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1. Introduction.

In present article some properties of Dirichlet series of a kind

f(s)= Zann_s,s =o+it,(9)
n=1
are considered, where coefficients a, are complex numbers. These properties concern

mean values and an order of Dirichlet series (see [1, 2]). As a mean value is called the

following expression
— 1 2
lim ! |f (o +it) dt.

In [1, p. 325] they are studied mean values of the series having a finite order. In the
same place function u(o) denoting an order of Dirichlet series on straight line
Res=c 1is entered. In the theory of Riemann zeta-function exists, thereupon a
hypothesis named Lindeldf hypothesis, asserting, that x(c)=0 on a semi plane of
mean values (see [2, p. 137]). The question on communication of mean values with
various analytical properties of Dirichlet series has been studied in [1,2,4,6]. In works
[2,3,4,6,7,8,9,10] mean values of Dirichlet series have been enclosed to a question on
an arrangement of zeros of Dirichlet series and arithmetic appendices are given also.
Generally consideration of mean values of Dirichlet series is connected with the big
difficulties. Only in a few special cases exact results are known. Rather easily, but the

proof of that is not trivial at o >1/2
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1 ,
lim— ! C(o+in)| dt =¢(20)
(see [2]). Using functional equation, Hardy and Littlewood have proved, under the

same conditions, the following result (see [2, p. 56]):

ey
£ (40)

For mean values of higher degrees of the zeta-function it is known very little

1% Y
lim ! C(o+in)|'de =

(see [2, p.60], also [12]). In connection with the Lindelof Hypothesis it is known, that

it is equivalent to the statement
.17 2 2, N 20
lim— j Co+in[ de=> 2, (2)
- 0 n=1

for any natural £ and o>1/2 (see [2, p. 136]). In the work [1] connection of mean
values of Dirichlet series with convergence and regularity is studied. The theorem
asserting is proved, that the Dirichlet series (1) converges in a semi plane of mean
values if it represents regular function on this semi plane. In the present work the
converse problem in more general conditions is considered somewhat. Namely,

considering a semi plane of mean values, we define it as a semi plane o >0, where
the series below converges:

= 2
Z n 20 .

n=l

a

n

Not assuming that Dirichlet series defines function of a finite order and that there is a

finite limit

lim lﬁ flo+it) dt

T—o T 0
(see [1])), we prove, that for one class of Dirichlet series from regularity of the sum
of the series (1) in above certain semi plane follows, that it has there not only a finite

order (see [1, p. 334]), but for it is carried out as well a relation similar (2), true at

o > o, for any natural k. We shall define at first a class of Dirichlet series, for which

we shall establish our results.



Let » be a natural number, and N(r) - denotes set of all such natural numbers

for which the canonical factorization contains only prime numbers not exceeding r.

We shall say, that the series (1) belong to classJ, if for every r the series

—O
S

neN(r)
converges absolutely at o>0o,. We shall notice, that many well-known Dirichlet
series as the zeta - and L - functions which coefficients are multiplicative functions,
belong to class.J.

Theorem. Let a function f(s) of the class J defined, for o>o,, by an
absolutely converging Dirichlet series (1), be regular on semi plane o > o, where the
series

2 2
al| n-=°.

>,

n=l1

converges. Then at o >0, :

1) for any natural k the relation

— 1% _
lim ! |f (o +in[" dt < C(o, k),

takes place, where C(o,k) is some positive constant;
2) u(o)=0;
3) the series (1) converges.
The theorem proof leans on some new results in the theory of distribution of curves
in the infinite dimensional unite cube.
2. The basic auxiliary lemmas.
Definition 1. Let 6:N—> N be any one to one mapping of a set of natural

numbers. If there will be natural number m such, that o(n)=n for any n>m then we

say, that o is finite permutation. A subset AcQ we call finite-symmetric if for any

element 6=(6,) € A and any finite permutation o we have c0=(6,,,) <€ A.



Let = denote a set of all finite permutations. This is a group which contains
each group of permutations of degree » as a subgroup (we consider each permutation
o of degree n as finite permutation in sense of definition 1, for which o(m)=m when
m>n). Set T is countable set and we can arrange its elements in a sequence.

