
C++ Programming

Wikibooks.org

April 18, 2012

Contents

1 ABOUT THE BOOK 3
1.1 FOREWORD . 3
1.2 GUIDE TO READERS . 3
1.3 READER COMMENTS . 4

2 C++ A MULTI-PARADIGM LANGUAGE 7
2.1 INTRODUCING C++ . 7
2.2 WHAT IS A PROGRAMMING LANGUAGE? 11
2.3 PROGRAMMING PARADIGMS . 16
2.4 CHAPTER SUMMARY . 40

3 FUNDAMENTALS FOR GETTING STARTED 43
3.1 THE CODE . 43
3.2 THE COMPILER . 91
3.3 VARIABLES . 125
3.4 OPERATORS . 177
3.5 TYPE CONVERSION . 220
3.6 CONTROL FLOW STATEMENTS 229
3.7 FUNCTIONS . 245
3.8 DEBUGGING . 384
3.9 CHAPTER SUMMARY . 399

4 OBJECT ORIENTED PROGRAMMING 403
4.1 STRUCTURES . 403
4.2 union . 408
4.3 CLASSES . 412
4.4 COPY CONSTRUCTOR . 454
4.5 EQUALITY OPERATOR . 454
4.6 INEQUALITY OPERATOR . 455
4.7 OPERATOR OVERLOADING . 456
4.8 I/O . 469
4.9 CHAPTER SUMMARY . 499

III

Contents

5 ADVANCED FEATURES 501
5.1 TEMPLATES . 501
5.2 STANDARD TEMPLATE LIBRARY (STL) 517
5.3 SMART POINTERS . 533
5.4 SEMANTICS . 534
5.5 EXCEPTION HANDLING . 535
5.6 RUN-TIME TYPE INFORMATION (RTTI) 548
5.7 CHAPTER SUMMARY . 553

6 BEYOND THE STANDARD 555
6.1 RESOURCE ACQUISITION IS INITIALIZATION (RAII) 555
6.2 GARBAGE COLLECTION . 558
6.3 PROGRAMMING PATTERNS . 560
6.4 LIBRARIES . 603
6.5 BOOST LIBRARY . 611
6.6 CROSS-PLATFORM DEVELOPMENT 620
6.7 SOFTWARE INTERNATIONALIZATION 644
6.8 OPTIMIZATIONS . 651
6.9 FURTHER READING . 663
6.10 MODELING TOOLS . 663
6.11 CHAPTER SUMMARY . 664

7 APPENDIX A: INTERNAL REFERENCES 667

8 APPENDIX B: EXTERNAL REFERENCES 669
8.1 ONLINE BOOKS . 669
8.2 GENERAL INFORMATION . 670
8.3 REFERENCE SITES . 671
8.4 COMPILERS AND IDES . 672
8.5 LIBRARIES1 . 675
8.6 IRC . 678
8.7 USER GROUPS . 679
8.8 NEWSGROUPS (NNTP) . 679
8.9 BLOGS AND WIKIS . 679
8.10 MAILING LISTS . 680
8.11 FORUMS . 680
8.12 MISC. C++ TOOLS . 680
8.13 C++ CODING CONVENTIONS 681
8.14 OTHER (DEAD TREE) BOOKS ON C++ 684

1 Chapter 6.3.3 on page 602

IV

Contents

8.15 REFERENCES . 684

9 AUTHORS 687

LIST OF FIGURES 701

Note:
At present there is an issue on how TRANSCLUSIONSa are processed, from TEM-
PLATE LIMITSb is seems there are several ways to address this limitation but there
seems also to be some bugs pending resolution. As is it is impossible to guaran-
tee that all the book’s content is displayed in this page. See if you can work with
the by Chapter view in the meanwhile or post a request for resolution on at the
WIKIBOOKS:READING ROOM/TECHNICAL ASSISTANCEc.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSCLUSION
b HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20LIMITS
c HTTP://EN.WIKIBOOKS.ORG/WIKI/READING%20ROOM%2FTECHNICAL%

20ASSISTANCE

1

http://en.wikipedia.org/wiki/Transclusion
http://en.wikipedia.org/wiki/Template%20limits
http://en.wikibooks.org/wiki/Reading%20room%2FTechnical%20Assistance
http://en.wikibooks.org/wiki/Reading%20room%2FTechnical%20Assistance

Contents

2

1 About the book

1.1 Foreword

This book covers the C++ programming language, its interactions with software
design and real life use of the language. It is presented as an introductory to ad-
vance course but can be used as reference book.

If you are familiar with programming in other languages you may just skim the
GETTING STARTED CHAPTER1. You should not skip the PROGRAMMING
PARADIGMS SECTION2, because C++ does have some particulars that should be
useful even if you already know another Object Oriented Programming language.

The LANGUAGE COMPARISONS SECTION3 provides comparisons for some lan-
guage(s) you may already know, which may be useful for veteran programmers.

If this is your first contact with programming then read the book from the begin-
ning. Bear in mind that the Programming Paradigms section can be hard to digest
if you lack some experience. Do not despair, the relevant points will be extended
as other concepts are introduced. That section is provided so to give you a mental
framework, not only to understand C++, but to let you easily adapt to (and from)
other languages that may share concepts.

1.2 Guide to readers

This book is a WIKIBOOK4 (EN.WIKIBOOKS.ORG)5, an up-to-date copy of the
work is hosted there.

1 Chapter 1.3 on page 5
2 Chapter 2.2.3 on page 16
3 Chapter 2.3.6 on page 22
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/WIKIBOOK
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAIN%20PAGE

3

http://en.wikipedia.org/wiki/wikibook
http://en.wikibooks.org/wiki/Main%20Page

About the book

It is organized into different parts, but as this is a work that is always evolving,
things may be missing or just not where they should be, you are free to become a
writer and contribute to fix things up...

1.3 Reader comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us (e.g. by using the "discussion" pages or by email). Be
sure to include the section/title of the document with your comments and the date
of your copy of the book. If you are really convinced of your point, information or
correction then become a writer (at Wikibooks) and do it, it can always be rolled
back if someone disagrees.

06

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

4

http://en.wikibooks.org/wiki/Category%3A

Reader comments

The following people are authors to this book:
PANICa, THENUB314b

You can verify who has contributed to this book by examining the history logs at
Wikibooks (http://en.wikibooks.org/).
Acknowledgment is given for using some contents from other works like
WIKIPEDIAc, the Wikibooks JAVA PROGRAMMINGd, C PROGRAMMINGe and
C++ Exercises for beginners, the C++ REFERENCEf, and from WIKISOURCEg

, as from the authors SCOTT WHEELERh, STEPHEN FERGi and Ivor Horton .
The above authors release their work under the following license:
This work is licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license. In short: you are free to share and to make derivatives of this
work under the conditions that you appropriately attribute it, and that you only
distribute it under the same, similar or a compatible license. Any of the above
conditions can be waived if you get permission from the copyright holder. Un-
less otherwise noted, media and source code used in this book have their own
copyright, may use different licenses than the one used here, and were not cre-
ated by the above authors. The authors, contributors, and licenses used should be
acknowledged separately.

a HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APANIC2K4
b HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATHENUB314
c HTTP://EN.WIKIPEDIA.ORG/WIKI/
d HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING
e HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING
f HTTP://WWW.CPPREFERENCE.COM
g HTTP://EN.WIKISOURCE.ORG/WIKI/
h HTTP://KTOWN.KDE.ORG/~{}WHEELER/BIO.HTML
i HTTP://WWW.FERG.ORG/INDEX.HTML

7

08

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

5

http://en.wikibooks.org/wiki/User%3APanic2k4
http://en.wikibooks.org/wiki/User%3AThenub314
http://en.wikipedia.org/wiki/
http://en.wikibooks.org/wiki/Java%20Programming
http://en.wikibooks.org/wiki/C%20Programming
http://www.cppreference.com
http://en.wikisource.org/wiki/
http://ktown.kde.org/~{}wheeler/bio.html
http://www.ferg.org/index.html
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

About the book

6

2 C++ a multi-paradigm language

2.1 Introducing C++

(pronounced "see plus plus") is a general-purpose, statically typed,
free-form, multi-paradigm PROGRAMMING LANGUAGE1 supporting procedural
programming, data abstraction, and generic programming. During the 1990S2,
C++ became one of the most popular computer programming languages.

2.1.1 History and standardization

Figure 2: Photo of Bjarne Stroustrup, creator of the
programming language C++.

1 Chapter 2.1.3 on page 11
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/1990S

7

http://en.wikipedia.org/wiki/1990s

C++ a multi-paradigm language

BJARNE STROUSTRUP3, a Computer Scientist from BELL LABS4, was the
designer and original implementer of C++ (originally named "C with Classes")
during the 1980s as an enhancement to the C PROGRAMMING LANGUAGE5.
Enhancements started with the addition OBJECT-ORIENTED6 concepts like
CLASSES7, followed by, among many features, VIRTUAL FUNCTIONS8,
OPERATOR OVERLOADING9, MULTIPLE INHERITANCE10, TEMPLATES11, and
EXCEPTION HANDLING12. These and other features are covered in detail along
this book.

The C++ programming language is a standard recognized by the ANSI13 (The
American National Standards Institute), BSI (The British Standards Institute),
DIN (The German national standards organization), and several other national
standards bodies, and was ratified in 1998 by the ISO (The International
Standards Organization) as ISO/IEC 1488214:1998, consists of two parts: the
Core Language and the Standard Library; the latter includes the STANDARD

TEMPLATE LIBRARY15 and the STANDARD C LIBRARY16 (ANSI C 89).

Features introduced in C++ include declarations as statements, function-like
casts, new/delete, bool, reference types, const, inline functions, default
arguments, function overloading, NAMESPACES17, classes (including all
class-related features such as inheritance, member functions, virtual functions,
abstract classes, and constructors), operator overloading, templates, the ::
operator, exception handling, run-time type identification, and more type
checking in several cases. Comments starting with two slashes ("//") were
originally part of BCPL18, and were reintroduced in C++. Several features of

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/BJARNE%20STROUSTRUP
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/BELL%20LABS
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT%3AC%20PROGRAMMING%

20LANGUAGE
6 Chapter 2.3.4 on page 18
7 Chapter 4.2.3 on page 411
8 Chapter 2.3.4 on page 21
9 Chapter 4.6 on page 456
10 Chapter 2.3.4 on page 20
11 Chapter 5 on page 501
12 Chapter 5.4 on page 535
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/AMERICAN%20NATIONAL%20STANDARDS%

20INSTITUTE
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISO%2FIEC%2014882
15 Chapter 5.1.5 on page 517
16 Chapter 3.7.10 on page 280
17 Chapter 3.1.10 on page 83
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/BCPL

8

http://en.wikipedia.org/wiki/Bjarne%20Stroustrup
http://en.wikipedia.org/wiki/Bell%20Labs
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/ISO%2FIEC%2014882
http://en.wikipedia.org/wiki/BCPL

Introducing C++

C++ were later adopted by C, including const, inline, declarations in for
loops, and C++-style comments (using the // symbol).

The current version, which is the 2003 version, ISO/IEC 14882:2003 redefines the
standard language as a single item. The STL that pre-dated the standardization of
C++ and was originally implemented in Ada is now an integral part of the
standard and a requirement for a compliant implementation of the same. Many
other C++ libraries exist which are not part of the Standard, such as BOOST19.
Also, non-Standard libraries written in C can generally be used by C++ programs.

Since 2004, the standards committee (which includes Bjarne Stroustrup) has been
busy working out the details of a new revision of the standard, temporarily titled
C++0x, due for publication in the end of 2011. Some implementations already
support some of the proposed alterations.

C++ source code example

// ’Hello World!’ program

#include <iostream>

int main()
{
std::cout << "Hello World!" << std::endl;
return 0;

}

Traditionally the first program people write in a new language is called "Hello
World." because all it does is print the words Hello World. HELLO WORLD

EXPLAINED20 (in the EXAMPLES APPENDIX21) offers a detailed explanation of
this code; the included source code is to give you an idea of a simple C++
program.

2.1.2 Overview

Before you begin your journey to understand how to write programs using C++, it
is important to understand a few key concepts that you may encounter. These
concepts are not unique to C++, but are helpful to understanding computer

19 Chapter 6.4.3 on page 610
20 Chapter 4.8.2 on page 475
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FEXAMPLES

9

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FExamples

C++ a multi-paradigm language

programming in general. Readers who have experience in another programming
language may wish to skim through this section entirely.

There are many different kinds of programs in use today. From the operating
system you use that makes sure everything works as it should, to the video games
and music applications you use for fun, programs can fulfill many different
purposes. What all programs (also called software or applications) have in
common is that they all are made up of a sequence of instructions written in some
form of programming language. These instructions tell a computer what to do,
and generally how to do it. Programs can contain anything from instructions to
solve math problems or send emails, to how to behave when a video game
character is shot in a game. The computer will follow the instructions of a
program one instruction at a time from start to finish.

2.1.3 Why learn C++ ?

Why not? This is the most clarifying approach to the decision to learn anything.
Although learning is always good, selecting what you learn is more important as
it is how you will prioritize tasks. Another side of this problem is that you will be
investing some time in getting a new skill set. You must decide how this will
benefit you. Check your objectives and compare similar projects or see what the
programming market is in need of. In any case, the more programming languages
you know, the better.

If you are approaching the learning process only to add another notch under your
belt, that is, willing only to dedicate enough effort to understand its major quirks
and learn something about its dark corners, then you would be best served in
learning two other languages first. This will clarify what makes C++ special in its
approach to programming problems. You should select one imperative and one
object-oriented language. C will probably be the best choice for the former, as it
has a good market value and a direct relation to C++, although a good substitute
would be ASM. Java is a good choice for the other language, for similar reasons.

If you are willing to dedicate a more than passing interest in C++ then you can
even learn it as your first language. Make sure to dedicate some time
understanding the different paradigms and why C++ is a multi-paradigm, or
hybrid, language.

Although learning C is not a requirement for understanding C++, you must know
how to use an imperative language. C++ will not make it easy for you to
understand and distinguish some of these deeper concepts, since in it you are free

10

What is a programming language?

to implement solutions with a greater range of freedom. Understanding which
options to choose will become the cornerstone of mastering the language.

You should not learn C++ if you are only interested in learning Object-oriented
Programming, since the nomenclature used and some of the approaches taken to
problems will make it more difficult to learn and master those concepts. If you are
truly interested in Object-oriented programming, you should learn Smalltalk.

As with all languages, C++ has a specific scope of application where it can truly
shine. C++ is harder to learn than C and Java but more powerful than both. C++
enables you to abstract from the little things you have to deal with in C or other
lower level languages but will grant you more control and responsibility than
Java. As it will not provide the default features you can obtain in similar higher
level languages, you will have to search and examine several external
implementations of those features and freely select those that best serve your
purposes (or implement your own solution).

2.2 What is a programming language?

In the most basic terms, a "PROGRAMMING LANGUAGE22" is a means of
communication between a human being (programmer) and a computer. A
programmer uses this means of communication in order to give the computer
instructions. These instructions are called "programs".

Like the many languages we use to communicate with each other, there are many
languages that a programmer can use to communicate with a computer. Each
language has its own set of words and rules, called semantics. If you’re going to
write a program, you have to follow the semantics of the language you’re writing
in, or you won’t be understood.

Programming languages can basically be divided in to two categories:
LOW-LEVEL23 and HIGH-LEVEL24, next we will introduce you to these concepts
and their relevance to C++.

22 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20LANGUAGE
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOW-LEVEL%20PROGRAMMING%

20LANGUAGE
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/HIGH-LEVEL%20PROGRAMMING%

20LANGUAGE

11

http://en.wikipedia.org/wiki/Programming%20language
http://en.wikipedia.org/wiki/Low-level%20programming%20language
http://en.wikipedia.org/wiki/Low-level%20programming%20language
http://en.wikipedia.org/wiki/High-level%20programming%20language
http://en.wikipedia.org/wiki/High-level%20programming%20language

C++ a multi-paradigm language

2.2.1 Low-level

Figure 3: Image shows most
programming languages and their
relations from mid 18 hundreds up to
2003 (CLICK HERE FOR FULL SIZEa).

a HTTP://EN.WIKIBOOKS.
ORG/WIKI/MEDIA%
3ATAXONOMYOFPROGRAMMINGLANGUAGES.
PNG

The lower level in computer "languages" are:

Machine code (also called binary) is the lowest form of a low-level language.
Machine code consists of a string of 0s and 1s, which combine to form
meaningful instructions that computers can take action on. If you look at a page
of binary it becomes apparent why binary is never a practical choice for writing
programs; what kind of person would actually be able to remember what a bunch
of strings of 1 and 0 mean?

Assembly language (also called ASM), is just above machine code on the scale
from low level to high level. It is a human-readable translation of the machine
language instructions the computer executes. For example, instead of referring to
processor instructions by their binary representation (0s and 1s), the programmer
refers to those instructions using a more memorable (mnemonic) form. These

12

http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png
http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png
http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png
http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png

What is a programming language?

mnemonics are usually short collections of letters that symbolize the action of the
respective instruction, such as "ADD" for addition, and "MOV" for moving
values from one place to another.

Note:
Assembly language is processor specific. This means that a program written
in assembly language will not work on computers with different processor
architectures.

Using ASM to optimize certain tasks is common for C++ programmers, but will
require special considerations, because ASM is not as portable.

