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Slow-fast systems: definitions

@ The slow-fast system is a system of the following form:

{5( = f(Xa)/aS)’ = (R’ O). (1)

y:€g(X7y7€)7
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Slow-fast systems: definitions

@ The slow-fast system is a system of the following form:

{x = f(x,y,é“), = (R’ O). (1)

y =¢eg(x,y,¢),

@ Variables: x is a fast variable, and y is a slow one, ¢ is a small
parameter.

@ Slow curve is a set M := {(x,y) | f(x,y,0) = 0}.

Outside of any fixed neighborhood of the slow curve M, for € small
enough, the fast variable x changes much more rapidly than the slow
variable y.
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Fast system

@ Fast dynamics for
e =0: slow =0
variable y is a
constant.

Figure: Fast system and its fixed
points
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Fast system

@ Fast dynamics for
e =0: slow =0
variable y is a
constant.

@ Attracting part of
the slow curve M
consist of stable
fixed points.

@ Repelling part of
the slow curve M
consist of unstable

fixed points. Figure: Fast system and its fixed
@ Folds are neutral points
fixed points.

llya V. Schurov (MSU) Canards on the two-torus January 15, 2010 3/11



Slow-fast dynamics: generic planar case

@ Pick a point far
from M !

Figure: Relaxation oscillation: slow
and fast motions
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Slow-fast dynamics: generic planar case

@ Pick a point far

from M
@ it quickly falls on

attracting
segment of M

Figure: Relaxation oscillation: slow
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Canard solutions

Definition 1

Duck (or canard)
solutions are solutions,
whose phase curves
contain an arc of length
bounded away from 0
uniformly in g, that keeps
close to the unstable part
of the slow curve

Figure: Canards
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Canard solutions

Definition 1

Duck (or canard)
solutions are solutions,
whose phase curves
contain an arc of length
bounded away from 0
uniformly in g, that keeps
close to the unstable part
of the slow curve

Definition 2

Canard cycle is a limit Figure: Canards
cycle which is a canard.

llya V. Schurov (MSU) Canards on the two-torus January 15, 2010 5/11



Canard solutions

Definition 1

Duck (or canard)
solutions are solutions,
whose phase curves
contain an arc of length
bounded away from 0
uniformly in g, that keeps
close to the unstable part
of the slow curve

There’s no attracting
canard cycles in generic
planar systems.

Figure: Canards

v
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Ducks on the torus: introduction

@ Consider slow-fast
system on the
two-torus

Pty

Pty

Y

Figure: Ducks on the torus
(Yu. S. llyashenko, J. Guckenheimer,
2001)
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Figure: Ducks on the torus
(Yu. S. llyashenko, J. Guckenheimer,
@ For some ¢, we've 2001)

got canard cycle.
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Main results: the structure of ducky area

Chy2 Cnt1 Cn €
|. ...... % H 12 AY
0
o(1/n)| O™

Figure: Intervals C,: the ducks live here

@ There exists a sequence of intervals {C,}°%; such that for every
e € C, the system has attracting canard cycles.

llya V. Schurov (MSU) Canards on the two-torus January 15, 2010 7/11



Main results: the structure of ducky area

Chy2 Cnt1 Cn €
|. ...... % H 12 AY
0
o(1/n)| O™

Figure: Intervals C,: the ducks live here

@ There exists a sequence of intervals {C,}°%; such that for every
e € C, the system has attracting canard cycles.

@ Intervals C, are exponentially small.

llya V. Schurov (MSU) Canards on the two-torus January 15, 2010 7/11



Main results: the structure of ducky area

Chy2 Cnt1 Cn €
|. ...... % H 12 AY
0
o(1/n)| O™

Figure: Intervals C,: the ducks live here

@ There exists a sequence of intervals {C,}°%; such that for every
e € C, the system has attracting canard cycles.

@ Intervals C, are exponentially small.

@ They accumulate to 0.

llya V. Schurov (MSU) Canards on the two-torus January 15, 2010 7/11



Main results: the structure of ducky area

Chy2 Cnt1 Cn €
|. ...... % H 12 AY
0
o(1/n)| O™

Figure: Intervals C,: the ducks live here

@ There exists a sequence of intervals {C,}°%; such that for every
e € C, the system has attracting canard cycles.

@ Intervals C, are exponentially small.
@ They accumulate to 0.

@ Their density is 0 near € = 0.
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How many ducks can dance on the torus?

Theorem 1 (Upper estimate for the number of canards)

Consider slow-fast system on the two-torus, i.e. (x,y) € T?, and the
speed of the slow motion is bounded away from zero (g > 0).
Assume M is connected nondegenerate curve with 2N fold points,

N < oo, and some additional nondegenericity assumptions hold.
Then there exists number 0 < K < N, such that the following
assertions hold:
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make one rotation along y-axis is bounded by 2K.
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How many ducks can dance on the torus?

Theorem 1 (Upper estimate for the number of canards)

Consider slow-fast system on the two-torus, i.e. (x,y) € T?, and the
speed of the slow motion is bounded away from zero (g > 0).
Assume M is connected nondegenerate curve with 2N fold points,

N < oo, and some additional nondegenericity assumptions hold.
Then there exists number 0 < K < N, such that the following
assertions hold:

@ There exists a sequence {C,}°2; of intervals on the ray {¢ > 0},
accumulating to 0, such that for every € € C,, the system has
exactly 2K canard cycles (K attracting and K repelling).

@ For any € > 0 small enough, the number of limit cycles that
make one rotation along y-axis is bounded by 2K.

@ Their basins have bounded away from 0 measure.
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[[lustrations for main result: N = K =2

Figure: Simple example: two pair of folds, two attracting ducks (two
repelling ducks are not shown)
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How many ducks can dance on the torus? (2)

[t follows from theorem 1, that for convex slow curve, there exists
exactly one pair of canard cycles
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[t follows from theorem 1, that for convex slow curve, there exists
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Remark

The number K of canard cycles can be effectively computed without
intergration of the system.
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How many ducks can dance on the torus? (2)

It follows from theorem 1, that for convex slow curve, there exists
exactly one pair of canard cycles

Remark
The number K of canard cycles can be effectively computed without
intergration of the system.

Theorem 2 (Sharp estimate for K)

For every N > 0 there exists an open set in the space of slow-fast
systems on the two-torus for which the number of canard cycles
reaches its maximum: K = N.
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The duck farm

Y

Figure: The construction of open set of slow-fast systems with maximal
number of canard cycles. E.g. K = N = 4 on the figure.
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