Let weQ, I(w)={ow|oeX} and X'(w) means the closed set of all limit points

of the sequence X(w). For real + we denote {tA}=({4,}), where A=(4,). Below we

denote ux product of linear Lebesgue measures m set on the segment [0,1]:

H=MmXmx---.
Lemma 1. Let A= Q be a finite-symmetric subset of zero measure and A= (4,)
be any unbounded monotonously increasing sequence of positive real numbers every

finite subfamily of elements of which linearly independent over the field of rational

numbers. Let B> A any open subset with u(B)<e¢ and

E,={0<t<1|{tA} € ANZ'{tA} c B}.
Then, we have m(E,)<6ce where c the absolute constant and m denotes line
Lebesgue measure.

Proof. Let & is any small positive number. As numbers A are linearly
independent, for any finite permutation o we have (14,)#(t,4,,,), when ¢ #¢,.
Really, otherwise we would receive equality 74 =14 , for enough big natural s, i.e.
(t, —t,)A, =k,k e Z. Further, writing down the same equality for some other whole

r>m we have an equality

klﬂ’s _kﬂ’r —

k/A, — kA, = 0,

r-os

which contradicts linear independence of numbers 4, . Hence for any pair of various
numbers 7 and ¢, one have ({14,}) ¢ {({t,4,.,})| o €Z}. By the lemma condition there

will be a family of open spheres B,,B,,... (in Tikhonov's topology) such, that each

sphere does not contain any other one from this family (the sphere, containing in other

one can be rejected), thus



ACBCOBj,Z/J(Bj) <1.5e.
j=1

Now we take some permutation o € defined by equalities (1) =n,, ...,o(k) =n, whe-
re the natural numbers », are picked up as is indicated below. At first we take N such,

that
H(By) <2é,
where B), is a projection of the sphere B, in the subspace of first N coordinate axes
and u(B)=¢. We can cover B, by cubes with ribs § and a total measure not
exceeding 3¢,. We shall put k=N and define the numbers n,,...,n,, using following
inequalities
Ay > 1,/1;; < (1/4)5/1;11,/1;31 < (1/4)5, 211; < (1/4)5/1;;_1,5<1.(3)

Now we take any cube with rib § and the centre (¢,),,., . Then point ({¢4, }) will
belong to this cube, if
o
i t—a, |<—.
{4, j-a, | >
From definition of a fractional part at m =1 for some whole » we have:

r+a,—92 <<

r+al+5/2.(4)

n n

The measure of a set of such ¢ does not exceed the value 44,". The number of such

intervals corresponding to different values of r = (12, 1< 2, does not exceed
[2,,,1]+2£2,,,1 +2.
The total measure of corresponding intervals does not exceed
<(4, + 2)5,1;11 <(1+ 2/1;11)5.
Now we shall consider one of intervals (4); taking m =2, we shall have

s+a,—-072
A

112 112

s+a,+02

<t<

,(3)



with s =[t4,1<4, . As we consider conditions (4) and (5) simultaneously we should

estimate a total measure of those intervals (5) which have nonempty intersection with
intervals of a kind (4), using conditions (3). The number of intervals of a kind (5) with

lengths ;t;zl , having with one interval of a kind (4) nonempty intersection, does not ex-

ceed the size
(64,2, 1+2< 34, 4, +2.
Then the measure of set of values ¢ for which conditions (4) and (5) are
simultaneously satisfied does not exceed
(4, +2)Q2+06%,4, )%,
It is possible to continue these reasoning considering all conditions of a kind

l+a—5/2£tgl+a+5/2

A A

n n
m m

m=1,..k.

Then we find the following estimation for the measure m(5) of a set of those ¢ for
which the points ({z4, }) fall in considered cubes with arib &
M) < Q2+ A, )2+%,4,)..Q+ 64! A, ).

