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Slow-fast systems: definitions

Definition
The slow-fast system is a system of the following form:

{

ẋ = f (x , y , ε),

ẏ = εg(x , y , ε),
ε ∈ (R, 0). (1)

Variables: x is a fast variable, and y is a slow one, ε is a small
parameter.

Slow curve is a set M := {(x , y) | f (x , y , 0) = 0}.

Remark
Outside of any fixed neighborhood of the slow curve M, for ε small
enough, the fast variable x changes much more rapidly than the slow
variable y .
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Fast system

Fast dynamics for
ε = 0: slow
variable y is a
constant.

Attracting part of
the slow curve M
consist of stable
fixed points.

Repelling part of
the slow curve M
consist of unstable
fixed points.

Folds are neutral
fixed points.

Figure: Fast system and its fixed
points
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Slow-fast dynamics: generic planar case

Pick a point far
from M

it quickly falls on
attracting
segment of M

than slowly moves
along M

than jumps near
the fold point

than falls on
attracting
segment of M ,
and so on.

Figure: Relaxation oscillation: slow
and fast motions
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Canard solutions

Definition 1
Duck (or canard)
solutions are solutions,
whose phase curves
contain an arc of length
bounded away from 0
uniformly in ε, that keeps
close to the unstable part
of the slow curve

Definition 2
Canard cycle is a limit
cycle which is a canard.

Figure: Canards
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Canard solutions

Definition 1
Duck (or canard)
solutions are solutions,
whose phase curves
contain an arc of length
bounded away from 0
uniformly in ε, that keeps
close to the unstable part
of the slow curve

Remark
There’s no attracting
canard cycles in generic
planar systems.

Figure: Canards
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Ducks on the torus: introduction

Consider slow-fast
system on the
two-torus

Pick a point far
from M

Consider its
trajectory in
forward time

Reverse the time

When ε decreases,
L moves down,
and R moves up.

For some ε, we’ve
got canard cycle.

Figure: Ducks on the torus
(Yu. S. Ilyashenko, J. Guckenheimer,
2001)
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Main results: the structure of ducky area

Figure: Intervals Cn: the ducks live here

There exists a sequence of intervals {Cn}
∞

n=1 such that for every
ε ∈ Cn the system has attracting canard cycles.

Intervals Cn are exponentially small.

They accumulate to 0.

Their density is 0 near ε = 0.
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How many ducks can dance on the torus?

Theorem 1 (Upper estimate for the number of canards)

Consider slow-fast system on the two-torus, i.e. (x , y) ∈ T
2, and the

speed of the slow motion is bounded away from zero (g > 0).
Assume M is connected nondegenerate curve with 2N fold points,
N < ∞, and some additional nondegenericity assumptions hold.
Then there exists number 0 < K ≤ N, such that the following
assertions hold:

There exists a sequence {Cn}
∞

n=1 of intervals on the ray {ε > 0},
accumulating to 0, such that for every ε ∈ Cn, the system has
exactly 2K canard cycles (K attracting and K repelling).

For any ε > 0 small enough, the number of limit cycles that
make one rotation along y-axis is bounded by 2K.

Their basins have bounded away from 0 measure.
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Illustrations for main result: N = K = 2

Figure: Simple example: two pair of folds, two attracting ducks (two
repelling ducks are not shown)
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How many ducks can dance on the torus? (2)

Remark
It follows from theorem 1, that for convex slow curve, there exists
exactly one pair of canard cycles

Remark
The number K of canard cycles can be effectively computed without
intergration of the system.

Theorem 2 (Sharp estimate for K )

For every N > 0 there exists an open set in the space of slow-fast
systems on the two-torus for which the number of canard cycles
reaches its maximum: K = N.
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The duck farm

Figure: The construction of open set of slow-fast systems with maximal
number of canard cycles. E.g. K = N = 4 on the figure.
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