive an estimation . 

Thus, we have 
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converges for all , i.e. DEt \∈ DE ⊂ . Then, for all t , except for values from some set 

of a measure not exceeding εc12 , last series converges. Owing to randomness of ε , 

last result shows convergence of the series of the lemma 2 for almost all considered t . 

The lemma 2 is proved.  

  Clearly, that condition 10 ≤≤ t  can be omitted now, i.e. the result of the lemma 

2 is true for all real t . 

  Lemma 3. Let a series of analytical functions  
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be given in one-connected domain G  of a complex -plane and converges absolutely 

almost everywhere in G  in the Lebesgue sense and a function  
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is summable function in . Then, the given series converges in uniformly in any 

compact subdomain of  G ; in particular the sum of this series is an analitical function 

in G . 

G

  Proof. It is enough to show, that the theorem is true for any rectangle C  in the  

domain . Let C  be a rectangle in G  and CG ′  be another rectangle inside C , 

moreover, their sides are parallel to the co-ordinate axes. We can assume, that on a 



contour of these rectangles the series converges almost everywhere, according to the 

theorem of Fubini (see [5, p. 208]). From the Lebesgue theorem on the bouded 

convergence (see [14, p. 293]):  

,)()(2=)()(2 1

1=

01 ds
s

sfids
s

si n
C

n
C ξ

π
ξ

π
−−

Φ
∫∑∫ −

∞
−

 

where the integrals are taken in the Lebesgue sense and ),(=)( 00 ts σΦΦ  is the sum of  

the given series at convergence points. As on the right part of equality the integrals 

exist in the Riemann sense by applying the Cauchy formula, we receive  
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where .)(=)( 01 ξξ ΦΦ  almost everywhere and ξ  is any point on or in a contour. Further, 

members of the series in C  are estimated as follows  ′
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converges in the consent with theorem of Lebesgue on monotonous convergence (see 

[14, P. 290]). Hence, the series )(
1=

ξnn
f∑∞  converges uniformly in inside of C′ . The 

lemma 3 is proved. 
 

3. Application of a theorem of Croneker. 

  The following lemma is best known theorem of Croneker.  

  Lemma 4. Let Nααα ,...,, 21  - are the he real numbers linearly independent over 

the field of rational numbers; γ  - a sub domain of - dimensional unite cube with a 

volume in Jordan sense. Let, further,  - a measure of set , for which 
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  Proof of this lemma is given in [4, p. 345]. At performance of the statement of a  

lemma 4 for each parallelepiped of the unite cube say, that the curve ),...,,( 21 ttt Nααα  is  

uniformly distributed  (see [4, p. 348]). 1mod

  The following theorem is generalization of a lemma 4. 

  Lemma 5. Let curve ),...,,( 21 ttt Nααα  be uniformly distributed . Then for any 

integrable function  in Riemann sense the following relation is true 
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 Under conditions of the lemma 1 projection of the curve  in the finite 

dimensional unite cube is uniformly distributed . 
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  Lemma 6. For any continuous function  in the infinite-dimensional unite 

cube  the relation 
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is satisfied, where B  is any sphere. 

  Proof. We take a sphere with radius r<0 . 
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Therefore  
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where  means a projection of the sphere ),0( rBN B  to the first  co-ordinate axes. N
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where the last integral is a surface integral on surface M which is defined by the equa- 

tion 

,10,
1

1 ≤≤=∑
=

−
k

N

n
n

n uuue  (7) 

with value u, supplying a maximum, and ∇  - a gradient of linear function on the left 

part of the last equality, i.e. 
Nee 2221 −− +++=∇ L . 

Defining u1 from (7) it is received 
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Taking the least whole number  with a condition , i.e.  it 

is received . Then from (8) follows 
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As function )(θF  is continuous, it is bounded. Taking ε  sufficiently small, we 

deduce justice of a lemma 6 from the previous lemma. Lemma 6 is proved. 