You do not have to understand assembly language to program in C++, but it does
help to have an idea of what’s going on "behind-the-scenes". Learning about
assembly language will also allow you to have more control as a programmer and
help you in debugging and understanding code.

The advantages of writing in a high-level language format far outweigh any
drawbacks, due to the size and complexity of most programming tasks, those
advantages include:

• Advanced program structure: loops, functions, and objects all have limited
usability in low-level languages, as their existence is already considered a
"high" level feature; that is, each structure element must be further translated
into low-level language.

• Portability: high-level programs can run on different kinds of computers with
few or no modifications. Low-level programs often use specialized functions
available on only certain processors, and have to be rewritten to run on another
computer.

• Ease of use: many tasks that would take many lines of code in assembly can be
simplified to several function calls from libraries in high-level programming
languages. For example, Java, a high-level programming language, is capable
of painting a functional window with about five lines of code, while the
equivalent assembly language would take at least four times that amount.

2.2.2 High-level

High-level languages do more with less code, although there is sometimes a loss
in performance and less freedom for the programmer. They also attempt to use
English language words in a form which can be read and generally interpreted by

13

C++ a multi-paradigm language

the average person with little experience in them. A program written in one of
these languages is sometimes referred to as "human-readable code". In general,
more abstraction makes it easier for a language be learned.

No programming language is written in what one might call "plain English"
though, (although BASIC comes close). Because of this, the text of a program is
sometimes referred to as "code", or more specifically as "source code." This is
discussed in more detail in the THE CODE SECTION25 of the book.

Higher-level languages partially solve the problem of abstraction to the hardware
(CPU, co-processors, number of registers etc...) by providing portability of code.

Keep in mind that this classification scheme is evolving. C++ is still considered a
high-level language, but with the appearance of newer languages (Java, C#, Ruby
etc...), C++ is beginning to be grouped with lower level languages like C.

2.2.3 Translating programming languages

Since a computer is only capable of understanding machine code,
human-readable code must be either interpreted or translated into machine code.

An INTERPRETER26 is a program (often written in a lower level language) that
interprets the instructions of a program one instruction at a time into commands
that are to be carried out by the interpreter as it happens. Typically each
instruction consists of one line of text or provides some other clear means of
telling each instruction apart and the program must be reinterpreted again each
time the program is run.

A COMPILER27 is a program used to translate the source code, one instruction at
a time, into machine code. The translation into machine code may involve
splitting one instruction understood by the compiler into multiple machine
instructions. The instructions are only translated once and after that the machine
can understand and follow the instructions directly whenever it is instructed to do
so. A complete examination of the C++ compiler is given in the COMPILER

SECTION28 of the book.

25 Chapter 3 on page 43
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER%20%28COMPUTING%29
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER
28 Chapter 3.1.10 on page 91

14

http://en.wikipedia.org/wiki/Interpreter%20%28computing%29
http://en.wikipedia.org/wiki/Compiler

What is a programming language?

The words and statements used to instruct the computer may differ, but no matter
what words and statements are used, just about every programming language will
include statements that will accomplish the following:

Input

Input is the act of getting information from a device such as a keyboard or
mouse, or sometimes another program.

Output

Output is the opposite of input; it gives information to the computer monitor or
another device or program.

Math/Algorithm

All computer processors (the brain of the computer), have the ability to perform
basic mathematical computation, and every programming language has some
way of telling it to do so.

Testing

Testing involves telling the computer to check for a certain condition and to do
something when that condition is true or false. Conditionals are one of the most
important concepts in programming, and all languages have some method of
testing conditions.

Repetition

Perform some action repeatedly, usually with some variation.

An further examination is provided on the STATEMENTS SECTION29 of the book.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of functions that look more or less
like these. Thus, one way to describe programming is the process of breaking a
large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

C++ is mostly compiled rather than interpreted (there are some C++ interpreters),
and then "executed" later. As complicated as this may seem, later you will see
how easy it really is.

So as we have seen in the INTRODUCING C++ SECTION30, C++ evolved from C
by adding some levels of abstraction (so we can correctly state that C++ is of a

29 Chapter 3.1.6 on page 60
30 Chapter 2 on page 7

15

C++ a multi-paradigm language

higher level than C). We will learn the particulars of those differences in the
PROGRAMMING PARADIGMS SECTION31 of the book and for some of you that
already know some other languages should look into PROGRAMMING

LANGUAGES COMPARISONS SECTION32.

2.3 Programming paradigms

A PROGRAMMING PARADIGM33 is a model of programming based on distinct
concepts that shapes the way programmers design, organize and write programs.
A MULTI-PARADIGM PROGRAMMING LANGUAGE34 allows programmers to
choose a specific single approach or mix parts of different programming
paradigms. C++ as a multi-paradigm programming language supports single or
mixed approaches using Procedural or Object-oriented programming and mixing
in utilizations of Generic and even Functional programming concepts.

2.3.1 Procedural programming

PROCEDURAL PROGRAMMING35 can be defined as a subtype of IMPERATIVE

PROGRAMMING36 as a programming paradigm based upon the concept of
procedure calls, in which STATEMENTS37 are structured into procedures (also
known as subroutines or FUNCTIONS38). Procedure calls are modular and are
bound by scope. A procedural program is composed of one or more MODULES39.
Each module is composed of one or more SUBPROGRAMS40. Modules may
consist of procedures, functions, subroutines or methods, depending on the
programming language. Procedural programs may possibly have multiple levels
or scopes, with subprograms defined inside other subprograms. Each scope can
contain names which cannot be seen in outer scopes.

31 Chapter 2.2.3 on page 16
32 Chapter 2.3.6 on page 22
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20PARADIGM
34 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPARADIGM%20PROGRAMMING%

20LANGUAGE
35 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCEDURAL%20PROGRAMMING
36 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMPERATIVE%20PROGRAMMING
37 Chapter 3.1.6 on page 60
38 Chapter 3.6.3 on page 245
39 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULE%20%28PROGRAMMING%29
40 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBPROGRAM%20%28PROGRAMMING%29

16

http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikipedia.org/wiki/multiparadigm%20programming%20language
http://en.wikipedia.org/wiki/multiparadigm%20programming%20language
http://en.wikipedia.org/wiki/Procedural%20programming
http://en.wikipedia.org/wiki/Imperative%20programming
http://en.wikipedia.org/wiki/module%20%28programming%29
http://en.wikipedia.org/wiki/subprogram%20%28programming%29

Programming paradigms

Procedural programming offers many benefits over simple sequential
programming since procedural code:

• is easier to read and more maintainable
• is more flexible
• facilitates the practice of good program design
• allows modules to be reused in the form of CODE LIBRARIES41.

Note:
Nowadays it is very rare to see C++ strictly using the Procedural Programming
paradigm, mostly it is used only on small demonstration or test programs.

2.3.2 Statically typed

Typing refers to how a computer language handles its variables, how they are
differentiated by TYPE42. Variables are values that the program uses during
execution. These values can change; they are variable, hence their name. Static
typing usually results in compiled code that executes more quickly. When the
compiler knows the exact types that are in use, it can produce machine code that
does the right thing easier. In C++, variables need to be defined before they are
used so that compilers know what type they are, and hence is statically typed.
Languages that are not statically typed are called dynamically typed.

Static typing usually finds type errors more reliably at compile time, increasing
the reliability of compiled programs. Simply put, it means that "A round peg
won’t fit in a square hole", so the compiler will report it when a type leads to
ambiguity or incompatible usage. However, programmers disagree over how
common type errors are and what proportion of bugs that are written would be
caught by static typing. Static typing advocates believe programs are more
reliable when they have been type checked, while dynamic typing advocates point
to dynamic code that has proved reliable and to small bug databases. The value of
static typing, then, presumably increases as the strength of the type system is
increased.

A statically typed system constrains the use of powerful language constructs more
than it constrains less powerful ones. This makes powerful constructs harder to
use, and thus places the burden of choosing the "right tool for the problem" on the
shoulders of the programmer, who might otherwise be inclined to use the most

41 Chapter 6.3.3 on page 602
42 Chapter 3.3.3 on page 142

17

C++ a multi-paradigm language

powerful tool available. Choosing overly powerful tools may cause additional
performance, reliability or correctness problems, because there are
THEORETICAL LIMITS43 on the properties that can be expected from powerful
language constructs. For example, indiscriminate use of RECURSION44 or
GLOBAL VARIABLE45s may cause well-documented adverse effects.

Static typing allows construction of libraries which are less likely to be
accidentally misused by their users. This can be used as an additional mechanism
for communicating the intentions of the library developer.

2.3.3 Type checking

Type checking is the process of verifying and enforcing the constraints of types,
which can occur at either compile-time or run-time. Compile time checking, also
called static type checking, is carried out by the compiler when a program is
compiled. Run time checking, also called dynamic type checking, is carried out by
the program as it is running. A programming language is said to be strongly typed
if the type system ensures that conversions between types must be either valid or
result in an error. A weakly typed language on the other hand makes no such
guarantees and generally allows automatic conversions between types which may
have no useful purpose. C++ falls somewhere in the middle, allowing a mix of
automatic type conversion and programmer defined conversions, allowing for
almost complete flexibility in interpreting one type as being of another type.
Converting variables or expression of one type into another type is called TYPE

CASTING46.

2.3.4 Object-oriented programming

OBJECT-ORIENTED PROGRAMMING47 can be seen as an extension of
procedural programming in which programs are made up of collection of
individual units called objects that have a distinct purpose and function with
limited or no dependencies on IMPLEMENTATION48. For example, a car is like an
object; it gets you from point A to point B with no need to know what type of

43 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTATIONAL%20COMPLEXITY%
20THEORY

44 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION
45 HTTP://EN.WIKIPEDIA.ORG/WIKI/GLOBAL%20VARIABLE
46 Chapter 3.4.14 on page 220
47 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-ORIENTED%20PROGRAMMING
48 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMPLEMENTATION

18

http://en.wikipedia.org/wiki/Computational%20complexity%20theory
http://en.wikipedia.org/wiki/Computational%20complexity%20theory
http://en.wikipedia.org/wiki/recursion
http://en.wikipedia.org/wiki/global%20variable
http://en.wikipedia.org/wiki/Object-oriented%20programming
http://en.wikipedia.org/wiki/implementation

Programming paradigms

engine the car uses or how the engine works. Object-oriented languages usually
provide a means of DOCUMENTING49 what an object can and cannot do, like
instructions for driving a car.

Objects and Classes

An object is composed of members and methods. The members (also called
data members, characteristics, attributes, or properties) describe the object. The
methods generally describe the actions associated with a particular object. Think
of an object as a noun, its members as adjectives describing that noun, and its
methods as the verbs that can be performed by or on that noun.

For example, a sports car is an object. Some of its members might be its height,
weight, acceleration, and speed. An object’s members just hold data about that
object. Some of the methods of the sports car could be "drive", "park", "race", etc.
The methods really do not mean much unless associated with the sports car, and
the same goes for the members.

The blueprint that lets us build our sports car object is called a class. A class does
not tell us how fast our sports car goes, or what color it is, but it does tell us that
our sports car will have a member representing speed and color, and that they will
be say, a number and a word, respectively. The class also lays out the methods for
us, telling the car how to park and drive, but these methods can not take any
action with just the blueprint - they need an object to have an effect.

Encapsulation

«No component in a complex system should depend on the internal details of any
other component.»
--Dan Ingalls (Smalltalk Architect)

Encapsulation, the principle of INFORMATION HIDING50 (from the user), is the
process of hiding the data structures of the class and allowing changes in the data
through a public interface where the incoming values are checked for validity, and
so not only it permits the hiding of data in an object but also of behavior. This
prevents clients of an interface from depending on those parts of the

49 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOCUMENTATION
50 HTTP://EN.WIKIPEDIA.ORG/WIKI/INFORMATION%20HIDING

19

http://en.wikipedia.org/wiki/documentation
http://en.wikipedia.org/wiki/Information%20hiding

C++ a multi-paradigm language

implementation that are likely to change in future, thereby allowing those changes
to be made more easily, that is, without changes to clients. In modern
programming languages, the principle of information hiding manifests itself in a
number of ways, including encapsulation and polymorphism.

Inheritance
INHERITANCE51 describes a relationship between two (or more) types, or

classes, of objects in which one is said to be a "subtype" or "child" of the other, as
result the "child" object is said to inherit features of the parent, allowing for
shared functionality, this lets programmers re-use or reduce code and simplifies
the development and maintenance of software.

Inheritance is also commonly held to include subtyping, whereby one type of
object is defined to be a more specialized version of another type (see LISKOV

SUBSTITUTION PRINCIPLE52), though non sub-typing inheritance is also
possible.

Inheritance is typically expressed by describing classes of objects arranged in an
inheritance hierarchy (also referred to as inheritance chain), a the tree like
structure created by their inheritance relationships.

For example, one might create a variable class "Mammal" with features such as
eating, reproducing, etc.; then define a subtype "Cat" that inherits those features
without having to explicitly program them, while adding new features like
"chasing mice". This allows commonalities among different kinds of objects to be
expressed once and reused multiple times.

In C++ we can then have classes that are related to other classes (a class can be
defined by means of an older, pre-existing, class). This leads to a situation in
which a new class has all the functionality of the older class, and additionally
introduces its own specific functionality. Instead of composition, where a given
class contains another class, we mean here derivation, where a given class is
another class.

This OOP property will be explained further when we talk about Classes (and
Structures) inheritance in the CLASSES INHERITANCE SECTION53 of the book.

51 HTTP://EN.WIKIPEDIA.ORG/WIKI/INHERITANCE%20%28OBJECT-ORIENTED%
20PROGRAMMING%29

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/LISKOV%20SUBSTITUTION%20PRINCIPLE
53 Chapter 4.3.2 on page 416

20

http://en.wikipedia.org/wiki/Inheritance%20%28object-oriented%20programming%29
http://en.wikipedia.org/wiki/Inheritance%20%28object-oriented%20programming%29
http://en.wikipedia.org/wiki/Liskov%20substitution%20principle

Programming paradigms

If one wants to use more than one totally orthogonal hierarchy simultaneously,
such as allowing "Cat" to inherit from "Cartoon character" and "Pet" as well as
"Mammal" we are using MULTIPLE INHERITANCE54.

Multiple inheritance
Multiple inheritance is the process by which one class can inherit the properties
of two or more classes (variously known as its base classes, or parent classes, or
ancestor classes, or super-classes).

In some similar language, multiple inheritance is restricted in various ways to
keep the language simple, such as by allowing inheritance from only one real
class and a number of "interfaces", or by completely disallowing multiple
inheritance. C++ places the full power of multiple inheritance in the hands of
programmers, but it is needed only rarely, and (as with most techniques) can
complicate code if used inappropriately. Because of C++’s approach to multiple
inheritance, C++ has no need of separate language facilities for "interfaces";
C++’s classes can do everything that interfaces do in some related languages.

This is shown more in more detail in the C++ CLASSES INHERITANCE

SECTION55 of the book.

Polymorphism
Polymorphism allows a single name to be reused for several related but different
purposes. The purpose of polymorphism is to allow one name to be used for a
general class. Depending on the type of data, a specific instance of the general
case is executed.

The concept of polymorphism is wider. Polymorphism exists every time we use
two functions that have the same name, but differ in the implementation. They
may also differ in their interface, e.g., by taking different arguments. In that case
the choice of which function to make is via overload resolution, and is performed
at compile time, so we refer to static polymorphism.

Dynamic polymorphism will be covered deeply in the CLASSES SECTION56

where we will address its use on redefining the method in the derived class.

54 Chapter 2.3.4 on page 21
55 Chapter 4.3.2 on page 416
56 Chapter 4.3.5 on page 436

21

C++ a multi-paradigm language

2.3.5 Generic programming

GENERIC PROGRAMMING57 or POLYMORPHISM58 is a programming style
that emphasizes techniques that allow one value to take on different types as long
as certain contracts such as SUBTYPES59 and SIGNATURE60 are kept. In simpler
terms generic programming is based in finding the most abstract representations
of efficient algorithms. TEMPLATES61 popularized the notion of generics.
Templates allow code to be written without consideration of the TYPE62 with
which it will eventually be used. Templates are defined in the STANDARD

TEMPLATE LIBRARY (STL)63, where generic programming was introduced into
C++.

2.3.6 Free-form

Free-form refers to how the programmer crafts the code. Basically, there are no
rules on how you choose to write your program, save for the semantic rules of
C++. Any C++ program should compile as long as it is legal C++.

The free-form nature of C++ is used (or abused, depending on your point of view)
by some programmers in crafting obfuscated C++ (C++ that is purposefully
written to be difficult to understand). The use of obfuscation is regarded by some
as a security mechanism, ensuring that the source code is more difficult to analyze
by the average user or to prevent the functionality from being duplicated.

2.3.7 Language comparisons

There is not a perfect language. It all depends on the resources (tools, people even
available time) and the objective. For a broader look on other languages and their
evolution, a subject that falls outside of the scope of this book, there are many
other works available, including the COMPUTER PROGRAMMING64 wikibook.

57 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING
58 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTER%

20SCIENCE%29
59 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBTYPE
60 HTTP://EN.WIKIPEDIA.ORG/WIKI/SIGNATURE%20%28COMPUTER%

20SCIENCE%29
61 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20%28PROGRAMMING%29
62 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATATYPE
63 Chapter 5.1.5 on page 517
64 HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPUTER%20PROGRAMMING

22

http://en.wikipedia.org/wiki/Generic%20programming
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/subtype
http://en.wikipedia.org/wiki/signature%20%28computer%20science%29
http://en.wikipedia.org/wiki/signature%20%28computer%20science%29
http://en.wikipedia.org/wiki/template%20%28programming%29
http://en.wikipedia.org/wiki/datatype
http://en.wikibooks.org/wiki/Computer%20Programming

Programming paradigms

This section is provided as a quick jump-start for people that already had some
experience in them, a way to edify notions about C++ language special
characteristics and what makes it distinct.

