Canard cycles in generic slow-fast systems on the two-torus How many ducks can dance on the torus?

> Ilya V. Schurov ilya at schurov.com

Department of Mathematics and Mechanics Moscow State University

January 15, 2010 Topology, Geometry, and Dynamics: Rokhlin Memorial Saint Petersburg, Russia

Definition

• The slow-fast system is a system of the following form:

$$\begin{cases} \dot{x} = f(x, y, \varepsilon), \\ \dot{y} = \varepsilon g(x, y, \varepsilon), \end{cases} \quad \varepsilon \in (\mathbb{R}, 0). \tag{1}$$

 Variables: x is a fast variable, and y is a slow one, ε is a small parameter.

• Slow curve is a set $M := \{(x, y) \mid f(x, y, 0) = 0\}.$

Remark

Outside of any fixed neighborhood of the slow curve M, for ε small enough, the fast variable x changes much more rapidly than the slow variable y.

Definition

• The slow-fast system is a system of the following form:

$$\begin{cases} \dot{x} = f(x, y, \varepsilon), \\ \dot{y} = \varepsilon g(x, y, \varepsilon), \end{cases} \quad \varepsilon \in (\mathbb{R}, 0). \tag{1}$$

Variables: x is a fast variable, and y is a slow one, ε is a small parameter.

• Slow curve is a set $M := \{(x, y) \mid f(x, y, 0) = 0\}.$

Remark

Outside of any fixed neighborhood of the slow curve M, for ε small enough, the fast variable x changes much more rapidly than the slow variable y.

Definition

• The slow-fast system is a system of the following form:

$$\begin{cases} \dot{x} = f(x, y, \varepsilon), \\ \dot{y} = \varepsilon g(x, y, \varepsilon), \end{cases} \quad \varepsilon \in (\mathbb{R}, 0). \tag{1}$$

- Variables: x is a fast variable, and y is a slow one, ε is a small parameter.
- Slow curve is a set $M := \{(x, y) \mid f(x, y, 0) = 0\}.$

Remark

Outside of any fixed neighborhood of the slow curve M, for ε small enough, the fast variable x changes much more rapidly than the slow variable y.

Definition

• The slow-fast system is a system of the following form:

$$\begin{cases} \dot{x} = f(x, y, \varepsilon), \\ \dot{y} = \varepsilon g(x, y, \varepsilon), \end{cases} \quad \varepsilon \in (\mathbb{R}, 0). \tag{1}$$

- Variables: x is a fast variable, and y is a slow one, ε is a small parameter.
- Slow curve is a set $M := \{(x, y) \mid f(x, y, 0) = 0\}.$

Remark

Outside of any fixed neighborhood of the slow curve M, for ε small enough, the fast variable x changes much more rapidly than the slow variable y.

Ilya V. Schurov (MSU)

- Fast dynamics for ε = 0: slow variable y is a constant.
- Attracting part of the slow curve M consist of stable fixed points.
- Repelling part of the slow curve M consist of unstable fixed points.
- Folds are neutral fixed points.

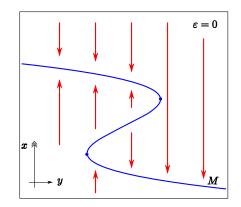


Figure: Fast system and its fixed points

- Fast dynamics for ε = 0: slow variable y is a constant.
- Attracting part of the slow curve M consist of stable fixed points.
- Repelling part of the slow curve M consist of unstable fixed points.
- Folds are neutral fixed points.

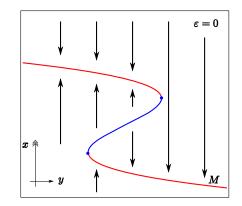


Figure: Fast system and its fixed points

- Fast dynamics for ε = 0: slow variable y is a constant.
- Attracting part of the slow curve M consist of stable fixed points.
- Repelling part of the slow curve *M* consist of unstable fixed points.
- Folds are neutral fixed points.

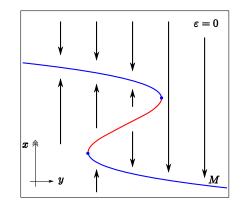


Figure: Fast system and its fixed points

- Fast dynamics for ε = 0: slow variable y is a constant.
- Attracting part of the slow curve M consist of stable fixed points.
- Repelling part of the slow curve M consist of unstable fixed points.
- Folds are neutral fixed points.