Spending simple transformations, we find, considering conditions (3):

m(8) <2+ 2,2+ XA, ) Q2+ 6% 2, )64 <5 [[(1+2m™).

m=1

By summing over all such cubes, for a measure of set of those ¢ for which
({t4, }eB,, we receive such an upper bound <3ce,c>0. We shall notice, that the
sequence A =(4,) defined above depends on 5. We for each sphere B, shall fix some
sequence A,, using conditions (3). Considering all such spheres we denote
T, ={A, |k=12,.}. As the set 4 is finite-symmetric the measure of set of values ¢
interesting us can be estimated using any sequence A, since, as it has been shown
above, the sets Z({rA}) for different values r have empty intersections. Further, set

T({tA}) has, for any point e E,, nonempty intersection only with finite number of



spheres B,. Really, otherwise, some limit point ¢ (which contains in open set B)
Y(A) belongs to, say, B,. Let d - minimal distance from point ¢ to the bound of B..
Then for infinite number of indexes n,, since some number k, all spheres will be

contained in a sphere of radius <d/2, with centre ¢. Hence, for enough large &, all

such spheres will contained in the sphere B, that contradicts the assumption. From
here, in turn follows, that the set £, can be presented in the form of union of subsets
E.k=12,.. ,where

E, ={teE, (M JB, =2}

m>k

Then,

00

E ={teE,|S(AN) = | B} Ey = JEGE, c E (k=1).

k<m k=1

So, we have

m(E,) <limsupm(E(A)) < limsupm(E™) <3c(e, + &, +...) = 3ce,

AEZO k AEZO

Where E(A)={teE,|({tA})e B} and E® ={teE,|({tA}) e B,} . The proof of the lemma

1 is finished.
The following step of our auxiliary tools-construction of some trigonometrical

o=a-o

m?

series. Let a>o

m?

o>a,and

f(s)= D an”,

neN((2")

where r=1,2, .... We shall write down canonical factorization of number # in the form

of n=[]p”. We have

p\n

—2m‘t2/1pap
j;,(S) — Z Clnl’l o‘e p\n ,

rae A, =(log p)/2z. Now we shall enter on the consideration the function
—2711'20:[,6[,
gr(e): Zann_ge . JgO(H):l

neN(2")

From uniqueness of canonical factorization follows



[le. @ g, 0 udo)=" Ya[n?. (6)

Q neN(2"Z\N(2™™)

Let
g(0) =1+ |g.(0)- g, (0)

r>1
In the conditions of the theorem we have g(0) e L,(Q,Z, 1, R). Really, from (6), apply-
ing Cauchy inequality, we receive

>

r=1

2 ¢
n b

& (0)-g, (O)u(d0) < Y2 C P (@=512); C(0)=3
r=1 n=1

a}’l
and the demanded result follows from the theorem of Fatou (see [1, p. 387]). If we

enter the designation F(6) =Y (g,(0)-g,.,(0)) then we shall have F(6) e L,(Q,Z, 1, R).

Lemma 2. Let E be a subset of such real numbers t,0<t<1 where the series

2.

r2l

g, ({tA}) — g, ({tA})| is divergent. Then p(E)=0.

Proof. Let 4, to denote a set of points of divergence of g(8). Under Egorov's

theorem (see [5, p. 166]) this series converges almost uniformly out of some set

Q,u(Q)=0. We can assume the set 4,UQ; to be finite-symmetric (otherwise it is

possible to take a set of all finite permutations of all its elements). There will be found
some countable family of spheres with a total measure not exceeding ¢ the union of

which contains the set 4, UQ;. For every natural n we define the set X/ (¢A) as a set of
all limit points of the sequence
Y (w)={ow|loceZrno(l)=1A---ro(n)=n}.
Let
D ={t|{thy e 4y A X', (1A} | B} 4, = (112)log p, , n=1.2,....

We have D" < D"". Hence, if we shall designate D=(J D" we shall receive

m(D) <supm(D'). The set X', ({tA}) is a closed set. Clearly, that if we shall "restrict"
sequences {fA}, leaving only components {tA,} with indexes, bigger than » and we

shall designate the truncated sequence as {tA}’ the set Z'({fA}") also will be closed.