Ideal language

The ideal language depends on the specific problem. All programming languages
are designed to be general mechanisms for expressing problem solving
algorithms. In other words, it is a language - rather than simply an expression -
because it is capable of expressing solutions more than one specific problem.

The level of generality in a programming language varies. There are
DOMAIN-SPECIFIC LANGUAGES65 (DSLs) such as regular expression syntax
which is designed specifically for pattern matching and string manipulation
problems. There are also general-purpose programming languages such as C++.

Ultimately, there is no perfect language. There are some languages that are more
suited to specific classes of problems than others. Each language makes
trade-offs, favoring efficiency in one area for inefficiencies in other areas.
Furthermore, efficiency may not only mean runtime performance but also
includes factors such as development time, code maintainability, and other
considerations that affect software development. The best language is dependent
on the specific objectives of the programmers.

Furthermore, another very practical consideration when selecting a language is
the number and quality of tools available to the programmer for that language. No
matter how good a language is in theory, if there is no set of reliable tools on the
desired platform, that language is not the best choice.

The optimal language (in terms of run-time performance) is machine code but
MACHINE CODE66 (binary) is the least efficient programming language in terms
of coder time. The complexity of writing large systems is enormous with
high-level languages, and beyond human capabilities with machine code. In the

65 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOMAIN-SPECIFIC_LANGUAGE
66 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACHINE%20CODE

23

http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Machine%20code

C++ a multi-paradigm language

next sections C++ will be compared with other closely related languages like C67,
JAVA68, C#69, C++/CLI70 and D71.

«When someone says "I want a programming language in which I need only say
what I wish done," give him a lollipop.»
--published in SIGPLAN Notices Vol. 17, No. 9, September 1982

The quote above is shown to indicate that no programming language at present
can translate directly concepts or ideas into useful code, there are solutions that
will help. We will cover the use of COMPUTER-AIDED SOFTWARE

ENGINEERING (CASE)72 tools that will address part of this problem but its use
does require planning and some degree of complexity.

The intention of these sections is not to promote one language above another;
each has its applicability. Some are better in specific tasks, some are simpler to
learn, others only provide a better level of control to the programmer. This all
may depend also on the level of control the programmer has of a given language.

Garbage collection

In C++ garbage collection is optional rather than required. In the GARBAGE

COLLECTION SECTION73 of this book we will cover this issue deeply.

Why no finally keyword?

As we will see in the RESOURCE ACQUISITION IS INITIALIZATION (RAII)
SECTION74 of the book, RAII can be used to provide a better solution for most
issues. When finally is used to clean up, it has to be written by the clients of a

67 Chapter 2.3.7 on page 25
68 Chapter 2.3.7 on page 28
69 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FC%20SHARP
70 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FMANAGED%20C%2B%2B
71 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FD
72 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER-AIDED%20SOFTWARE%

20ENGINEERING%20%28CASE%29
73 Chapter 6.1 on page 558
74 Chapter 6 on page 555

24

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FC%20Sharp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FC%20Sharp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FManaged%20C%2B%2B
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FManaged%20C%2B%2B
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FD
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FD
http://en.wikipedia.org/wiki/Computer-aided%20software%20engineering%20%28CASE%29
http://en.wikipedia.org/wiki/Computer-aided%20software%20engineering%20%28CASE%29

Programming paradigms

class each time that class is used (for example, clients of a fileClass class have to
do I/O in a try/catch/finally block so that they can guarantee that the fileClass
is closed). With RAII, the destructor of the fileClass can make that guarantee.
Now the cleanup code has to be coded only once — in the destructor of fileClass;
the users of the class don’t need to do anything.

Mixing languages

By default, the C++ compiler normally "mangles" the names of functions in order
to facilitate function overloading and generic functions. In some cases, you need
to gain access to a function that wasn’t created in a C++ compiler. For this to
occur, you need to use the extern keyword to declare that function as external:

extern "C" void LibraryFunction();

C 89/99

C75 was essentially the core language of C++ when Bjarne Stroustrup decided to
create a "better C". Many of the syntax conventions and rules still hold true, so
we can even state that C was a subset of C++. Most recent C++ compilers can
also compile C code, taking into consideration the small incompatibilities, since
C9976 and C++ 2003 are not compatible any more. You can also check more
information about the C language on the C PROGRAMMING WIKIBOOK77.

Note:
In practice, much C99 code will still compile with a C++ compiler, but the lan-
guage is no longer a proper subset. Compatibility is not guaranteed.

C++ as defined by the ANSI standard in 1998 (called C++98 at times) is very
nearly, but not quite, a superset of the C language as it was defined by its first
ANSI standard in 1989 (known as C89). There are a number of ways in which
C++ is not a strict superset, in the sense that not all valid C89 programs are valid
C++ programs, but the process of converting C code to valid C++ code is fairly
trivial (avoiding reserved words, getting around the stricter C++ type checking
with casts, declaring every called function, and so on).

75 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT%3AC%20PROGRAMMING%
20LANGUAGE

76 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99
77 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING

25

http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikipedia.org/wiki/C99
http://en.wikibooks.org/wiki/C%20Programming

C++ a multi-paradigm language

In 1999, C was revised and many new features were added to it. As of 2004, most
of these new "C99" features are not in C++. Some (including Stroustrup himself)
have argued that the changes brought about in C99 have a philosophy distinct
from what C++98 adds to C89, and hence these C99 changes are directed towards
increasing incompatibility between C and C++.

The merging of the languages seems a dead issue, as coordinated actions by the C
and C++ standards committees leading to a practical result did not happen and it
can be said that the languages started to diverge.

Some of the differences are:

• C++ supports function overloading, this is absent in C, especially in C89 (it can
be argued, depending on how loosely function overloading is defined, that it is
possible to some degree to emulate these capabilities using the C9978 standard).

• C++ supports INHERITANCE79 and POLYMORPHISM80.
• C++ adds keyword class, but keeps struct from C, with compatible semantics.
• C++ supports access control for class members.
• C++ supports generic programming through the use of TEMPLATES81.
• C++ extends the C89 standard library with its own standard library.
• C++ and C99 offer different complex number facilities.
• C++ has bool and wchar_t as primitive types, while in C they are typedefs.
• C++ comparison operators returns bool, while C returns int.
• C++ supports overloading of operators.
• C++ character constants have type char, while C character constants have type

int.
• C++ has specific CAST OPERATORS82 (static_cast, dynamic_cast,
const_cast and reinterpret_cast).

• C++ adds mutable keyword to address the imperfect match between physical
and logical constness.

• C++ extends the type system with references.
• C++ supports member functions, constructors and destructors for

user-defined types to establish invariants and to manage resources.
• C++ supports RUNTIME TYPE IDENTIFICATION83 (RTTI), via typeid and
dynamic_cast.

78 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99
79 Chapter 2.3.4 on page 20
80 Chapter 2.3.4 on page 21
81 Chapter 5 on page 501
82 Chapter 3.4.14 on page 220
83 Chapter 5.5.5 on page 548

26

http://en.wikipedia.org/wiki/C99

Programming paradigms

• C++ includes EXCEPTION HANDLING84.
• C++ has std::vector as part of its standard library instead of variable-length

arrays as in C.
• C++ treats sizeof operator as compile time operation, while C allows it be a

runtime operation.
• C++ has new and delete operators, while C uses malloc and free library

functions.
• C++ supports object-oriented programming without extensions.
• C++ does not require use of macros, unlike C, that uses them for careful

information-hiding and abstraction (especially important for C code
portability).

• C++ supports per-line comments denoted by //. (C99 started official support for
this comment system, and most compilers support this as an extension.)

• C++ register keyword is semantically different to C’s implementation.

Choosing C or C++
It is not uncommon to find someone defending C over C++ (or vice versa) or
complaining about some features of these languages. There is no scientific
evidence to put a language above another in general terms; the only reason that
does have some traction is the possibility of deep changes or unknown bugs in a
language that is still very recent. In the case of C or C++ this is not the case, as
both languages are very mature. Though both are still evolving, the new features
keep a high level of compatibility with old code, making the use of those new
constructs a programmer’s decision. It is not uncommon to establish rules in a
project to limit the use of parts of a language (such as RTTI, exceptions, or
virtual-functions in inner loops), depending on the proficiency of the
programmers or the needs of the project. It is also common for new hardware to
support lower level languages first. Due to C being less extensive and lower level
than C++, it is easier to check and comply with strict industry guidelines and
automate those steps. Another benefit of C is that it is easier for the programmer
to do low level optimizations, though most C++ compilers can guarantee near
perfect optimizations automatically, a human can still do more and C has less
complex structures.

Any of the valid reasons to choose a language over another is mostly due to
programmer’s choice that indirectly deals with choosing the best tool for the job
and having the resources needed to complete it. It would be hard to validate
selecting C++ for a project if the available programmers only knew C. Even

84 Chapter 5.4 on page 535

27

C++ a multi-paradigm language

though in the reverse case it might be expected for a C++ programmer to produce
functional C code, the mindset and experience needed are not the same. The same
rationale is valid for C programmers and ASM. This is due to the close relations
that exist in the language’s structure and historic evolution.

One could argue that using the C subset of C++, in a C++ compiler, is the same as
using C, but in reality we find that it will generate slightly different results
depending on the compiler used.

Java

This is a comparison of the JAVA PROGRAMMING LANGUAGE85 with the C++
programming language. C++ and Java share many common traits. You can get a
better understanding of Java in the JAVA PROGRAMMING WIKIBOOK86.

Java was created initially to support NETWORK COMPUTING87 on EMBEDDED

SYSTEM88s. Java was designed to be extremely PORTABLE89, SECURE90,
MULTI-THREADED91 and DISTRIBUTED92, none of which were design goals for
C++. The syntax of Java was chosen to be familiar to C programmers, but direct
compatibility with C was not maintained. Java also was specifically designed to
be simpler than C++ but it keeps evolving above that simplification.

C++ Java
Compatibility backwards compati-

ble, including C
backwards compati-
bility with previous
versions

Focus execution efficiency developer productivity
Freedom trusts the programmer imposes some con-

straints to the pro-
grammer

Memory Management ARBITRARY MEMORY

ACCESS POSSIBLE93
memory access only
through objects

85 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING
86 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3AJAVA
87 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETWORK%20COMPUTING
88 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDED%20SYSTEM
89 HTTP://EN.WIKIPEDIA.ORG/WIKI/PORTING
90 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20SECURITY
91 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
92 HTTP://EN.WIKIPEDIA.ORG/WIKI/DISTRIBUTED%20COMPUTING
93 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER

28

http://en.wikibooks.org/wiki/Java%20Programming
http://en.wikibooks.org/wiki/Programming%3AJava
http://en.wikipedia.org/wiki/network%20computing
http://en.wikipedia.org/wiki/embedded%20system
http://en.wikipedia.org/wiki/porting
http://en.wikipedia.org/wiki/computer%20security
http://en.wikipedia.org/wiki/thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/distributed%20computing
http://en.wikipedia.org/wiki/pointer

Programming paradigms

C++ Java
Code concise expression explicit operation
TYPE SAFETY94 type casting is re-

stricted greatly
only compatible types
can be cast

PROGRAMMING

PARADIGM95
PROCEDURAL96 or
OBJECT-ORIENTED97

object-oriented

Operators OPERATOR OVER-
LOADING98

meaning of operators
immutable

Main Advantage powerful capabilities
of language

feature-rich, easy to
use standard library

Differences between C++ and Java are:

• C++ parsing is somewhat more complicated than with Java; for example,
Foo<1>(3); is a sequence of comparisons if Foo is a variable, but it creates an
object if Foo is the name of a class template.

• C++ allows namespace level constants, variables, and functions. All such Java
declarations must be inside a class or INTERFACE99.

• CONST100 in C++ indicates data to be ’read-only,’ and is applied to types.
final in java indicates that the variable is not to be reassigned. For basic types
such as const int vs final int these are identical, but for complex classes,
they are different.

• C++ doesn’t support constructor delegation.
• C++ runs on the hardware, Java runs on a virtual machine so with C++ you

have greater power at the cost of portability.
• C++, int main() is a function by itself, without a class.
• C++ access specification (public, private) is done with labels and in groups.
• C++ access to class members default to private, in Java it is package access.
• C++ classes declarations end in a semicolon.
• C++ lacks language level support for garbage collection while Java has built-in

garbage collection to handle memory deallocation.

94 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE%20SAFETY
95 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20PARADIGM
96 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCEDURAL
97 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-ORIENTED
98 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20OVERLOADING
99 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERFACE%20%28JAVA%29
100 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONST

29

http://en.wikipedia.org/wiki/type%20safety
http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikipedia.org/wiki/procedural
http://en.wikipedia.org/wiki/object-oriented
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/interface%20%28Java%29
http://en.wikipedia.org/wiki/const

C++ a multi-paradigm language

• C++ supports goto statements; Java does not, but its LABELED BREAK101 and
LABELED CONTINUE102 statements provide some structured goto-like
functionality. In fact, Java enforces STRUCTURED CONTROL FLOW103, with the
goal of code being easier to understand.

• C++ provides some low-level features which Java lacks. In C++, pointers can
be used to manipulate specific memory locations, a task necessary for writing
low-level OPERATING SYSTEM104 components. Similarly, many C++ compilers
support INLINE ASSEMBLER105. In Java, assembly code can still be accessed as
libraries, through the JAVA NATIVE INTERFACE106. However, there is
significant overhead for each call.

• C++ allows a range of implicit conversions between native types, and also
allows the programmer to define implicit conversions involving compound
types. However, Java only permits widening conversions between native types
to be implicit; any other conversions require explicit cast syntax.
• A consequence of this is that although loop conditions (if, while and the

exit condition in for) in Java and C++ both expect a boolean expression,
code such as if(a = 5) will cause a compile error in Java because there is
no implicit narrowing conversion from int to boolean. This is handy if the
code were a typo for if(a == 5), but the need for an explicit cast can add
verbosity when statements such as if (x) are translated from Java to C++.

• For passing parameters to functions, C++ supports both true
PASS-BY-REFERENCE107 and PASS-BY-VALUE108. As in C, the programmer
can simulate by-reference parameters with by-value parameters and
INDIRECTION109. In Java, all parameters are passed by value, but object
(non-primitive) parameters are REFERENCE110 values, meaning
INDIRECTION111 is built-in.

• Generally, Java built-in types are of a specified size and range; whereas C++
types have a variety of possible sizes, ranges and representations, which may

101 HTTP://EN.WIKIPEDIA.ORG/WIKI/LABELLED%20BREAK
102 HTTP://EN.WIKIPEDIA.ORG/WIKI/LABELLED%20CONTINUE
103 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRUCTURED%20CONTROL%20FLOW
104 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM
105 HTTP://EN.WIKIPEDIA.ORG/WIKI/INLINE%20ASSEMBLER
106 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20NATIVE%20INTERFACE
107 HTTP://EN.WIKIPEDIA.ORG/WIKI/PASS-BY-REFERENCE
108 HTTP://EN.WIKIPEDIA.ORG/WIKI/PASS-BY-VALUE
109 HTTP://EN.WIKIPEDIA.ORG/WIKI/INDIRECTION
110 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTER%

20SCIENCE%29
111 HTTP://EN.WIKIPEDIA.ORG/WIKI/INDIRECTION

30

http://en.wikipedia.org/wiki/labelled%20break
http://en.wikipedia.org/wiki/labelled%20continue
http://en.wikipedia.org/wiki/structured%20control%20flow
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/inline%20assembler
http://en.wikipedia.org/wiki/Java%20Native%20Interface
http://en.wikipedia.org/wiki/pass-by-reference
http://en.wikipedia.org/wiki/pass-by-value
http://en.wikipedia.org/wiki/indirection
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/indirection

Programming paradigms

even change between different versions of the same compiler, or be
configurable via compiler switches.
• In particular, Java characters are 16-bit UNICODE112 characters, and strings

are composed of a sequence of such characters. C++ offers both narrow and
wide characters, but the actual size of each is platform dependent, as is the
character set used. Strings can be formed from either type.

• The rounding and precision of floating point values and operations in C++ is
platform dependent. Java provides a STRICT FLOATING-POINT MODEL113 that
guarantees consistent results across platforms, though normally a more lenient
mode of operation is used to allow optimal floating-point performance.

• In C++, POINTERS114 can be manipulated directly as memory address values.
Java does not have pointers—it only has object references and array references,
neither of which allow direct access to memory addresses. In C++ one can
construct pointers to pointers, while Java references only access objects.

• In C++ pointers can point to functions or member functions (FUNCTION

POINTER115s or FUNCTOR116s). The equivalent mechanism in Java uses object
or interface references.

• C++ features programmer-defined OPERATOR OVERLOADING117. The only
overloaded operators in Java are the "+" and "+=" operators, which concatenate
strings as well as performing addition.

• Java features standard API118 support for REFLECTION119 and DYNAMIC

LOADING120 of arbitrary new code.
• Java has generics. C++ has templates.
• Both Java and C++ distinguish between native types (these are also known as

"fundamental" or "built-in" types) and user-defined types (these are also known
as "compound" types). In Java, native types have value semantics only, and
compound types have reference semantics only. In C++ all types have value
semantics, but a reference can be created to any object, which will allow the
object to be manipulated via reference semantics.