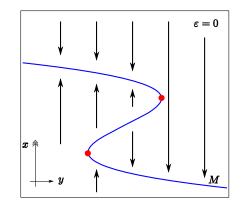


Figure: Fast system and its fixed points

- Pick a point far from *M*
- it quickly falls on attracting segment of M
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

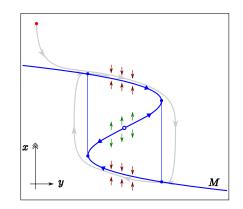


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

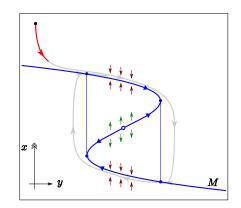


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

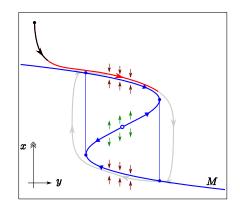


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on attracting segment of M, and so on.

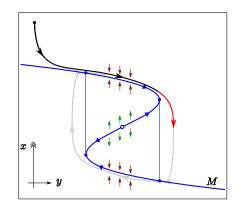


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

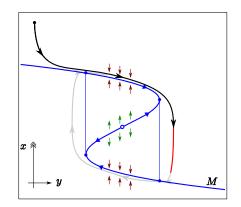


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

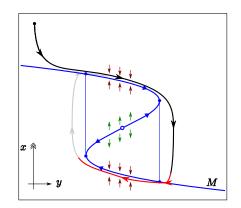


Figure: Relaxation oscillation: slow and fast motions

- Pick a point far from *M*
- it quickly falls on *attracting* segment of *M*
- than slowly moves along *M*
- than jumps near the fold point
- than falls on *attracting* segment of *M*, and so on.

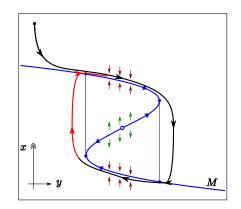


Figure: Relaxation oscillation: slow and fast motions

Canard solutions

Definition 1

Duck (or canard) solutions are solutions, whose phase curves contain an arc of length bounded away from 0 uniformly in ε , that keeps close to the unstable part of the slow curve

Definition 2

Canard cycle is a limit cycle which is a canard.

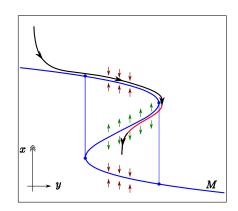


Figure: Canards

Canard solutions

Definition 1

Duck (or canard) solutions are solutions, whose phase curves contain an arc of length bounded away from 0 uniformly in ε , that keeps close to the *unstable* part of the slow curve

Definition 2

Canard cycle is a limit cycle which is a canard.

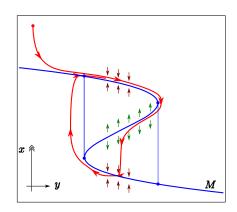


Figure: Canards

Canard solutions

Definition 1

Duck (or canard) solutions are solutions, whose phase curves contain an arc of length bounded away from 0 uniformly in ε , that keeps close to the *unstable* part of the slow curve

Remark

There's **no** attracting canard cycles in generic planar systems.

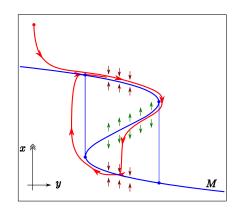


Figure: Canards

Ilya V. Schurov (MSU)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some *ε*, we've got canard cycle.

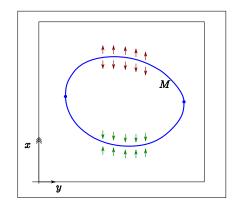


Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some ε, we've got canard cycle.

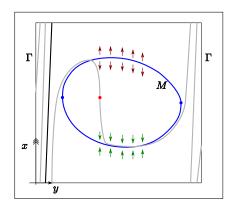


Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)

Ilya V. Schurov (MSU)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some ε, we've got canard cycle.

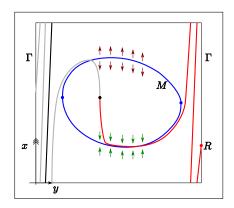


Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some ε, we've got canard cycle.

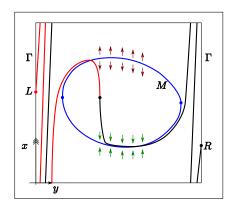


Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)

Ilya V. Schurov (MSU)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some ε, we've got canard cycle.

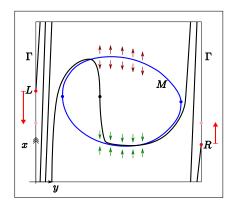


Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)

Ilya V. Schurov (MSU)

- Consider slow-fast system on the two-torus
- Pick a point far from *M*
- Consider its trajectory in forward time
- Reverse the time
- When ε decreases,
 L moves down,
 and R moves up.
- For some ε, we've got canard cycle.