Now we consider products [0,1]"x{tA}" for every ¢. We have, as g (6) converges
absolutely,

(tA} €[0,1]" x {tAY < 4,.
The below-mentioned example shows, that the equality 4,=Q from this does not
follow. Let 7=[0,1];U =[0;1/2];V =[1/2;1] and

X, =UxUx..., X, =VxUx...,

X,=IxVxUx...,X_,=1I'"xVxUx...,...
Clearly, that x(X,)=0 for all s. Then ux(X)=0, where

x=Jx,.
5=0
Apparently from the construction of X, the equality
X=[0,1TxX
1s true for any .
As the set [0,1]7" x{{tA}'} is closed, there is only finite set R of natural numbers

such, that [0,1]"x{{zA}’}cUreRBr. Consider now the set of restricted points ¢ of

spheres B.. Let B/ ={0'|0<B}. Then the intersection of them, being an open set,

contains the point {fA}'. So, we have

[0,1]" x {{tA}Y'} < [0,11" x (B, = |UB,,

reR reR

for each considered point ¢. The similar relation is true in the case when the point

{tA} shall be replaced by any limit point o of the sequence Z({tA}) because we B,. If

by B’ to denote the union of all open sets of a kind ﬂreRB; we shall receive a relation
{tA} €[0,11" x {{1A}'} = A<[0,1]"x B' < | JB,,

for each considered values of ¢, or

{@} €[0,1]" x{w} = A= [0,1]"xB' | JB,,



for each limit point . From this it follows, that x(B")<e¢. The set B’ is open set and
Y'({tA}') e B'. Now we can apply the lemma 3 and receive an estimation m(D")<6ce .
Thus, we have m(D) < 6ce . Hence, taking n=y,,k=1,2,3,..., we can find such limit

point w, e Q\| J B, of the sequence X, ({tA}), for which the series

2

r2l

gr(a)k)_gr—l(a)k)|
converges for all values re E\D. As the set Q\U’_B, is closed, the limit point

@ = ({tA}) of the sequence (w,) will belong to the set Q\U,Br . Therefore, the series

2.

r2l

g (@)-g, (@)

converges for all re E\D, 1.e. Ec D. Then, for all ¢, except for values from some set
of a measure not exceeding 12c¢, last series converges. Owing to randomness of ¢,
last result shows convergence of the series of the lemma 2 for almost all considered ¢.
The lemma 2 is proved.

Clearly, that condition 0<<1 can be omitted now, i.e. the result of the lemma
2 is true for all real ¢.

Lemma 3. Let a series of analytical functions

>1,6)

be given in one-connected domain G of a complex s-plane and converges absolutely

almost everywhere in G in the Lebesgue sense and a function

D(o.)=3 | /)]

is summable function in G. Then, the given series converges in uniformly in any
compact subdomain of G ; in particular the sum of this series is an analitical function
inG.

Proof. 1t 1s enough to show, that the theorem is true for any rectangle C in the
domain G. Let C be a rectangle in G and C’' be another rectangle inside C,

moreover, their sides are parallel to the co-ordinate axes. We can assume, that on a



contour of these rectangles the series converges almost everywhere, according to the
theorem of Fubini (see [5, p. 208]). From the Lebesgue theorem on the bouded
convergence (see [14, p. 293]):
N[ PolS) Ny Su(s)
(27) J‘Cso_—gds—;(hzz) J‘Cﬁds,
where the integrals are taken in the Lebesgue sense and @ (s)=®,(o,?) 1s the sum of

the given series at convergence points. As on the right part of equality the integrals

exist in the Riemann sense by applying the Cauchy formula, we receive

@)= a7

—ds= Zf (5),

where @, (&)=®,(¢). almost everywhere and & is any point on or in a contour. Further,

members of the series in C' are estimated as follows

@Ry j'f(s)'|ds| <) [| £(9) | ds |,

where 6. designates the minimum distance between the sides C and C’. A series

;jcm(s) lds|
converges in the consent with theorem of Lebesgue on monotonous convergence (see

[14, P. 290]). Hence, the series Z:O:l f.(&) converges uniformly in inside of C'. The

lemma 3 is proved.

3. Application of a theorem of Croneker.

The following lemma is best known theorem of Croneker.
Lemma 4. Let «a,,a,,....a, - are the he real numbers linearly independent over
the field of rational numbers; y - a sub domain of N - dimensional unite cube with a

volume T in Jordan sense. Let, further, 1,(T) - a measure of set t<(0,T), for which

(at,at,...,a\t) € ymodl.

Then



I (T
lim-~-—= () =
T—xw T

I.