112 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNICODE
113 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRICTFP
114 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTERS
115 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTION%20POINTER
116 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTOR
117 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20OVERLOADING
118 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20PROGRAMMING%

20INTERFACE
119 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFLECTION%20%28COMPUTER%

20SCIENCE%29
120 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20LOADING

31

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/strictfp
http://en.wikipedia.org/wiki/pointers
http://en.wikipedia.org/wiki/function%20pointer
http://en.wikipedia.org/wiki/functor
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Reflection%20%28computer%20science%29
http://en.wikipedia.org/wiki/Reflection%20%28computer%20science%29
http://en.wikipedia.org/wiki/dynamic%20loading

C++ a multi-paradigm language

• C++ supports MULTIPLE INHERITANCE121 of arbitrary classes. Java supports
multiple inheritance of types, but only single inheritance of implementation. In
Java, a class can derive from only one class, but a class can implement multiple
INTERFACE122s.

• Java explicitly distinguishes between interfaces and classes. In C++ multiple
inheritance and pure virtual functions makes it possible to define classes that
function just as Java interfaces do.

• Java has both language and standard library support for MULTI-THREADING123.
The synchronized KEYWORD IN JAVA124 provides simple and secure MUTEX

LOCK125s to support multi-threaded applications. While mutex lock
mechanisms are available through libraries in C++, the lack of language
semantics makes writing THREAD SAFE126 code more difficult and error prone.

Memory management

• Java requires automatic GARBAGE COLLECTION127. Memory management in
C++ is usually done by hand, or through SMART POINTER128s. The C++
standard permits garbage collection, but does not require it; garbage collection
is rarely used in practice. When permitted to relocate objects, modern garbage
collectors can improve overall application space and time efficiency over using
explicit deallocation.

• C++ can allocate arbitrary blocks of memory. Java only allocates memory
through object instantiation. (Note that in Java, the programmer can simulate
allocation of arbitrary memory blocks by creating an array of bytes. Still, Java
ARRAY129s are objects.)

• Java and C++ use different idioms for resource management. Java relies mainly
on garbage collection, while C++ relies mainly on the RAII (RESOURCE

121 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPLE%20INHERITANCE
122 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERFACE%20%28JAVA%29
123 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTI-THREADING
124 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20KEYWORDS
125 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION
126 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20SAFE
127 HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE%20COLLECTION%20%

28COMPUTER%20SCIENCE%29
128 HTTP://EN.WIKIPEDIA.ORG/WIKI/SMART%20POINTER
129 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARRAY

32

http://en.wikipedia.org/wiki/multiple%20inheritance
http://en.wikipedia.org/wiki/Interface%20%28Java%29
http://en.wikipedia.org/wiki/multi-threading
http://en.wikipedia.org/wiki/Java%20keywords
http://en.wikipedia.org/wiki/Mutual%20exclusion
http://en.wikipedia.org/wiki/thread%20safe
http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/smart%20pointer
http://en.wikipedia.org/wiki/array

Programming paradigms

ACQUISITION IS INITIALIZATION)130 idiom. This is reflected in several
differences between the two languages:
• In C++ it is common to allocate objects of compound types as local

stack-bound variables which are destructed when they go OUT OF SCOPE131.
In Java compound types are always allocated on the heap and collected by the
garbage collector (except in virtual machines that use ESCAPE ANALYSIS132

to convert heap allocations to stack allocations).
• C++ has destructors, while Java has FINALIZER133s. Both are invoked prior to

an object’s deallocation, but they differ significantly. A C++ object’s
destructor must be implicitly (in the case of stack-bound variables) or
explicitly invoked to deallocate the object. The destructor executes
SYNCHRONOUSLY134 at the point in the program at which the object is
deallocated. Synchronous, coordinated uninitialization and deallocation in
C++ thus satisfy the RAII idiom. In Java, object deallocation is implicitly
handled by the garbage collector. A Java object’s finalizer is invoked
ASYNCHRONOUSLY135 some time after it has been accessed for the last time
and before it is actually deallocated, which may never happen. Very few
objects require finalizers; a finalizer is only required by objects that must
guarantee some clean up of the object state prior to deallocation—typically
releasing resources external to the JVM. In Java safe synchronous
deallocation of resources is performed using the try/finally construct.

• In C++ it is possible to have a DANGLING POINTER136 − a REFERENCE137 to
an object that has been destructed; attempting to use a dangling pointer
typically results in program failure. In Java, the garbage collector won’t
destruct a referenced object.

• In C++ it is possible to have an object that is allocated, but unreachable. An
UNREACHABLE OBJECT138 is one that has no reachable references to it. An
unreachable object cannot be destructed (deallocated), and results in a
MEMORY LEAK139. By contrast, in Java an object will not be deallocated by

130 HTTP://EN.WIKIPEDIA.ORG/WIKI/RESOURCE%20ACQUISITION%20IS%
20INITIALIZATION

131 Chapter 3.1.9 on page 82
132 HTTP://EN.WIKIPEDIA.ORG/WIKI/ESCAPE%20ANALYSIS
133 HTTP://EN.WIKIPEDIA.ORG/WIKI/FINALIZER
134 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNCHRONIZATION
135 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASYNCHRONY
136 HTTP://EN.WIKIPEDIA.ORG/WIKI/DANGLING%20POINTER
137 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTER%

20SCIENCE%29
138 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNREACHABLE%20OBJECT
139 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY%20LEAK

33

http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization
http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization
http://en.wikipedia.org/wiki/escape%20analysis
http://en.wikipedia.org/wiki/finalizer
http://en.wikipedia.org/wiki/Synchronization
http://en.wikipedia.org/wiki/Asynchrony
http://en.wikipedia.org/wiki/dangling%20pointer
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/unreachable%20object
http://en.wikipedia.org/wiki/memory%20leak

C++ a multi-paradigm language

the garbage collector until it becomes unreachable (by the user program).
(Note: WEAK REFERENCE140s are supported, which work with the Java
garbage collector to allow for different strengths of reachability.) Garbage
collection in Java prevents many memory leaks, but leaks are still possible
under some circumstances.

Libraries

• C++ STANDARD LIBRARY141 provides a limited set of basic and relatively
general purpose components. Java has a considerably larger standard library.
This additional functionality is available for C++ by (often free) third party
libraries, but third party libraries do not provide the same ubiquitous
cross-platform functionality as standard libraries.

• C++ is mostly BACKWARD COMPATIBLE142 with C, and C libraries (such as the
API143s of most OPERATING SYSTEM144s) are directly accessible from C++. In
Java, the richer functionality its standard library is that it provides
CROSS-PLATFORM145 access to many features typically only available in
platform-specific libraries. Direct access from Java to native operating system
and hardware functions requires the use of the JAVA NATIVE INTERFACE146.

Runtime

• C++ is normally compiled directly to MACHINE CODE147 which is then
executed directly by the OPERATING SYSTEM148. Java is normally compiled to
BYTE-CODE149 which the JAVA VIRTUAL MACHINE150 (JVM) then either
INTERPRETS151 or JIT152 compiles to machine code and then executes.

140 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEAK%20REFERENCE
141 Chapter 5.1.5 on page 517
142 HTTP://EN.WIKIPEDIA.ORG/WIKI/BACKWARD%20COMPATIBLE
143 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20PROGRAMMING%

20INTERFACE
144 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM
145 HTTP://EN.WIKIPEDIA.ORG/WIKI/CROSS-PLATFORM
146 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20NATIVE%20INTERFACE
147 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACHINE%20CODE
148 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM
149 HTTP://EN.WIKIPEDIA.ORG/WIKI/BYTE-CODE
150 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20VIRTUAL%20MACHINE
151 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER%20%28COMPUTING%29
152 HTTP://EN.WIKIPEDIA.ORG/WIKI/JUST-IN-TIME%20COMPILATION

34

http://en.wikipedia.org/wiki/weak%20reference
http://en.wikipedia.org/wiki/backward%20compatible
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/cross-platform
http://en.wikipedia.org/wiki/Java%20Native%20Interface
http://en.wikipedia.org/wiki/machine%20code
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/byte-code
http://en.wikipedia.org/wiki/Java%20virtual%20machine
http://en.wikipedia.org/wiki/Interpreter%20%28computing%29
http://en.wikipedia.org/wiki/Just-in-time%20compilation

Programming paradigms

• Due to the lack of constraints in the use of some C++ language features (e.g.
unchecked array access, raw pointers), programming errors can lead to
low-level BUFFER OVERFLOW153s, PAGE FAULT154s, and SEGMENTATION

FAULT155s. The STANDARD TEMPLATE LIBRARY156, however, provides
higher-level abstractions (like vector, list and map) to help avoid such errors. In
Java, such errors either simply cannot occur or are detected by the JVM157 and
reported to the application in the form of an EXCEPTION158.

• In Java, BOUNDS CHECKING159 is implicitly performed for all array access
operations. In C++, array access operations on native arrays are not
bounds-checked, and bounds checking for random-access element access on
standard library collections like std::vector and std::deque is optional.

Miscellaneous

• Java and C++ use different techniques for splitting up code in multiple source
files. Java uses a package system that dictates the file name and path for all
program definitions. In Java, the compiler imports the executable CLASS

FILES160. C++ uses a HEADER FILE161 SOURCE CODE162 inclusion system for
sharing declarations between source files. (See COMPARISON OF IMPORTS

AND INCLUDES163.)
• Templates and macros in C++, including those in the standard library, can result

in duplication of similar code after compilation. Second, DYNAMIC LINKING164

with standard libraries eliminates binding the libraries at compile time.
• C++ compilation features a textual PREPROCESSING165 phase, while Java does

not. Java supports many optimizations that mitigate the need for a preprocessor,

153 HTTP://EN.WIKIPEDIA.ORG/WIKI/BUFFER%20OVERFLOW
154 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAGE%20FAULT
155 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEGMENTATION%20FAULT
156 Chapter 5.1.5 on page 517
157 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20VIRTUAL%20MACHINE
158 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXCEPTION%20HANDLING
159 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOUNDS%20CHECKING
160 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLASS%20%28FILE%20FORMAT%29
161 HTTP://EN.WIKIPEDIA.ORG/WIKI/HEADER%20FILE
162 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOURCE%20CODE
163 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISON%20OF%20IMPORTS%20AND%

20INCLUDES
164 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIBRARY%20%28COMPUTER%20SCIENCE%

29%23DYNAMIC%20LINKING
165 Chapter 3.2.2 on page 101

35

http://en.wikipedia.org/wiki/buffer%20overflow
http://en.wikipedia.org/wiki/page%20fault
http://en.wikipedia.org/wiki/segmentation%20fault
http://en.wikipedia.org/wiki/Java%20virtual%20machine
http://en.wikipedia.org/wiki/exception%20handling
http://en.wikipedia.org/wiki/bounds%20checking
http://en.wikipedia.org/wiki/class%20%28file%20format%29
http://en.wikipedia.org/wiki/header%20file
http://en.wikipedia.org/wiki/source%20code
http://en.wikipedia.org/wiki/Comparison%20of%20imports%20and%20includes
http://en.wikipedia.org/wiki/Comparison%20of%20imports%20and%20includes
http://en.wikipedia.org/wiki/library%20%28computer%20science%29%23Dynamic%20linking
http://en.wikipedia.org/wiki/library%20%28computer%20science%29%23Dynamic%20linking

C++ a multi-paradigm language

but some users add a preprocessing phase to their build process for better
support of conditional compilation.

• In Java, arrays are container objects which you can inspect the length of at any
time. In both languages, arrays have a fixed size. Further, C++ programmers
often refer to an array only by a pointer to its first element, from which they
cannot retrieve the array size. However, C++ and Java both provide container
classes (std::vector and java.util.ArrayList respectively) which are re-sizable
and store their size.

• Java’s division and modulus operators are well defined to truncate to zero. C++
does not specify whether or not these operators truncate to zero or "truncate to
-infinity". -3/2 will always be -1 in Java, but a C++ compiler may return either
-1 or -2, depending on the platform. C99166 defines division in the same
fashion as Java. Both languages guarantee that (a/b)*b + (a%b) == a for all
a and b (b != 0). The C++ version will sometimes be faster, as it is allowed to
pick whichever truncation mode is native to the processor.

• The sizes of integer types is defined in Java (int is 32-bit, long is 64-bit), while
in C++ the size of integers and pointers is compiler-dependent. Thus,
carefully-written C++ code can take advantage of the 64-bit processor’s
capabilities while still functioning properly on 32-bit processors. However,
C++ programs written without concern for a processor’s word size may fail to
function properly with some compilers. In contrast, Java’s fixed integer sizes
mean that programmers need not concern themselves with varying integer sizes,
and programs will run exactly the same. This may incur a performance penalty
since Java code cannot run using an arbitrary processor’s word size.

Performance
Computing performance is a measure of resource consumption when a system of
hardware and software performs a piece of computing work such as an algorithm

or a transaction. Higher performance is defined to be ’using fewer resources’.
Resources of interest include memory, bandwidth, persistent storage and CPU

cycles. Because of the high availability of all but the latter on modern desktop and
server systems, performance is colloquially taken to mean the least CPU cycles;

which often converts directly into the least wall clock time. Comparing the
performance of two software languages requires a fixed hardware platform and
(often relative) measurements of two or more software subsystems. This section

compares the relative computing performance of C++ and Java on common
operating systems such as Windows and Linux.

166 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99

36

http://en.wikipedia.org/wiki/C99

Programming paradigms

Early versions of Java were significantly outperformed by statically compiled
languages such as C++. This is because the program statements of these two

closely related languages may compile to a few machine instructions with C++,
while compiling into several byte codes involving several machine instructions

each when interpreted by a Java JVM167. For example:

Java/C++ statement C++ generated code Java generated byte
code

vector[i]++; mov edx,[ebp+4h]
mov eax,[ebp+1Ch]
inc dword ptr
[edx+eax*4]

aload_1
iload_2
dup2
iaload
iconst_1
iadd
iastore

While this may still be the case for EMBEDDED SYSTEMS168 because of the
requirement for a small footprint, advances in JUST IN TIME (JIT)169 compiler
technology for long-running server and desktop Java processes has closed the

performance gap and in some cases given the performance advantage to Java. In
effect, Java byte code is compiled into machine instructions at run time, in a

similar manner to C++ static compilation, resulting in similar instruction
sequences.

C++ is still faster in most operations than Java at the moment, even at low-level
and numeric computation. For in-depth information you could check

PERFORMANCE OF JAVA VERSUS C++170. It’s a bit pro-Java but very detailed.

dhunparserurl C++ Programming/Programming Languages/Comparisons/C Sharp

167 HTTP://EN.WIKIPEDIA.ORG/WIKI/JVM
168 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDED%20SYSTEMS
169 HTTP://EN.WIKIPEDIA.ORG/WIKI/JUST-IN-TIME%20COMPILATION
170 HTTP://WWW.IDIOM.COM/~{}ZILLA/COMPUTER/JAVACBENCHMARK.HTML

37

http://en.wikipedia.org/wiki/JVM
http://en.wikipedia.org/wiki/embedded%20systems
http://en.wikipedia.org/wiki/Just-in-time%20compilation
http://www.idiom.com/~{}zilla/Computer/javaCbenchmark.html

C++ a multi-paradigm language

C#

C#171 (pronounced "See Sharp") is a multi-purpose computer PROGRAMMING

LANGUAGE172 catering to all development needs using MICROSOFT .NET
FRAMEWORK173.

C#’s chief designer was Anders Hejlsberg. Before joining Microsoft in 1996, he
worked at Borland developing Turbo Pascal and Delphi. At Microsoft he worked
as an architect for J++ and he is still a key participant of the development of the

.NET framework.

C# is very similar to Java in that it takes the basic operators and style of C++ but
forces programs to be type safe, in that it executes the code in a controlled

sandbox called the virtual machine. As such, all code must be encapsulated inside
an object, among other things. C# provides many additions to facilitate

interaction with MICROSOFT174’s Windows, COM, and Visual Basic. C# is a
ECMA and ISO standard.

Issues C# vs C++

• Limitation: With C#, features like multiple inheritance from classes (C#
implements a different approach called Multiple Implementation, where a class
can implement more than one interface), declaring objects on the stack,
deterministic destruction (allowing RAII) and allowing default arguments as
function parameters (In C# versions < 4.0) will not be available.

• Performance (speed and size): Applications built in C# may not perform as well
when compared with native C++. C# has an intrusive garbage collector,
reference tracking and other overheads with some of the framework services.
The .NET framework alone has a big runtime footprint (˜30 Mb of memory),
and requires that several versions of the framework to be installed.

• Flexibility: Due to the dependency on the .NET framework, operating system
level functionality (system level APIs) are buffered by a generic set of functions
that will reduce some freedoms.

• Runtime Redistribution: Programs need to be distributed with the .NET
framework (pre-Windows XP or non Windows Machines), similar to the issue
with the Java language, with all the normal upgrade requirements attached.