4. Proof of the theorem. 

  Before to pass to a conclusion of the statement of the theorem we shall prove a  

lemma. 

    Lemma 7. Let ),,,(1 RL μΣΩ  to mean Lebesgue’s class of summable functions. 

Then for any natural  the relatiosn below takes place: k
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  Proof. As it has been above shown, set of points of divergence of the series 
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has special structure. Namely, if  - set of points of divergence for any natural  it is 
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where ))((, εμ ≤′Ω⊂′ BB  is an open set (hence, B  is finite-symmetrical). Defining sets 

 and  as in a lemma 2, we deduce the relationD )(nD εcDm 12)( ≤ . Under Egorov's 

theorem, a considered series converges almost uniformly out of some finite-

symmetrical set 0=)(, 11 ΩΩ μ . Let .1 Ω⊂⊂Ω B  Then )(θg  is bounded out of B . As on 

the set  the series B\Ω )(θg  converges uniformly, then for any 0>δ  will be found H  

such that the following inequality is fair 
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From absolute convergence )(θrg  we conclude, that there exist a constant L  for which 

an inequality below is satisfied: 
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with a number 0>η  set beforehand, independently from other parameters,  satisfying 

the inequality ημμ ≤Ω−Ω′ )\()( B . Then by the lemma 6 one had: 
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Further, there will be found the open set of a measure η2≤  containing the union  

. Under the remarks made above concerning structure of a set of 

points of divergence, it is possible suppose last open set to be finite-symmetrical, thus 
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From relations (9), (10), (11) and (12) considering randomness of δ  and η  concude: 
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Let now G  denote a maximal value of )(θg  in B\Ω . We shall define the sets 

. Let )}(2|\ BΩ{ 1 θθ gG k
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kΩ′  be an open set covering  which has measure kΩ

)(2 kΩ≤ μ . Then, from Parseval’s equality one deduces: 

),()(2 222 σμ CG k
k ≤Ω−

 

or 

.2)()( 222 k
k GC −−≤Ω σμ  

As  is open set under the remarks made above, we have: kΩ′
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According to the lemma 2, we shall have 
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Therefore,  is a summable function and as  can grow unboundedly (the case 

  is trivial) considering (13), we have: 
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Thus, the lemma is proved for the case 1=k . 
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(Here )(nkτ  expresses number of factorizations of n into product of k natural factors) 

and we have: 
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As for any positive ε the following inequality is carried out  
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with some positive constant )(0 εc  depending only on ε  (see [11, p. 34]). Then from 

(9) taking into account the subsequent inequality it is received, при 8/δε < :  
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Now the statement of the lemma 7, at any , turns out by similar reasoning. The proof 

of the lemma 7 is finished. 
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  Let's pass now to the theorem proof. We shall consider function of complex 

argument :its +=σ  
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coincides with . We take any great real number  and we shall consider 

function  in the rectangle 

)( Λtgr 0>T

)(sh K , with angular points itaiT ±± ,σ , where 0σ>a  (as 

usually, 0σ  denotes an absciss of absolute convergence). It is easy to see, that 

conditions of a lemma 3 are satisfied for the series  By the lemma 

3 this series represents an analytical function which coincides with  on the semi-

plane 
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0Re σ>s  owing to its regularity in any one-connected domain placed in the 

semiplane ms σ>Re , not containing zeroes of , which have nonempty intersection 

with the semiplane 

)(sf

σ>sRe  of absolute convergence. So, by the principle of analytical 

continuation, it coinsides with , owing to randomness of )(sf T , in the all semiplane 

ms σ>Re , with exception of on no mire than coutale number of segments being 

parallel to the real axes over which we take a cross cats. Therefore, everywhere in the 

taken rectangle we have )()( shsf = . 

 The theorem follows now from the lemma 7 of present work, theorems 9.44 

and 9.55 of [2].    
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