Proof of this lemma is given in [4, p. 345]. At performance of the statement of a
lemma 4 for each parallelepiped of the unite cube say, that the curve (e, a.t,...,a,t) 1s
uniformly distributed mod1 (see [4, p. 348]).

The following theorem is generalization of a lemma 4.

Lemma 5. Let curve (ait,at,...,a,t) be uniformly distributedmod1. Then for any

integrable function F(x) in Riemann sense the following relation is true
T 1 1
lim 7 [ F({ta bty Dt = [ [ (et oy
0 0 0
Under conditions of the lemma 1 projection of the curve ({tA}) in the finite
dimensional unite cube is uniformly distributed mod1.

Lemma 6. For any continuous function F(x) in the infinite-dimensional unite

cube Q the relation

lim7" [F(ieayde = [ F(6)ao,

{tA}eB B

is satisfied, where B is any sphere.

Proof. We take a sphere with radius 0<r.

B(0,r)= {x eQ|d(x,0)= Zel’” x,| < r} .
n=1

As |x, [<1 then for natural number N we have

z e x, |< e’NZe’” <e™.
n=N+1 n=0
Taking any small number & >0 we at N >loges™ nmeeMm:
N

N
Zel’" | x, [£d(x,0)< Z e x, | +e.
n=l1

n=1
Therefore
B, (0,r—&)x[0,1]x---< B(0,r) = B, (0,r) x[0,1]x---,

where B, (0,7) means a projection of the sphere B to the first N co-ordinate axes.



d.
py () =y =)= | dyedey=2" [du | 75”3
rfggAZZ: & |<r r—e<usr anNelf"u,Fu

< 52NI ”dvs,

M

where the last integral is a surface integral on surface M which is defined by the equa-

tion
N
> u, =u, 0<u, <1, (7)
n=1

with value u, supplying a maximum, and V - a gradient of linear function on the left

part of the last equality, i.e.

||V||=\/1+e‘2 otV

Defining u; from (7) it is received

So,
Hy (1) = gy (r =) < £2%.(8)
Taking the least whole number N with a condition N >loges™, i.e. N =[loges']+1 it
is received € <€’ Then from (8) follows
wy (1) = py (r—g)<2Ve*™ -0,
as N — .
As function F(8) is continuous, it is bounded. Taking ¢ sufficiently small, we
deduce justice of a lemma 6 from the previous lemma. Lemma 6 is proved.
4. Proof of the theorem.
Before to pass to a conclusion of the statement of the theorem we shall prove a
lemma.
Lemma 7. Let L(Q,Z,1,R) to mean Lebesgue’s class of summable functions.
Then for any natural k the relatiosn below takes place:

1) g2k(0) € Ll(Qa Znua R)a



2) there will be found a constant c(o,k) such, that
limlﬁl + F({Ay) dt < c(o, k).
T T3
Proof. As it has been above shown, set of points of divergence of the series

2

rzl

g (@)-g, (@)

has special structure. Namely, if 4, - set of points of divergence for any natural » it is
had:
A, =[0,1]" x A p(Ay) = u(4p).
Hence, its each open covering looks like
B=[0,1]"xB,

where B'c Q, (u(B')<¢) is an open set (hence, B is finite-symmetrical). Defining sets
D and D™ as in a lemma 2, we deduce the relationm(D)<12cs. Under Egorov's
theorem, a considered series converges almost uniformly out of some finite-
symmetrical set Q,u(Q,)=0. Let Q, c B Q. Then g(0) is bounded out of B. As on
the set Q\ B the series g(8) converges uniformly, then for any 6 >0 will be found #

such that the following inequality is fair
gO) -1+ 12.0)-g,,())<5.09
r<H

From absolute convergence g.(¢) we conclude, that there exist a constant L for which
an inequality below is satisfied:

1+ 1g,(0)-g, ()<L
for all 9<Q. Hence,

[e@udo)= [0+ 12,0)-g,,(0)u(dd)+O0(Ln),(10)

Q\B

with a number 7, >0 set beforehand, independently from other parameters, satisfying

the inequality «(Q")— #(Q\ B)<n. Then by the lemma 6 one had:

T

[+l g, (A g, (tAD) de =T [ (1+ | g,(0) — g, (8) )u(d0) + o(T). (1)