171 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT%3AC%20SHARP%
20PROGRAMMING%20LANGUAGE

172 Chapter 2.1.3 on page 11
173 HTTP://EN.WIKIPEDIA.ORG/WIKI/.NET%20FRAMEWORK
174 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT

38

http://en.wikibooks.org/wiki/Subject%3AC%20Sharp%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20Sharp%20programming%20language
http://en.wikipedia.org/wiki/.NET%20Framework
http://en.wikipedia.org/wiki/Microsoft

Programming paradigms

• Portability: The .NET complete framework is only available on the Windows
OS, there is a open-source versions that provides most of the core
functionalities, that also supports the GNU-Linux OS, like MONO and
Portable.NET HTTP://GETDOTGNU.COM/PNET175. There are ECMA and ISO
.NET standards for example for C# and the CLI extension to C++.

There are several shortcomings to C++ which are resolved in C#. One of the more
subtle ones is the use of reference variables as function arguments. When a code

maintainer is looking at C++ source code, if a called function is declared in a
header somewhere, the immediate code does not provide any indication that an

argument to a function is passed as a reference. An argument passed by reference
could be changed after calling the function whereas an argument passed by value
cannot be changed. A maintainer not be familiar with the function looking for the
location of an unexpected value change of a variable would additionally need to
examine the header file for the function in order to determine whether or not that

function could have changed the value of the variable. C# insists that the ref
keyword be placed in the function call (in addition to the function declaration),

thereby cluing the maintainer in that the value could be changed by the function.

dhunparserurl C++ Programming/Programming
Languages/Comparisons/Managed C++

Managed C++ (C++/CLI)

Managed C++ is a shorthand notation for Managed Extensions for C++, which
are part of the .NET FRAMEWORK176 from MICROSOFT177. This extension of
the C++ language was developed to add functionality like automatic garbage

collection and heap management, automatic initialization of arrays, and support
for multidimensional arrays, simplifying all those details of programming in C++

that would otherwise have to be done by the programmer.

Managed C++ is not compiled to machine code. Rather, it is compiled to
COMMON INTERMEDIATE LANGUAGE178, which is an object-oriented machine

language and was formerly known as MSIL.

dhunparserurl C++ Programming/Programming Languages/Comparisons/D

175 HTTP://GETDOTGNU.COM/PNET
176 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20.NET
177 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT
178 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMON%20INTERMEDIATE%20LANGUAGE

39

http://getdotgnu.com/pnet
http://en.wikipedia.org/wiki/Microsoft%20.NET
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Common%20Intermediate%20Language

C++ a multi-paradigm language

D

The D programming language, was developed in-house by DIGITAL MARS179 a
small US software company, also known for producing a C compiler (known over
time as Datalight C compiler, Zorland C and Zortech C), the first C++ compiler
for Windows (originally known as Zortech C++, renamed to Symantec C++, and

now Digital Mars C++ (DMC++) and various utilities (such as an IDE180 for
Windows that supports the MFC library).

On their web site, Digital Mars hosts the language specification and a
freely-distributable compiler (for Windows and Linux). The compiler back-end is

proprietary, only the compiler front-end is licensed under both the Artistic
License and the GNU GPL.

Although D originated as a re-engineering of C++ and is predominantly
influenced by it, D is not a variant of C++. D has redesigned some C++ features
and has been influenced by concepts used in other programming languages, such

as Java, C# and Eiffel.

Differences between D and C++:

• D does not support multiple inheritance.
• D does not support complex data types with value semantics.

See the D PROGRAMMING181 book for more details.

2.4 Chapter summary

dhunparserurl C++ Programming/Chapters/C++/Summary

1. INTRODUCING C++182

2. PROGRAMMING LANGUAGES183

179 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIGITAL%20MARS
180 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATED%20DEVELOPMENT%

20ENVIRONMENT
181 HTTP://EN.WIKIBOOKS.ORG/WIKI/D%20PROGRAMMING
182 Chapter 2 on page 7
183 Chapter 2.1.3 on page 11

40

http://en.wikipedia.org/wiki/Digital%20Mars
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikibooks.org/wiki/D%20Programming

Chapter summary

a) PROGRAMMING PARADIGMS184 - the versatility of C++ as a
multi-paradigm language, concepts of object-oriented programming
(objects and classes, INHERITANCE185, POLYMORPHISM186).

3. COMPARISONS187 - to other languages, relation to other computer science
constructs and idioms.

a) with C188

b) with JAVA189

c) with C#190

d) with MANAGED C++ (C++/CLI)191

e) with D192

1193 ----

1194

184 Chapter 2.2.3 on page 16
185 Chapter 2.3.4 on page 20
186 Chapter 2.3.4 on page 21
187 Chapter 2.3.6 on page 22
188 Chapter 2.3.7 on page 25
189 Chapter 2.3.7 on page 28
190 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FC%20SHARP
191 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FMANAGED%20C%2B%2B
192 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%

2FPROGRAMMING%20LANGUAGES%2FCOMPARISONS%2FD
193 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
194 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

41

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FC%20Sharp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FC%20Sharp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FManaged%20C%2B%2B
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FManaged%20C%2B%2B
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FD
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FComparisons%2FD
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

C++ a multi-paradigm language

42

3 Fundamentals for getting started

3.1 The code

Code is the string of symbols interpreted by a computer in order to execute a
given objective. As with natural languages, code is the result of all the
conventions and rules that govern a language. It is what permits implementation
of projects in a standard, compilable way. Correctly written code is used to create
projects that serve as intermediaries for natural language in order to express
meanings and ideas. This, theoretically and actually, allows a computer program
to solve any explicitly-defined problem.

undefined behavior

It is also important to note that the language standard leaves some items
undefined. In this the C++ language is not alone, but it is at times most vexing to
the newcomer, since results may appear inconsistent, especially for the unaware.
Of course this becomes most evident when doing cross platform developing
requiring the use of different compilers, since the undefined behavior is left to the
choices made by each compiler implementor.

Note:
We will try to provide the relevant information as the information is presented, take
notice that when we do so we often point you to the documentation of the compiler
you are using or note the behavior in the compilers more commonly used.

3.1.1 Programming

The task of programming, while not easy in its execution, is actually fairly simple
in its goals. A programmer will envision, or be tasked with, a specific goal. Goals
are usually provided in the form of "I want a program that will perform...fill in the
blank..." The job of the programmer then is to come up with a "working model" (a

43

Fundamentals for getting started

model that may consist of one or more ALGORITHMS1). That "working model" is
sort of an idea of how a program will accomplish the goal set out for it. It gives a
programmer an idea of what to write in order to turn the idea in to a working
program.

Once the programmer has an idea of the structure their program will need to take
in order to accomplish the goal, they set about actually writing the program itself,
using the selected PROGRAMMING LANGUAGE(S)2 keywords, functions and
syntax. The code that they write is what actually implements the program, or
causes it to perform the necessary task, and for that reason, it is sometimes called
"implementation code".

3.1.2 What is a program?

To restate the definition, a program is just a sequence of instructions, written in
some form of programming language, that tells a computer what to do, and
generally how to do it. Everything that a typical user does on a computer is
handled and controlled by programs. Programs can contain anything from
instructions to solve math problems or send emails, to how to behave when a
character is shot in a video game. The computer will follow the instructions of a
program one line at a time from the start to the end.

Types of programs

There are all kinds of different programs used today, for all types of purposes. All
programs are written with some form of programming language and C++ can be
used for in any type of application. Examples of different types of programs, (also
called software), include:

Operating Systems

An operating system is responsible for making sure that everything on a
computer works the way that it should. It is especially concerned with making
certain that your computer’s "hardware", (i.e. disk drives, video card and sound
card, and etc.) interfaces properly with other programs you have on your
computer. Microsoft Windows and Linux are examples of PC operating systems.

Office Programs

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALGORITHM
2 Chapter 2.1.3 on page 11

44

http://en.wikipedia.org/wiki/Algorithm

The code

This is a general category for a collection of programs that allow you to
compose, view, print or otherwise display different kinds of documents. Often
such "suites" come with a word processor for composing letters or reports, a
spreadsheet application and a slide-show creator of some kind among other
things. Popular examples of Office Suites are Microsoft Office and
OpenOffice.org

Web Browsers & Email Clients

A web-browser is a program that allows you to type in an Internet address and
then displays that page for you. An email client is a program that allows you to
send, receive and compose email messages outside of a web-browser. Often
email clients have some capability as a web-browser as well, and some
web-browsers have integrated email clients. Well-known web-browsers are
Internet Explorer and Firefox, and Email Clients include Microsoft Outlook and
Thunderbird. Most are programmed using C++, you can access some as
Open-source projects, for instance
(HTTP://WWW.MOZILLA.ORG/PROJECTS/FIREFOX/)3 will help you download
and compile Firefox.

Audio/Video Software

These types of software include media players, sound recording software,
burning/ripping software, DVD players, etc. Many applications such as
Windows Media Player, a popular media player programmed by Microsoft, are
examples of audio/video software.

Computer Games

There are countless software titles that are either games or designed to assist
with playing games. The category is so wide that it would be impossible to get
in to a detailed discussion of all the different kinds of game software without
creating a different book! Gaming is one of the most popular activities to engage
in on a computer.

Development Software

Development software is software used specifically for programming. It
includes software for composing programs in a computer language (sometimes
as simple as a text editor like Notepad), for checking to make sure that code is
stable and correct (called a debugger), and for compiling that source code into
executable programs that can be run later (these are called compilers).

3 HTTP://WWW.MOZILLA.ORG/PROJECTS/FIREFOX/)

45

http://www.mozilla.org/projects/firefox/)

Fundamentals for getting started

Oftentimes, these three separate programs are combined in to one bigger
program called an IDE (Integrated Development Environment). There are all
kinds of IDEs for every programming language imaginable. A popular C++ IDE
for Windows and Linux is the CODE::BLOCKS4 IDE (FREE AND OPEN

SOURCE5). The one type of software that you will learn the most about in this
book is Development Software.

Types of instructions

As mentioned already, programs are written in many different languages, and for
every language, the words and statements used to tell the computer to execute
specific commands are different. No matter what words and statements are used
though, just about every programming language will include statements that will
accomplish the following:

Input

Input is the act of getting information from a keyboard or mouse, or sometimes
another program.

Output

Output is the opposite of input; it gives information to the computer monitor or
another device or program.

Math/Algorithm

All computer processors (the brain of the computer), have the ability to perform
basic mathematical computation, and every programming language has some
way of telling it to do so.

Testing

Testing involves telling the computer to check for a certain condition and to do
something when that condition is true or false. Conditionals are one of the most
important concepts in programming, and all languages have some method of
testing conditions.

Repetition

Perform some action repeatedly, usually with some variation.

4 HTTP://WWW.CODEBLOCKS.ORG/
5 HTTP://WWW.CODEBLOCKS.ORG/FEATURES.SHTML

46

http://www.codeblocks.org/
http://www.codeblocks.org/features.shtml

The code

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of functions that look more or less
like these. Thus, one way to describe programming is the process of breaking a
large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

Program execution

Execution starts on MAIN FUNCTION6, the entry point of any
(standard-compliant) C++ program. We will cover it when we introduce
FUNCTIONS7.

Execution control or simply control, means the process and the location of
execution of a program, this has a direct link to PROCEDURAL PROGRAMMING8.
You will note the mention of control as we proceed, as it is necessary concept to
explain the order of execution of code and its interpretation by the computer.

Core vs Standard Library

The Core Library consists of the fundamental building blocks of the language
itself. Made up of the basic statements that the C++ compiler inherently
understands. This includes basic looping constructs such as the if..else, do..while,
and for.. statements. The ability to create and modify variables, declare and call
functions, and perform basic arithmetic. The Core Library does not include I/O
functionality.

The STANDARD LIBRARY9 is a set of modules that add extended functionality to
the language through the use of library or header files. Features such as
Input/Output routines, advanced mathematics, and memory allocation functions
fall under this heading. All C++ compilers are responsible for providing a
Standard Library of functions as outlined by the ANSI/ISO C++
GUIDELINES10. More deeper understanding about each module will be provided

6 Chapter 3.7 on page 245
7 Chapter 3.6.3 on page 245
8 Chapter 2.3.1 on page 16
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%2B%2B%20STANDARD%20LIBRARY
10 HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/

47

http://en.wikipedia.org/wiki/C%2B%2B%20Standard%20Library
http://www.open-std.org/jtc1/sc22/wg21/

Fundamentals for getting started

on the STANDARD C LIBRARY11, STANDARD INPUT/OUTPUT STREAMS

LIBRARY12 and STANDARD TEMPLATE LIBRARY (STL)13 sections of this book.

Program organization

How the instructions of a program are written out and stored is generally not a
concept determined by a programming language. Punch cards used to be in
common use, however under most modern operating systems the instructions are
commonly saved as plain text files that can be edited with any text editor. These
files are the source of the instructions that make up a program and so are
sometimes referred to as source files but a more exclusive definition is source
code.

When referring to source code or just source, you are considering only the files
that contain code, the actual text that makes up the functions (actions) for
computer to execute. By referring to source files you are extending the idea to not
only the files with the instructions that make up the program but all the raw files
resources that together can build the program. The FILE ORGANIZATION

SECTION14 will cover the different files used in C++ programming and best
practices on handling them.

3.1.3 Keywords and identifiers

IDENTIFIERS15 are names given to variables, functions, objects, etc. to refer to
them in the program. C++ identifiers must start with a letter or an underscore
character "_", possibly followed by a series of letters, underscores or digits. None
of the C++ programming language keywords can be used as identifiers. Identifiers
with successive underscores are reserved for use in the header files or by the
compiler for special purpose, e.g. name mangling.

Some keywords exists to directly control the compiler’s behavior, these keywords
are very powerful and must be used with care, they may make a huge difference
on the program’s compile time and running speed. In the C++ Standard, these
keywords are called Specifiers.

11 Chapter 3.7.10 on page 280
12 Chapter 4.7.3 on page 469
13 Chapter 5.1.5 on page 517
14 Chapter 3.1.5 on page 51
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIERS

48

http://en.wikipedia.org/wiki/identifiers

The code

Special considerations must be given when creating your own identifiers, this will
be covered in CODE STYLE CONVENTIONS SECTION16.

3.1.4 ISO C++ (C++98) keywords

• and
• and_eq
• asm
• auto
• bitand
• bitor
• bool
• break
• case
• catch
• char
• CLASS17

• compl
• const
• const_cast
• continue
• default
• delete
• do

• double
• dynamic_-
cast

• else
• enum
• explicit
• export
• extern
• false
• float
• for
• friend
• goto
• if
• inline
• int
• long
• mutable
• namespace
• new

• not
• not_eq
• operator
• or
• or_eq
• private
• protected
• public
• register
•
reinterpret_-
cast

• return
• short
• signed
• sizeof
• static
• static_cast
• STRUCT18

• switch
• template

• this
• throw
• true
• try
• typedef
• typeid
• typename
• union
• unsigned
• using
• virtual
• void
• volatile
• wchar_t
• while
• xor
• xor_eq

Specific compilers may (in a non-standard compliant mode) also treat some other
words as keywords, including cdecl, far, fortran, huge, interrupt, near, pascal,
typeof. Old compilers may recognize the overload keyword, an anachronism that
has been removed from the language.

The next revision of C++, informally known as C++0x for now, is likely to add
some keywords, probably including at least:

16 Chapter 3.1.8 on page 71
17 Chapter 4.2.3 on page 411
18 Chapter 4 on page 403

49

Fundamentals for getting started

• static_assert
• decltype
• nullptr

(These are being considered carefully to minimize breakage to existing code; see
HTTP://WWW.OPEN-
STD.ORG/JTC1/SC22/WG21/DOCS/PAPERS/2006/N2105.HTML19 for some
details.)

Old compilers may not recognize some or all of the following keywords:

• and
• and_eq
• bitand
• bitor
• bool
• catch
• compl
• const_cast

• dynamic_-
cast

• explicit
• export
• false
• mutable
• namespace
• not
• not_eq

• or
• or_eq
•
reinterpret_-
cast

• static_cast
• template
• throw
• true
• try

• typeid
• typename
• using
• wchar_t
• xor
• xor_eq

3.1.5 C++ reserved identifiers

Some "nonstandard" identifiers are reserved for distinct uses, to avoid conflicts on
the naming of identifiers by vendors, library creators and users in general.

Reserved identifiers include keywords with two consecutive underscores (__), all
that start with an underscore followed by an uppercase letter and some other
categories of reserved identifiers carried over from the C library specification.

A list of C reserved identifiers can be found at the Internet Wayback Machine
archived page:
http://web.archive.org/web/20040209031039/http://oakroadsystems.com/tech/c-
predef.htm#ReservedIdentifiers

Source code

19 HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/DOCS/PAPERS/2006/N2105.
HTML

50

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2105.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2105.html

The code

Source code is the halfway point between human language and machine code. As
mentioned before, it can be read by people to an extent, but it can also be parsed
(converted) into machine code by a computer. The machine code, represented by
a series of 1’s and 0’s, is the only code that the computer can directly understand
and act on.

In a small program, you might have as little as a few dozen lines of code at the
most, whereas in larger programs, this number might stretch into the thousands or
even millions. For this reason, it is sometimes more practical to split large
amounts of code across many files. This makes it easier to read, as you can do it
bit by bit, and it also reduces compile time of each source file. It takes much less
time to compile a lot of small source files than it does to compile a single massive
source file.

Managing size is not the only reason to split code, though. Often, especially when
a piece of software is being developed by a large team, source code is split.
Instead of one massive file, the program is divided into separate files, and each
individual file contains the code to perform one particular set of tasks for the
overall program. This creates a condition known as Modularity. Modularity is a
quality that allows source code to be changed, added to, or removed a piece at a
time. This has the advantage of allowing many people to work on separate aspects
of the same program, thereby allowing it to move faster and more smoothly.
Source code for a large project should always be written with modularity in mind.
Even when working with small or medium sized projects, it is good to get in the
habit of writing code with ease of editing and use in mind.