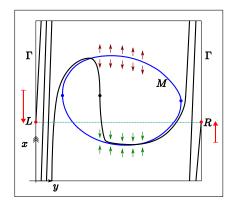
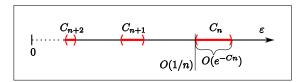
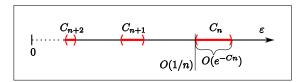


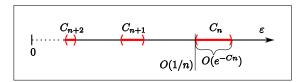
Figure: Ducks on the torus (Yu. S. Ilyashenko, J. Guckenheimer, 2001)



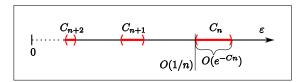
- There exists a sequence of intervals $\{C_n\}_{n=1}^{\infty}$ such that for every $\varepsilon \in C_n$ the system has *attracting* canard cycles.
- Intervals C_n are exponentially small.
- They accumulate to 0.
- Their density is 0 near $\varepsilon = 0$.



- There exists a sequence of intervals $\{C_n\}_{n=1}^{\infty}$ such that for every $\varepsilon \in C_n$ the system has *attracting* canard cycles.
- Intervals C_n are exponentially small.
- They accumulate to 0.
- Their density is 0 near $\varepsilon = 0$.



- There exists a sequence of intervals $\{C_n\}_{n=1}^{\infty}$ such that for every $\varepsilon \in C_n$ the system has *attracting* canard cycles.
- Intervals C_n are exponentially small.
- They accumulate to 0.
- Their density is 0 near $\varepsilon = 0$.



- There exists a sequence of intervals $\{C_n\}_{n=1}^{\infty}$ such that for every $\varepsilon \in C_n$ the system has *attracting* canard cycles.
- Intervals C_n are exponentially small.
- They accumulate to 0.
- Their density is 0 near $\varepsilon = 0$.

- There exists a sequence {C_n}[∞]_{n=1} of intervals on the ray {ε > 0}, accumulating to 0, such that for every ε ∈ C_n, the system has exactly 2K canard cycles (K attracting and K repelling).
- For any ε > 0 small enough, the number of limit cycles that make one rotation along y-axis is bounded by 2K.
- Their basins have bounded away from 0 measure.

- There exists a sequence {C_n}[∞]_{n=1} of intervals on the ray {ε > 0}, accumulating to 0, such that for every ε ∈ C_n, the system has exactly 2K canard cycles (K attracting and K repelling).
- For any ε > 0 small enough, the number of limit cycles that make one rotation along y-axis is bounded by 2K.
- Their basins have bounded away from 0 measure.

- There exists a sequence {C_n}[∞]_{n=1} of intervals on the ray {ε > 0}, accumulating to 0, such that for every ε ∈ C_n, the system has exactly 2K canard cycles (K attracting and K repelling).
- For any ε > 0 small enough, the number of limit cycles that make one rotation along y-axis is bounded by 2K.
- Their basins have bounded away from 0 measure.

- There exists a sequence {C_n}[∞]_{n=1} of intervals on the ray {ε > 0}, accumulating to 0, such that for every ε ∈ C_n, the system has exactly 2K canard cycles (K attracting and K repelling).
- For any ε > 0 small enough, the number of limit cycles that make one rotation along y-axis is bounded by 2K.
- Their basins have bounded away from 0 measure.

Illustrations for main result: N = K = 2

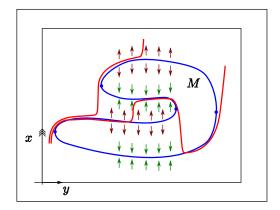


Figure: Simple example: two pair of folds, two attracting ducks (two repelling ducks are not shown)

Remark

It follows from theorem 1, that for convex slow curve, there exists exactly one pair of canard cycles

Remark

The number K of canard cycles can be effectively computed without intergration of the system.

Theorem 2 (Sharp estimate for *K*)

For every N > 0 there exists an open set in the space of slow-fast systems on the two-torus for which the number of canard cycles reaches its maximum: K = N.

Remark

It follows from theorem 1, that for convex slow curve, there exists exactly one pair of canard cycles

Remark

The number K of canard cycles can be effectively computed without intergration of the system.

Theorem 2 (Sharp estimate for *K*

For every N > 0 there exists an open set in the space of slow-fast systems on the two-torus for which the number of canard cycles reaches its maximum: K = N.

Remark

It follows from theorem 1, that for convex slow curve, there exists exactly one pair of canard cycles

Remark

The number K of canard cycles can be effectively computed without intergration of the system.

Theorem 2 (Sharp estimate for K)

For every N > 0 there exists an open set in the space of slow-fast systems on the two-torus for which the number of canard cycles reaches its maximum: K = N.

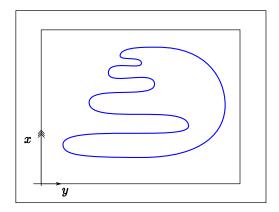


Figure: The construction of open set of slow-fast systems with maximal number of canard cycles. E.g. K = N = 4 on the figure.