0,{tA}eQ



Further, there will be found the open set of a measure <27 containing the union

A, (' \(Q\B)). Under the remarks made above concerning structure of a set of

points of divergence, it is possible suppose last open set to be finite-symmetrical, thus
m({t <T | A} e Q' \(Q\ B)}) < 12enT. (12)

From relations (9), (10), (11) and (12) considering randomness of § and » concude:

[g(eANdt =T [g(0)u(d6)+o(T).(13)

0<t<T {tA}eQ\B Q\B

Let now G denote a maximal value of g(@) in Q\B. We shall define the sets
Q ={0cQ\B|G2"" <g(#)}). Let Q) be an open set covering Q, which has measure
<2u(Q,). Then, from Parseval’s equality one deduces:

G277 u(Q,) < C(o),
or

1(Q,)<C(o)G277,
As Q; is open set under the remarks made above, we have:

m({t | {tA} € QL) <12cu(Q,).

According to the lemma 2, we shall have

j g({tA})dt < 24cC(0)TG ) G227 <96¢C(0)G'T.

{tA}eQ\Q k=1

Therefore, g({tA}) is a summable function and as G can grow unboundedly (the case

A, =@ is trivial) considering (13), we have:

lim-— [ ¢(11A} )t = [ 2(O)u(do).

Thus, the lemma is proved for the case k=1.

Now we shall prove, that (1+ F(0))** € L,(Q,Z, u,R). We have:

1+ FO)* <2k + 2k‘z rrg (0)

2k 727]{ 2k-1
<2k+ 2k[2r 2"‘} (z Pk

gf’w)\j :

Then



g-(O)f u(do). (9)

”1 + F(9)|2k u(do) <2k + Ckz rsz'

Q

From definition of function g, we receive

. o 27 Zapﬁp
gr(e)zz...zanl...ank(nl...nk) e PR =
n g
27y a0,

2krk<pahr

where b, = > a,--a, . Hence,
=N

npen,

|bn|2 <r,(n) z a,-a ’

=N

ny

(Here 7,(n) expresses number of factorizations of n into product of k natural factors)

and we have:

k
[lgf@f maoy="¥ Ibnlzn‘z"sCo(a)z”‘”( Zaﬁn‘”j <
2 <p<2m 1

Q 2krk<pahr
<cy(e)CH (o — (51 2))2% e thrharz |
As for any positive ¢ the following inequality is carried out
7, (n) < ¢ (e)n’
with some positive constant ¢,(¢) depending only on & (see [11, p. 34]). Then from

(9) taking into account the subsequent inequality it is received, pu &< 5/8:
q quality p
j 1+ FO)* u(dd) < co(g)c’f(zzkf + Zr2k2k(”2)5/4j , C=C(a—(5/2)).
Q r>2

Now the statement of the lemma 7, at any &, turns out by similar reasoning. The proof
of the lemma 7 is finished.
Let's pass now to the theorem proof. We shall consider function of complex

argument s =o +it:

h(s) =1+ i((h, ()= h, (),

where h (c+it)= D a,n"n™". Apparently from expression for g,, h, atevery o>o,
neN(2")



coincides with g.(tA). We take any great real number 7 >0 and we shall consider
function 4(s) in the rectangle K, with angular points o+iT,a+it, where a>o, (as

usually, o, denotes an absciss of absolute convergence). It is easy to see, that

conditions of a lemma 3 are satisfied for the series 1+ i((hr(s)—h,_l (s)). By the lemma

r=1
3 this series represents an analytical function which coincides with f(s) on the semi-
plane Res>o, owing to its regularity in any one-connected domain placed in the
semiplane Res > o, , not containing zeroes of f(s), which have nonempty intersection

with the semiplane Res > & of absolute convergence. So, by the principle of analytical
continuation, it coinsides with f(s), owing to randomness of 7, in the all semiplane

Res>o,, with exception of on no mire than coutale number of segments being

parallel to the real axes over which we take a cross cats. Therefore, everywhere in the

taken rectangle we have | (s)|=|A(s)|.

The theorem follows now from the lemma 7 of present work, theorems 9.44
and 9.55 of [2].
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