C++ source code is CASE SENSITIVE20. This means that it distinguishes between
lowercase and capital letters, so that it sees the words "hello," "Hello," and
"HeLlO" as being totally different things. This is important to remember and
understand, it will be discussed further in the CODING STYLE CONVENTIONS

SECTION21.

3.1.6 File organization

Most operating systems require files to be designated by a name followed by a
specific extension. The C++ standard does not impose any specific rules on how
files are named or organized.

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/CASE%20SENSITIVITY
21 Chapter 3.1.7 on page 63

51

http://en.wikipedia.org/wiki/Case%20sensitivity

Fundamentals for getting started

The specific conventions for the file organizations has both technical reasons and
organizational benefits, very similar to the CODE STYLE CONVENTIONS22 we
will examine later. Most of the conventions governing files derive from historical
preferences and practices, that are especially related with lower level languages
that preceded C++. This is especially true when we take into consideration that
C++ was built over the C89 ANSI standard, with compatibility in mind, this has
lead to most practices remaining static, except for the operating systems improved
support for files and greater ease of management of file resources.

One of the evolutions when dealing with filenames on the language standard was
that the default include files would have no extension. Most implementations still
provide the old C style headers that use C’s file extension ".h" for the C Standard
Library, but C++-specific header filenames that were terminated in the same
fashion now have no extension (e.g. iostream.h is now iostream). This change to
old C++ headers was simultaneous with the implementation of NAMESPACES23,
in particular the std namespace.

Note:
Please note that file names and extensions do not include quotes; the quotes were
added for clarity in this text.

File names

Selecting a file name shares the same issues to naming variables, functions and in
general all things. A name is an identifier that eases not only communication but
how things are structured and organized.

Most of the considerations in naming files are commonsensical:

• Names should share the same language: in this, internationalization of the
project should be a factor.

• Names should be descriptive, and shared by the related header, the extension
will provide the needed distinction.

• Names will be case sensitive, remember to be consistent.

Do not reuse a standard header file name

22 Chapter 3.1.7 on page 63
23 Chapter 3.1.10 on page 83

52

The code

As you will see later, the C++ Standard defines a LIST OF HEADERS24. The
behavior is undefined if a file with the same name as a standard header is placed
in the search path for included source files.

Extensions
The extension serves one purpose: to indicate to the Operating System, the IDE
or the compiler what resides within the file. By itself an extension will not serve
as a guarantee for the content.

Since the C language sources usually have the extension ".c" and ".h", in the
beginning it was common for C++ source files to share the same extensions or use
a distinct variation to clearly indicate the C++ code file. Today this is the practice,
most C++ implementation files will use the ".cpp" extension and ".h" for the
declaration or header files (the last one is still shared across most assembler and C
compilers).

There are other common extensions variations, such as, ".cc", ".C", ".cxx", and
".c++" for "implementation" code. For header files, the same extension variations
are used, but the first letter of the extension is usually replaced with an "h" as in,
".hh", ".H", ".hxx", "hpp", ".h++" etc...

Header files will be discussed with more detail later in the PREPROCESSOR

SECTION25 when introducing the #include directive and the standard headers, but
in general terms a header file is a special kind of SOURCE CODE26 file that is
included (by the PREPROCESSOR27) by way of the #INCLUDE28 directive,
traditionally used at the beginning of a ".cpp" file.

Source code

C++ programs would be compilable even if using a single file, but any complex
project will benefit from being split into several source files in order to be
manageable and permit re-usability of the code. The beginning programmer sees
this as an extra complication, where the benefits are obscure, especially since
most of the first attempts will probably result in problems. This section will cover

24 Chapter 3.2.3 on page 104
25 Chapter 3.2.2 on page 101
26 Chapter 3 on page 43
27 Chapter 3.2.2 on page 101
28 Chapter 3.2.3 on page 102

53

Fundamentals for getting started

not only the benefits and best practices but also explain how a standardized
method will avoid and reduce complexity.

Why split code into several files?

Simple programs will fit into a single source file or at least two, other than that
programs can be split across several files in order to:

• Increase organization and better code structure.
• Promote code reuse, on the same project and across projects.
• Facilitate multiple and often simultaneous edits.
• Improve compilation speed.

Source file types

Some authors will refer to files with a .cpp extension as "source files" and files
with the .h extension as "header files". However, both of those qualify as source
code. As a convention for this book, all code, whether contained within a .cpp
extension (where a programmer would put it), or within a .h extension (for
headers), will be called source code. Any time we’re talking about a .cpp file,
we’ll call it an "implementation file", and any time we’re referring to a header file,
we’ll call it a "declaration file". You should check the editor/IDE or alter the
configuration to a setup that best suits you and others that will read and use this
files.

Declaration vs Definition

In general terms a declaration specifies for the linker, the identifier, type and other
aspects of language elements such as variables and functions. It is used to
announce the existence of the element to the compiler which require variables to
be declared before use.

The definition assigns values to an area of memory that was reserved during the
declaration phase. For functions, definitions supply the function body. While a
variable or function may be declared many times, it is typically defined once.

This is not of much importance for now but is a particular characteristic that
impacts how the source code is distributed in files and how it is processed by the

54

The code

compiler subsystems. It is COVERED IN MORE DETAIL29 after we introduce you
to VARIABLE TYPES30.

.cpp
An implementation file includes the specific details, that is the definitions, for
what is done by the program. While the header file for the light declared what a
light could do, the light’s .cpp file defines how the light acts.

We will go into much more detail on class definition later; here is a preview:

Figure 4: .cpp files

29 Chapter 3.3.4 on page 142
30 Chapter 3.3.3 on page 142

55

Fundamentals for getting started

#include "light.h"

Light::Light () : on(false) {
}

void Light::toggle() {
on = (!on);

}

bool Light::isOn() const {
return on;

}

.h
Header files contain mostly declarations, to be used in the rest of the program.

The skeleton of a class is usually provided in a header file, while an
accompanying implementation file provides the definitions to put the meat on the
bones of it. Header files are not compiled, but rather provided to other parts of the
program through the use of #include.

56

The code

Figure 5: .cpp files

A typical header file looks like the following:

// Inside sample.h
#ifndef SAMPLE_H
#define SAMPLE_H

// Contents of the header file are placed here.

#endif /* SAMPLE_H */

Since header files are included in other files, problems can occur if they are
included more than once. This often results in the use of "header guards" using

57

Fundamentals for getting started

the PREPROCESSOR DIRECTIVES31 (#ifndef, #define, and #endif). #ifndef checks
to see if SAMPLE_H has appeared already, if it has not, the header becomes
included and SAMPLE_H is defined. If SAMPLE_H was originally defined, then
the file has already been included, and is not included again.

Figure 6: .cpp files

Classes are usually declared inside header files. We will go into much more detail
on class declaration later; here is a preview:

// Inside light.h
#ifndef LIGHT_H

31 Chapter 3.2.2 on page 101

58

The code

#define LIGHT_H

// A light which may be on or off.
class Light {
private:
bool on;

public:
Light (); // Makes a new light.
void toggle (); // If light is on, turn it off, if off, turn it on
bool isOn(); // Is the light on?

};

#endif /* LIGHT_H - comment indicating which if this goes with */

This header file "light.h" declares that there is going to be a light class, and gives
the properties of the light, and the methods provided by it. Other programmers
can now include this file by typing #include "light.h" in their implementation
files, which allows them to use this new class. Note how these programmers do
not include the actual .cpp file that goes with this class that contains the details of
how the light actually works. We’ll return to this case study after we discuss
implementation files.

Object files

An object file is a temporary file used by the compiler as an intermediate step
between the source code and the final executable file.

All other source files that are not or resulted from source code, the support data
needed for the build (creation) of the program. The extensions of these files may
vary from system to system, since they depend on the IDE/Compiler and
necessities of the program, they may include graphic files, or raw data formats.

Object code
The compiler produces machine code equivalent (object code) of the source
code, contain the BINARY32 language (machine language) instruction to be used
by the computer to do as was instructed in the source code, that can then be linked
into the final program. This step ensures that the code is valid and will sequence
into an executable program. Most object files have the file extension (.o) with the
same restrictions explained above for the (.cpp/.h) files.

32 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINARY%20AND%20TEXT%20FILES

59

http://en.wikipedia.org/wiki/Binary%20and%20text%20files

Fundamentals for getting started

Libraries
Libraries are commonly distributed in binary form, using the (.lib) extension and

header (.h) that provided the interface for its utilization. Libraries can also be
dynamically linked and in that case the extension may depend on the target OS,
for instance windows libraries as a rule have the (.dll) extension, this will be
covered later on in the book in the LIBRARIES SECTION33 of this book.

Makefiles

It is common for source code to come with a specific script file named "Makefile"
(without a standard extension or a standard interpreter). This type of script files is
not covered by the C++ Standard, even though it is in common use.

In some projects, especially if dealing with a high level of external dependencies
or specific configurations, like supporting special hardware, there is need to
automate a vast number of incompatible compile sequences. This scripts are
intended to alleviate the task. Explaining in detail the myriad of variations and of
possible choices a programmer may make in using (or not) such a system goes
beyond the scope of this book. You should check the documentation of the IDE,
make tool or the information available on the source you are attempting to
compile.

• The APACHE ANT34 Wikibook describes how to write and use a "build.xml",
one way to automate the build process.

• THE "MAKE" WIKIBOOK35 describes how to write and use a "Makefile",
another way to automate the build process.

• ... many IDEs have a "build" button ...

3.1.7 Statements

Most, if not all, programming languages share the concept of a statement, also
referred to as an expression. A statement is a command the programmer gives to
the computer.

// Example of a single statement
cout << "Hi there!";

33 Chapter 6.3.3 on page 602
34 HTTP://EN.WIKIBOOKS.ORG/WIKI/APACHE%20ANT
35 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAKE%20

60

http://en.wikibooks.org/wiki/Apache%20Ant
http://en.wikibooks.org/wiki/make%20

The code

Each valid C++ statement is terminated by a semicolon (;). The above statement
will be examined in detail later on, for now consider that this statement has a
subject (the noun "cout"), a verb ("<<", meaning "output" or "print"), and, in the
sense of English grammar, an object (what to print). In this case, the subject
"cout" means "the standard console output device", and the verb "<<" means
"output the object" — in other words, the command "cout" means "send to the
standard output stream," (in this case we assume the default, the console).

The programmer either enters the statement directly to the computer (by typing it
while running a special program, called interpreter), or creates a text file with the
command in it (you can use any text editor for that), that is latter used with a
COMPILER36. You could create a file called "hi.txt", put the above command in it,
and save that file on the computer.

If one were to write multiple statements, it is recommended that each statement
be entered on a separate line.

cout << "Hi there!"; // a statement
cout << "Strange things are afoot..."; // another statement

However, there is no problem writing the code this way:

cout << "Hi there!"; cout << "Strange things are afoot...";

The former code gathers appeal in the developer circles. Writing statements as in
the second example only makes your code look more complex and
incomprehensible. We will speak of this deeply in the CODING STYLE

CONVENTIONS SECTION37 of the book.

If you have more than one statement in the file, each will be performed in order,
top to bottom.

The computer will perform each of these statements sequentially. It is invaluable
to be able to "play computer" when programming. Ask yourself, "If I were the
computer, what would I do with these statements?" If you’re not sure what the
answer is, then you are very likely to write incorrect code. Stop and check the
language standards and the specific compiler depended implementation if the
standard declares it as undefined.

In the above case, the computer will look at the first statement, determine that it is
a cout statement, look at what needs to be printed, and display that text on the
computer screen. It’ll look like this:

36 Chapter 3.1.10 on page 91
37 Chapter 3.1.7 on page 63

61

Fundamentals for getting started

Hi there!

Note that the quotation marks are not there. Their purpose in the program is to tell
the computer where the text begins and ends, just like in English prose. The
computer will then continue to the next statement, perform its command, and the
screen will look like this:

Hi there!Strange things are afoot...

When the computer gets to the end of the text file, it stops. There are many
different kinds of statements, depending on which programming language is
being used. For example, there could be a beep statement that causes the
computer to output a beep on its speaker, or a window statement that causes a new
window to pop up.

Also, the way statements are written will vary depending on the programming
language. These differences are fairly superficial. The set of rules like the first two
is called a programming language’s syntax. The set of verbs is called its library.

cout << "Hi there!";

Compound statement

Also referred to as statement blocks or code blocks, consist of one or more
statements or commands that are contained between a pair of curly braces { }.
Such a block of statements can be named or be provided a condition for
execution. Below is how you’d place a series of statements in a block.

// Example of a compound statement
{
int a = 10;
int b = 20;
int result = a + b;

}

Blocks are used primarily in loops, conditionals and functions. Blocks can be
nested inside one another, for instance as an if structure inside of a loop inside of
a function.

Note:
Statement blocks also create a LOCAL SCOPEa.

a Chapter 3.1.9 on page 82

62

The code

Program Control Flow

As seen above the statements are evaluated in the order as they occur
(sequentially). The execution of flow begins at the top most statement and
proceed downwards till the last statement is encountered. Any single statement
can be substituted by a compound statement. There are special statements that
can redirect the execution flow based on a condition, those statements are called
branching statements, described in detail in the CONTROL FLOW CONSTRUCT

STATEMENTS SECTION38 of the book.

3.1.8 Coding style conventions

The use of a guide or set of convention gives programmers a set of rules for code
normalization or coding style that establishes how to format code, name variables,
place comments or any other non language dependent structural decision that is
used on the code. This is very important, as you share a project with others.
Agreeing to a common set of coding standards and recommendations saves time
and effort, by enabling a greater understandings and transparency of the code
base, providing a common ground for undocumented structures, making for easy
debugging, and increasing code maintainability. These rules may also be referred
to as Source Code Style, Code Conventions, Coding Standards or a variation of
those.

Many organizations have published C++ style guidelines. A list of different
approaches can be found on the C++ CODING CONVENTIONS REFERENCE

SECTION39. The most commonly used style in C++ programming is ANSI or
Allman while much C programming is still done in the Kernighan and Ritchie
(K&R) style. You should be warned that this should be one of the first decisions
you make on a project and in a democratic environment, a consensus can be very
hard to achieve.

Programmers tend to stick to a coding style, they have it automated and any
deviation can be very hard to conform with, if you don’t have a favorite style try
to use the smallest possible variation to a common one or get as broad a view as
you can get, permitting you to adapt easily to changes or defend your approach.
There is software that can help to format or beautify the code, but automation can
have its drawbacks. As seen earlier, indentation and the use of white spaces or

38 Chapter 3.5.2 on page 229
39 Chapter 8.13 on page 681

63

Fundamentals for getting started

tabs are completely ignored by the compiler. A coding style should vary
depending on the lowest common denominator of the needs to standardize.

Another factor, even if yet to a minimal degree, for the selection of a coding style
convention is the IDE (or the code editor) and its capabilities, this can have for
instance an influence in determining how verbose code should be, the maximum
the length of lines, etc. Some editors now have extremely useful features like
word completion, refactoring functionalities and other that can make some
specifications unnecessary or outright outdated. This will make the adoption of a
coding style dependent also on the target code user available software.

Field impacted by the selection of a Code Style are:

• Re-usability
• Self documenting code
• Internationalization
• Maintainability
• Portability

• Optimization
• Build process
• Error avoidance
• Security

Standardization is important

No matter which particular coding style you pick, once it is selected, it should be
kept throughout the same project. Reading code that follows different styles can
become very difficult. In the next sections we try to explain why some of the
options are common practice without forcing you to adopt a specific style.

Note:
Using a bad Coding Style is worse than having no Coding Style at all, since you
will be extending bad practices to all the code base.

25 lines 80 columns

This rule is a commonly recommended, but often countered with argument that
the rule is outdated. The rule originates from the time when text-based computer
terminals and dot-matrix printers often could display at most 80 columns of text.

64

The code

As such, greater than 80-column text would either inconveniently wrap to the next
line, or worse, not display at all.

The physical limitations of the devices asides, this rule often still suggested under
the argument that if you are writing code that will go further than 80 columns
or 25 lines, it’s time to think about splitting the code into functions. Smaller
chunks of encapsulated code helps in reviewing the code as it can be seen all at
once without scrolling up or down. This modularizes, and thus eases, the
programmer mental representation of the project. This practice will save you
precious time when you have to return to a project you haven’t been working on
for 6 months.
For example, you may want to split long output statements across multiple lines:

fprintf(stdout,"The quick brown fox jumps over the lazy dog. "
"The quick brown fox jumps over the lazy dog.\n"
"The quick brown fox jumps over the lazy dog - %d", 2);

This recommended practice relates also to the 0 means success40 convention for
functions, that we will cover on the FUNCTIONS SECTION41 of this book.

Whitespace and indentation

Note:
Spaces, tabs and newlines (line breaks) are called whitespace. Whitespace is re-
quired to separate adjacent words and numbers; they are ignored everywhere else
except within quotes and preprocessor directives

Conventions followed when using whitespace to improve the readability of code
is called an indentation style. Every block of code and every definition should
follow a consistent indention style. This usually means everything within { and }.
However, the same thing goes for one-line code blocks.

Use a fixed number of spaces for indentation. Recommendations vary; 2, 3, 4, 8
are all common numbers. If you use tabs for indention you have to be aware that
editors and printers may deal with, and expand, tabs differently. The K&R
standard recommends an indentation size of 4 spaces.

The use of tab is controversial, the basic premise is that it reduces source code
portability, since the same source code loaded into different editors with distinct

40 Chapter 3.7 on page 245
41 Chapter 3.6.3 on page 245

65

Fundamentals for getting started

setting will not look alike. This is one of the primary reasons why some
programmers prefer the consistency of using spaces (or configure the editor to
replace the use of the tab key with the necessary number of spaces).

For example, a program could as well be written using as follows:

// Using an indentation size of 2
if (a > 5) { b=a; a++; }

However, the same code could be made much more readable with proper
indentation:

// Using an indentation size of 2
if (a > 5) {
b = a;
a++;

}

// Using an indentation size of 4
if (a > 5)
{

b = a;
a++;

}

Placement of braces (CURLY BRACKETS42)

As we have seen early on the STATEMENTS SECTION43, compound statement are
very important in C++, they also are subject of different coding styles, that
recommend different placements of opening and closing braces ({ and }). Some
recommend putting the opening brace on the line with the statement, at the end
(K&R44). Others recommend putting these on a line by itself, but not indented
(ANSI C++). GNU recommends putting braces on a line by itself, and indenting
them half-way. We recommend picking one brace-placement style and sticking
with it.

Examples:

if (a > 5) {
// This is K&R style

}

42 HTTP://EN.WIKIPEDIA.ORG/WIKI/CURLY%20BRACKET%20PROGRAMMING%
20LANGUAGE

43 Chapter 3.1.6 on page 60
44 HTTP://EN.WIKIPEDIA.ORG/WIKI/THE%20C%20PROGRAMMING%20LANGUAGE%

20%28BOOK%29

66

http://en.wikipedia.org/wiki/Curly%20bracket%20programming%20language
http://en.wikipedia.org/wiki/Curly%20bracket%20programming%20language
http://en.wikipedia.org/wiki/The%20C%20Programming%20Language%20%28book%29
http://en.wikipedia.org/wiki/The%20C%20Programming%20Language%20%28book%29

The code

if (a > 5)
{
// This is ANSI C++ style

}

if (a > 5)
{
// This is GNU style

}

Comments

Comments are portions of the code ignored by the compiler which allow the user
to make simple notes in the relevant areas of the source code. Comments come
either in block form or as single lines.

• Single-line comments (informally, C++ style), start with // and continue until
the end of the line. If the last character in a comment line is a \ the comment
will continue in the next line.

• Multi-line comments (informally, C style), start with /* and end with */.

Note:
Since the 1999 revision, C also allows C++ style comments, so the informal names
are largely of historical interest that serves to make a distinction of the two methods
of commenting.

We will now describe how a comment can be added to the source code, but not
where, how, and when to comment; we will get into that later.

C style comments
If you use this kind of comment try to use it like this... Commented

/*void EventLoop(); /**/

or for multiple lines

/*
void EventLoop();
void EventLoop();
/**/

this opens you the option to do this... Uncommented

67

Fundamentals for getting started

void EventLoop(); /**/

or for multiple lines

void EventLoop();
void EventLoop();
/**/

Note:
Some compilers may generate errors/warnings.

Try to avoid using C style inside a function because of the non nesting facility of
C style (most editors now have some sort of coloring ability that prevents this kind
of error, but it was very common to miss it, and you shouldn’t make assumptions
on how the code is read).

... by removing only the start of comment and so activating the next one, you did
re-activate the commented code, because if you start a comment this way it will
be valid until it finds the close of comment */.

Note:
Remember that C-style comments /* like this */ do not "nest", i.e., you can’t
write
int function() /* This is a comment /* { return 0; } and this is

the same comment */ so this isn’t in the comment, and will give an error*/

because of the text so this is not in the comment */ at the end of the line,
which is not inside the comment; the comment ends at the first */ sequence it
finds, ignoring any interim /* sequence, which might look to human readers like
the start of a nested comment.

C++ style comments
Examples:

// This is a single one line comment

or

if (expression) // This needs a comment
{

68

The code

statements;
}
else
{
statements;

}

The backslash is a continuation character and will continue the comment to the
following line:

// This comment will also comment the following line \

std::cout << "This line will not print" << std::endl;

Using comments to temporarily ignore code

Comments are also sometimes used to enclose code that we temporarily want the
compiler to ignore. This can be useful in finding errors in the program. If a
program does not give the desired result, it might be possible to track which
particular statement contains the error by commenting out code.

Example with C style comments

/* This is a single line comment */

or

/*
This is a multiple line comment

*/

C and C++ style

Combining multi-line comments (/* */) with c++ comments (//) to comment
out multiple lines of code:

Commenting out the code:

/*
void EventLoop();
void EventLoop();
void EventLoop();
void EventLoop();

69

Fundamentals for getting started

void EventLoop();
//*/

uncommenting the code chunk

//*
void EventLoop();
void EventLoop();
void EventLoop();
void EventLoop();
void EventLoop();
//*/

This works because a //* is still a c++ comment. And //*/ acts as a c++
comment and a multi-line comment terminator. However this doesn’t work if
there are any multi-line comments are used for function descriptions.

Note on doing it with preprocessor statements

Another way (considered bad practice) is to selectively enable disable sections of
code:

#if(0) // Change this to 1 to uncomments.
void EventLoop();
#endif

this is considered a bad practice because the code often becomes illegible when
several #if’s are mixed, if you use them don’t forget to add a comment at the
#endif saying what #if it correspond

#if (FEATURE_1 == 1)
do_something;
#endif //FEATURE_1 == 1

you can prevent illegibility by using inline functions (often considered better
than macros for legibility with no performance cost) containing only 2 sections in
#if #else #endif

inline do_test()
{
#if (Feature_1 == 1)
do_something

#endif //FEATURE_1 == 1
}

and call

do_test();

70

The code

in the program

Note:
The use of one-line C-style comments should be avoided as they are considered
outdated. Mixing C and C++ style single-line comments is considered poor prac-
tice. One exception, that is commonly used, is to disable a specific part of code in
the middle of a single line statement for test/debug purposes, in release code any
need for such action should be removed.

45

Naming identifiers

C++’s restriction about the names of IDENTIFIERS46 and ITS keywords47 have
already been covered, on the CODE SECTION48. They leave a lot of freedom in
naming, one could use specific prefixes or suffixes, start names with an initial
upper or lower case letter, keep all the letters in a single case or, with compound
words, use a word separator character like "_" or flip the case of the first letter of
each component word.

Note:
It is also important to remember to avoid collisions with the OS’s APIs (depending
on the portability requirements) or other standards. For instance POSIX’s key-
words terminate in "_t".

Hungarian notation
Hungarian notation, now also referred to as Apps Hungarian, was invented by
Charles Simonyi (a programmer who worked at Xerox PARC circa 1972-1981,
and who later became Chief Architect at Microsoft); and has been until recently
the preeminent naming convention used in most Microsoft code. It uses prefixes
(like "m_" to indicate member variables and "p" to indicate pointers), while the
rest of the identifier is normally written out using some form of mixed capitals.
We mention this convention because you will very probably find it in use, even

45 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
46 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIERS
47 Chapter 3.1.3 on page 49
48 Chapter 3 on page 43

71

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/identifiers

Fundamentals for getting started

more probable if you do any programming in Windows, if you are interested on
learning more you can check WIKIPEDIA’S ENTRY ON THIS NOTATION49.

This notation is considered outdated, since it is highly prone to errors and requires
some effort to maintain without any real benefit in today’s IDEs. Today
refactoring is an everyday task, the IDEs have evolved to provide help with
identifier pop-ups and the use of color schemes. All these informational aids
reduce the need for this notation.

Leading underscores
In most contexts, leading underscores are better avoided. They are reserved for

the compiler or internal variables of a library, and can make your code less
portable and more difficult to maintain. Those variables can also be stripped from
a library (i.e. the variable is not accessible anymore, it is hidden from external
world) so unless you want to override an internal variable of a library, do not do it.

Reusing existing names
Do not use the names of standard library functions and objects for your

identifiers as these names are considered reserved words and programs may
become difficult to understand when used in unexpected ways.

Sensible names
Always use good, unabbreviated, correctly-spelled meaningful names.

Prefer the English language (since C++ and most libraries already use English)
and avoid short cryptic names. This will make it easier to read and to type a name
without having to look it up.

Note:
It is acceptable to ignore this rule for loop variables and variables used within a
small scope (˜20 lines), they may be given short names to save space if the purpose
of that variable is obvious enough. Historically the most commonly used variable
name in this cases is "i".
The "i" may derive from the word "increment" or "index". The "i" is very commonly found
in for loops that does fit nicely the specification for the use of such variable names.
In early Fortran compilers, the letters i through q represented integer variables - and by
convention the first few (i, j, k) were often used as loop counters.

49 HTTP://EN.WIKIPEDIA.ORG/WIKI/HUNGARIAN%20NOTATION

72

http://en.wikipedia.org/wiki/Hungarian%20notation

The code

Names indicate purpose
An identifier should indicate the function of the variable/function/etc. that it
represents, e.g. foobar is probably not a good name for a variable storing the age
of a person.

Identifier names should also be descriptive. n might not be a good name for a
global variable representing the number of employees. However, a good medium
between long names and lots of typing has to be found. Therefore, this rule can be
relaxed for variables that are used in a SMALL SCOPE OR CONTEXT50. Many
programmers prefer short variables (such as i) as loop iterators.

Capitalization
Conventionally, variable names start with a lower case character. In identifiers
which contain more than one natural language words, either underscores or
capitalization is used to delimit the words, e.g. num_chars (K&R style) or
numChars (Java style). It is recommended that you pick one notation and do not
mix them within one project.

Constants
When naming #defines, constant variables, enum constants. and macros put in all
uppercase using ’_’ separators; this makes it very clear that the value is not
alterable and in the case of macros, makes it clear that you are using a construct
that requires care.

Note:
There is a large school of thought that names LIKE_THIS should be used only for
macros, so that the name space used for macros (which do not respect C++ scopes)
does not overlap with the name space used for other identifiers. As is usual in C++
naming conventions, there is not a single universally agreed standard. The most
important thing is usually to be consistent.

Functions and member functions
The name given to functions and member functions should be descriptive and
make it clear what it does. Since usually functions and member functions perform
actions, the best name choices typically contain a mix of verbs and nouns in them
such as CheckForErrors() instead of ErrorCheck() and dump_data_to_file()

50 Chapter 3.1.9 on page 82

73

Fundamentals for getting started

instead of data_file(). Clear and descriptive names for functions and member
functions can sometimes make guessing correctly what functions and member
functions do easier, aiding in making code more self documenting. By following
this and other naming conventions programs can be read more naturally.

People seem to have very different intuitions when using names containing
abbreviations. It is best to settle on one strategy so the names are absolutely
predictable. Take for example NetworkABCKey. Notice how the C from ABC
and K from key are confused. Some people do not mind this and others just hate
it so you’ll find different policies in different code so you never know what to call
something.

Prefixes and suffixes are sometimes useful:

• Min - to mean the minimum value something can have.
• Max - to mean the maximum value something can have.
• Cnt - the current count of something.
• Count - the current count of something.
• Num - the current number of something.
• Key - key value.
• Hash - hash value.
• Size - the current size of something.
• Len - the current length of something.
• Pos - the current position of something.
• Limit - the current limit of something.
• Is - asking if something is true.
• Not - asking if something is not true.
• Has - asking if something has a specific value, attribute or property.
• Can - asking if something can be done.
• Get - get a value.
• Set - set a value.

Examples
In most contexts, leading underscores are also better avoided. For example, these
are valid identifiers:

• i loop value
• numberOfCharacters number of characters
• number_of_chars number of characters
• num_chars number of characters
• get_number_of_characters() get the number of characters
• get_number_of_chars() get the number of characters

74

The code

• is_character_limit() is this the character limit?
• is_char_limit() is this the character limit?
• character_max() maximum number of a character
• charMax() maximum number of a character
• CharMin() minimum number of a character

These are also valid identifiers but can you tell what they mean?:

• num1
• do_this()
• g()
• hxq

The following are valid identifiers but better avoided:

• _num as it could be used by the compiler/system headers
• num__chars as it could be used by the compiler/system headers
• main as there is potential for confusion
• cout as there is potential for confusion

The following are not valid identifiers:

• if as it is a keyword
• 4nums as it starts with a digit
• number of characters as spaces are not allowed within an identifier

Explicitness or implicitness

This can be defended both ways. If defaulting to implicitness, this means less
typing but also may create wrong assumptions on the human reader and for the
compiler (depending on the situation) to do extra work, on the other hand if you
write more keywords and are explicit on your intentions the resulting code will be
clearer and reduces errors (enabling hidden errors to be found), or more defined
(self documented) but this may also lead to added limitations to the code’s
evolution (like we will see with the use of const). This is a thin line were an
equilibrium must be reached in accord to the projects nature, and the available
capabilities of the editor, code completion, syntax coloring and hovering tooltips
reduces much of the work. The important fact is to be consistent as with any other
rule.

inline
The choice of using of inline even if the member function is implicitly inlined.

75

Fundamentals for getting started

const
Unless you plan on modifying it, you’re arguably better off using const data

types. The compiler can easily optimize more with this restriction, and you’re
unlikely to accidentally corrupt the data. Ensure that your methods take const data
types unless you absolutely have to modify the parameters. Similarly, when
implementing accessors for private member data, you should in most cases
return a const. This will ensure that if the object that you’re operating on is
passed as const, methods that do not affect the data stored in the object still work
as they should and can be called. For example, for an object containing a person,
a getName() should return a const data type where as walk() might be non-const
as it might change some internal data in the Person such as tiredness.

typedef
It is common practice to avoid using the typedef keyword since it can obfuscate

code if not properly used or it can cause programmers to accidentally misuse
large structures thinking them to be simple types. If used, define a set of rules for
the types you rename and be sure to document them.

volatile
This keyword informs the compiler that the variable it is qualifying as volatile

(can change at anytime) is excluded from any optimization techniques. Usage of
this variable should be reserved for variables that are known to be modified due to
an external influence of a program (whether it’s hardware update, third party
application, or another thread in the application).

Since the volatile keyword impacts performance, you should consider a different
design that avoids this situation: most platforms where this keyword is necessary
provide an alternative that helps maintain scalable performance.

Note that using volatile was not intended to be used as a threading or
synchronization primitive, nor are operations on a volatile variable guaranteed to
be atomic.

Pointer declaration

Due to historical reasons some programmers refer to a specific use as:

// C code style
int *z;

76

The code

// C++ code style
int* z;

The second variation is by far the preferred by C++ programmers and will help
identify a C programmer or legacy code.

One argument against the C++ code style version is when chaining declarations
of more than one item, like:

// C code style
int *ptrA, *ptrB;

// C++ code style
int* ptrC, ptrD;

As you can see, in this case, the C code style makes it more obvious that ptrA and
ptrB are pointers to int, and the C++ code style makes it less obvious that ptrD is
an int, not a pointer to int.

It is rare to use chains of multiple objects in C++ code with the exception of the
basic types and even so it is a not often used and it is extremely rare to see it used
in pointers or other complex types, since it will make it harder to for a human to
visually parse the code.

// C++ code style
int* ptrC;
int D;

References

3.1.9 Document your code

There are a number of good reasons to document your code, and a number of
aspects of it that can be documented. Documentation provides you with a shortcut
for obtaining an overview of the system or for understanding the code that
provides a particular feature.

"Good code is its own best documentation."
—Steve McConnell

Why?

The purpose of comments is to explain and clarify the source code to anyone
examining it (or just as a reminder to yourself). Good commenting conventions
are essential to any non-trivial program so that a person reading the code can

77

Fundamentals for getting started

understand what it is expected to do and to make it easy to follow on the rest of
the code. In the next topics some of the most How? and When? rules to use
comments will be listed for you.

Documentation of programming is essential when programming not just in C++,
but in any programming language. Many companies have moved away from the
idea of "hero programmers" (i.e., one programmer who codes for the entire
company) to a concept of groups of programmers working in a team. Many times
programmers will only be working on small parts of a larger project. In this
particular case, documentation is essential because:

• Other programmers may be tasked to develop your project;
• Your finished project may be submitted to editors to assemble your code into

other projects;
• A person other than you may be required to read, understand, and present your

code.

Even if you are not programming for a living or for a company, documentation of
your code is still essential. Though many programs can be completed in a few
hours, more complex programs can take longer time to complete (days, weeks,
etc.). In this case, documentation is essential because:

• You may not be able to work on your project in one session;
• It provides a reference to what was changed the last time you programmed;
• It allows you to record why you made the decisions you did, including why you

chose not to explore certain solutions;
• It can provide a place to document known limitations and bugs (for the latter a

defect tracking system may be the appropriate place for documentation);
• It allows easy searching and referencing within the program (from a

non-technical stance);
• It is considered to be good programming practice.

For the appropriate audience
Comments should be written for the appropriate audience. When writing code to

be read by those who are in the initial stages of learning a new programming
language, it can be helpful to include a lot of comments about what the code does.
For "production" code, written to be read by professionals, it is considered
unhelpful and counterproductive to include comments which say things that are
already clear in the code. Some from the EXTREME PROGRAMMING51

51 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXTREME%20PROGRAMMING

78

http://en.wikipedia.org/wiki/Extreme%20Programming

The code

community say that excessive commenting is indicative of CODE SMELL52 --
which is not to say that comments are bad, but that they are often a clue that code
would benefit from REFACTORING53. Adding comments as an alternative to
writing understandable code is considered poor practice.

What?

What needs to be documented in a program/source code can be divided into what
is documented before the specific program execution (that is before "main") and
what is executed ("what is in main").

Documentation before program execution:

• Programmer information and license information (if applicable)
• User defined function declarations
• Interfaces
• Context
• Relevant standards/specifications
• Algorithm steps
• How to convert the source code into executable file(s) (perhaps by using

MAKE54)

Documentation for code inside main:

• Statements, Loops, and Cases
• Public and Private Sectors within Classes
• Algorithms used
• Unusual features of the implementation
• Reasons why other choices have been avoided
• User defined function implementation

If used carelessly comments can make source code hard to read and maintain and
may be even unnecessary if the code is self-explanatory -- but remember that
what seems self-explanatory today may not seem the same six months or six years
from now.

Document decisions
Comments should document decisions. At every point where you had a choice of

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20SMELL
53 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFACTORING
54 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAKE

79

http://en.wikipedia.org/wiki/code%20smell
http://en.wikipedia.org/wiki/refactoring
http://en.wikibooks.org/wiki/make

Fundamentals for getting started

what to do place a comment describing which choice you made and why.
Archaeologists will find this the most useful information.

Comment layout
Each part of the project should at least have a single comment layout, and it

would be better yet to have the complete project share the same layout if possible.

How?

Documentation can be done within the source code itself through the use of
comments (as seen above) in a language understandable to the intended audience.
It is good practice to do it in English as the C++ language is itself English based
and English being the current LINGUA FRANCA55 of international business,
science, technology and aviation, you will ensure support for the broadest
audience possible.

Comments are useful in documenting portions of an algorithm to be executed,
explaining function calls and variable names, or providing reasons as to why a
specific choice or method was used. Block comments are used as follows:

/*
get timepunch algorithm - this algorithm gets a time punch for use later
1. user enters their number and selects "in" or "out"
2. time is retrieved from the computer
3. time punch is assigned to user

*/

Alternately, line comments can be used as follows:

GetPunch(user_id, time, punch); //this function gets the time punch

An example of a full program using comments as documentation is:

/*
Chris Seedyk
BORD Technologies
29 December 2006
Test

*/
int main()
{
cout << "Hello world!" << endl; //predefined cout prints stuff in " " to screen

55 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINGUA%20FRANCA

80

http://en.wikipedia.org/wiki/Lingua%20franca

The code

return 0;
}

It should be noted that while comments are useful for in-program documentation,
it is also a good idea to have an external form of documentation separate from the
source code as well, but remember to think first on how the source will be
distributed before making references to external information on the code
comments.

Commenting code is also no substitute for well-planned and meaningful variable,
function, and class names. This is often called "self-documenting code," as it is
easy to see from a carefully chosen and descriptive name what the variable,
function, or class is meant to do. To illustrate this point, note the relatively equal
simplicity with which the following two ways of documenting code, despite the
use of comments in the first and their absence in the second, are understood. The
first style is often encountered in very old C source by people who understood
well what they were doing and had no doubt anyone else might not comprehend
it. The second style is more "human-friendly" and while much easier to read is
nevertheless not as frequently encountered.

// Returns the area of a triangle cast as an int
int area_ftoi(float a, float b) { return (int) a * b / 2; }

int iTriangleArea(float fBase, float fHeight)
{

return (int) fBase * fHeight / 2;
}

Both functions perform the same task, however the second has such practical
names chosen for the function and the variables that its purpose is clear even
without comments. As the complexity of the code increases, well-chosen naming
schemes increase vastly in importance.

Regardless of what method is preferred, comments in code are helpful, save time
(and headaches), and ensure that both the author and others understand the layout
and purpose of the program fully.

Automatic documentation
Various tools are available to help with documenting C++ code; LITERATE

PROGRAMMING56 is a whole school of thought on how to approach this, but a
very effective tool is DOXYGEN57 (also supports several languages), it can even

56 HTTP://EN.WIKIPEDIA.ORG/WIKI/LITERATE%20PROGRAMMING
57 HTTP://WWW.DOXYGEN.ORG

81

http://en.wikipedia.org/wiki/Literate%20Programming
http://www.doxygen.org

Fundamentals for getting started

use hand written comments in order to generate more than the bare structure of
the code, bringing Javadoc-like documentation comments to C++ and can
generate documentation in HTML, PDF and other formats.

Comments should tell a story
Consider your comments a story describing the system. Expect your comments

to be extracted by a robot and formed into a manual page. Class comments are
one part of the story, method signature comments are another part of the story,
method arguments another part, and method implementation yet another part. All
these parts should weave together and inform someone else at another point of
time just exactly what you did and why.

Do not use comments for flowcharts or pseudo-code

You should refrain from using comments to do ASCII art or pseudo-code (some
programmers attempt to explain their code with an ASCII-art flowchart). If you
want to flowchart or otherwise model your design there are tools that will do a
better job at it using standardized methods. See for example: UML58.

3.1.10 Scope

In any language, scope (the context; what is the background) has a high impact on
a given action or statement validity. The same is true in a programming language.

In a program we may have various constructs, may they be objects, variables or
any other such. They come into existence from the point where you declare them
(before they are declared they are unknown) and then, at some point, they are
destroyed (as we will see there are many reasons to be so) and all are destroyed
when your program terminates.

We will see THAT VARIABLES HAVE A FINITE LIFE-TIME WHEN YOUR

PROGRAM EXECUTES59, that the scope of an object or variable is simply that part
of a program in which the variable name exists or is visible to the compiler.

58 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIFIED%20MODELING%20LANGUAGE
59 Chapter 3.3 on page 125

82

http://en.wikipedia.org/wiki/Unified%20Modeling%20Language

The code

Global scope

The default scope is defined as global scope, this is commonly used to define and
use global variables or other global constructs (classes, structure, functions,
etc...), this makes them valid and visible to the compiler at all times.

Note:
It is considered a good practice, if possible and as a way to reduce complexity
and name collisions, to use a namespace scope for hiding the otherwise global
elements, without removing their validity.

Local scope

A local scope relates to the scope created inside a COMPOUND STATEMENT60.

Note:
The only exceptional case is the for keyword. In that case the variables declared
on the for initialization section will be part of the local scope.

namespace

The namespace keyword allows you to create a new scope. The name is optional,
and can be omitted to create an unnamed namespace. Once you create a
namespace, you’ll have to refer to it explicitly or use the using keyword. A
namespace is defined with a namespace block.

Syntax

namespace name {
declaration-list;
}

60 Chapter 3.1.7 on page 62

83

Fundamentals for getting started

In many PROGRAMMING LANGUAGE61s, a NAMESPACE62 is a context for
IDENTIFIER63s. C++ can handle multiple namespaces within the language. By
using namespace (or the using namespace keyword), one is offered a clean way
to aggregate code under a shared label, so as to prevent naming collisions or just
to ease recall and use of very specific scopes. There are other "name spaces"
besides "namespaces"; this can be confusing.

Name spaces (note the space there), as we will see, go beyond the concept of
scope by providing an easy way to differentiate what is being called/used. As we
will see, classes are also name spaces, but they are not namespaces.

Note:
Use namespace only for convenience or real need, like aggregation of related code,
do not use it in a way to make code overcomplicated for you and others

Example

namespace foo {
int bar;

}

Within this block, identifiers can be used exactly as they are declared. Outside of
this block, the namespace specifier must be prefixed (that is, it must be qualified).
For example, outside of namespace foo, bar must be written foo::bar.

C++ includes another construct which makes this verbosity unnecessary. By
adding the line using namespace foo; to a piece of code, the prefix foo:: is
no longer needed.

unnamed namespace
A namespace without a name is called an unnamed namespace. For such a
namespace, a unique name will be generated for each translation unit. It is not
possible to apply the using keyword to unnamed namespaces, so an unnamed
namespace works as if the using keyword has been applied to it.

Syntax

61 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20LANGUAGE
62 HTTP://EN.WIKIPEDIA.ORG/WIKI/NAMESPACE%20%28COMPUTER%

20SCIENCE%29
63 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIER

84

http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/Namespace%20%28computer%20science%29
http://en.wikipedia.org/wiki/Namespace%20%28computer%20science%29
http://en.wikipedia.org/wiki/identifier

The code

namespace {
declaration-list;
}

namespace alias
You can create new names (aliases) for namespaces, including nested
namespaces.

Syntax

namespace identifier = namespace-specifier;

using namespaces

using

using namespace std;

This using-directive indicates that any names used but not declared within the
program should be sought in the ‘standard (std)’ namespace.

Note:
It is always a bad idea to use a using directive in a header file, as it affects every
use of that header file and would make difficult its use in other derived projects;
there is no way to "undo" or restrict the use of that directive. Also don’t use it
before an #include directive.

To make a single name from a namespace available, the following
using-declaration exists:

using foo::bar;

After this declaration, the name bar can be used inside the current namespace
instead of the more verbose version foo::bar. Note that programmers often use
the terms declaration and directive interchangeably, despite their technically
different meanings.

85

Fundamentals for getting started

It is good practice to use the narrow second form (using declaration), because the
broad first form (using directive) might make more names available than desired.
Example:

namespace foo {
int bar;
double pi;

}

using namespace foo;

int* pi;
pi = &bar; // ambiguity: pi or foo::pi?

In that case the declaration using foo::bar; would have made only foo::bar
available, avoiding the clash of pi and foo::pi. This problem (the collision of
identically-named variables or functions) is called "namespace pollution" and as a
rule should be avoided wherever possible.

using-declarations can appear in a lot of different places. Among them are:

• namespaces (including the default namespace)
• functions

A using-declaration makes the name (or namespace) available in the scope of
the declaration. Example:

namespace foo {
namespace bar {
double pi;
}

using bar::pi;
// bar::pi can be abbreviated as pi

}

// here, pi is no longer an abbreviation. Instead, foo::bar::pi must be used.

Namespaces are hierarchical. Within the hypothetical namespace food::fruit,
the identifier orange refers to food::fruit::orange if it exists, or if not, then
food::orange if that exists. If neither exist, orange refers to an identifier in the
default namespace.

Code that is not explicitly declared within a namespace is considered to be in the
default namespace.

Another property of namespaces is that they are open. Once a namespace is
declared, it can be redeclared (reopened) and namespace members can be added.
Example:

86

The code

namespace foo {
int bar;

}

// ...

namespace foo {
double pi;

}

Namespaces are most often used to avoid naming collisions. Although
namespaces are used extensively in recent C++ code, most older code does not
use this facility. For example, the entire standard library is defined within
namespace std, and in earlier standards of the language, in the default
namespace.

For a long namespace name, a shorter alias can be defined (a namespace alias
declaration). Example:

namespace ultra_cool_library_for_image_processing_version_1_0 {
int foo;

}

namespace improc1 = ultra_cool_library_for_image_processing_version_1_0;
// from here, the above foo can be accessed as improc1::foo

There exists a special namespace: the unnamed namespace. This namespace is
used for names which are private to a particular source file or other namespace:

namespace {
int some_private_variable;

}
// can use some_private_variable here

In the surrounding scope, members of an unnamed namespace can be accessed
without qualifying, i.e. without prefixing with the namespace name and :: (since
the namespace doesn’t have a name). If the surrounding scope is a namespace,
members can be treated and accessed as a member of it. However, if the
surrounding scope is a file, members cannot be accessed from any other source
file, as there is no way to name the file as a scope. An unnamed namespace
declaration is semantically equivalent to the following construct

namespace $$$ {
// ...

}
using namespace $$$;

where $$$ is a unique identifier manufactured by the compiler.

87

Fundamentals for getting started

As you can nest an unnamed namespace in an ordinary namespace, and vice
versa, you can also nest two unnamed namespaces.

namespace {

namespace {
// ok

}

}

Note:
If you enable the use of a namespace in the code, all the code will use it (you
can’t define sections that will and exclude others), you can however use nested
namespace declarations to restrict its scope.

Because of space considerations, we cannot actually show the namespace
command being used properly: it would require a very large program to show it
working usefully. However, we can illustrate the concept itself easily.

// Namespaces Program, an example to illustrate the use of namespaces
#include <iostream>

namespace first {
int first1;
int x;

}

namespace second {
int second1;
int x;

}

namespace first {
int first2;

}

int main(){
//first1 = 1;
first::first1 = 1;
using namespace first;
first1 = 1;
x = 1;
second::x = 1;
using namespace second;

//x = 1;
first::x = 1;
second::x = 1;
first2 = 1;

//cout << ’X’;

88

The code

std::cout << ’X’;
using namespace std;
cout << ’X’;
return 0;

}

64

We will examine the code moving from the start down to the end of the program,
examining fragments of it in turn.

#include <iostream>

This just includes the iostream library so that we can use std::cout to print stuff
to the screen.

namespace first {
int first1;
int x;

}

namespace second {
int second1;
int x;

}

namespace first {
int first2;

}

We create a namespace called first and add to it two variables, first1 and x. Then
we close it. Then we create a new namespace called second and put two variables
in it: second1 and x. Then we re-open the namespace first and add another
variable called first2 to it. A namespace can be re-opened in this manner as often
as desired to add in extra names.

main(){
1 //first1 = 1;
2 first::first1 = 1;

The first line of the main program is commented out because it would cause an
error. In order to get at a name from the first namespace, we must qualify the
variable’s name with the name of its namespace before it and two colons; hence
the second line of the main program is not a syntax error. The name of the
variable is in scope: it just has to be referred to in that particular way before it can
be used at this point. This therefore cuts up the list of global names into groups,
each group with its own prefixing name.

64 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

89

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

3 using namespace first;
4 first1 = 1;
5 x = 1;
6 second::x = 1;

The third line of the main program introduces the using namespace command.
This commands pulls all the names in the first namespace into scope. They can
then be used in the usual way from there on. Hence the fourth and fifth lines of
the program compile without error. In particular, the variable x is available now:
in order to address the other variable x in the second namespace, we would call it
second::x as shown in line six. Thus the two variables called x can be separately
referred to, as they are on the fifth and sixth lines.

7 using namespace second;
8 //x = 1;
9 first::x = 1;
10 second::x = 1;

We then pull the declarations in the namespace called second in, again with the
using namespace command. The line following is commented out because it is
now an error (whereas before it was correct). Since both namespaces have been
brought into the global list of names, the variable x is now ambiguous, and needs
to be talked about only in the qualified manner illustrated in the ninth and tenth
lines.

11 first2 = 1;

The eleventh line of the main program shows that even though first2 was declared
in a separate section of the namespace called first, it has the same status as the
other variables in namespace first. A namespace can be re-opened as many times
as you wish. The usual rules of scoping apply, of course: it is not legal to try to
declare the same name twice in the same namespace.

12 //cout << ’X’;
13 std::cout << ’X’;
14 using namespace std;
15 cout << ’X’;
}

There is a namespace defined in the computer in special group of files. Its name
is std and all the system-supplied names, such as cout, are declared in that
namespace in a number of different files: it is a very large namespace. Note that
the #include statement at the very top of the program does not fully bring the
namespace in: the names are there but must still be referred to in qualified form.
Line twelve has to be commented out because currently the system-supplied

90

The Compiler

names like cout are not available, except in the qualified form std::cout as can be
seen in line thirteen. Thus we need a line like the fourteenth line: after that line is
written, all the system-supplied names are available, as illustrated in the last line
of the program. At this point we have the names of three namespace incorporated
into the program.

As the example program illustrates, the declarations that are needed are brought
in as desired, and the unwanted ones are left out, and can be brought in in a
controlled manner using the qualified form with the double colons. This gives the
greater control of names needed for large programs. In the example above, we
used only the names of variables. However, namespaces also control, equally, the
names of procedures and classes, as desired.

3.2 The Compiler

A COMPILER65 is a program that translates a COMPUTER PROGRAM66 written in
one COMPUTER LANGUAGE67 (the SOURCE CODE68) into an equivalent program
written in the computer’s native MACHINE LANGUAGE69. This process of
translation, that includes several distinct steps is called compilation. Since the
compiler is a program, itself written in a computer language, the situation may
seem a paradox akin to the CHICKEN AND EGG DILEMMA70. A compiler may not
be created with the resulting compilable language but with a previous available
language or even in machine code.

3.2.1 Compilation

The compilation output of a compiler is the result from translating or compiling a
program. The most important part of the output is saved to a file called an
OBJECT FILE71, it consists of the transformation of source files into object files.

65 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER
66 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM
67 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%20LANGUAGES%

20BOOKSHELF
68 Chapter 3.1.2 on page 44
69 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACHINE%20LANGUAGE
70 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHICKEN%20OR%20THE%20EGG
71 Chapter 3 on page 43

91

http://en.wikipedia.org/wiki/compiler
http://en.wikipedia.org/wiki/computer%20program
http://en.wikibooks.org/wiki/Programming%20languages%20bookshelf
http://en.wikibooks.org/wiki/Programming%20languages%20bookshelf
http://en.wikipedia.org/wiki/machine%20language
http://en.wikipedia.org/wiki/Chicken%20or%20the%20egg

Fundamentals for getting started

Note:
Some files may be created/needed for a successful compilation, that data is not
part of the C++ language or may result from the compilation of external code
(an example would be a library), this may depend on the specific compiler you
use (MS Visual Studio for example adds several extra files to a project), in that
case you should check the documentation or it can part of a specific framework
that needs to be accessed. Be aware that some of this constructs may limit the
portability of the code.

The instructions of this compiled program can then be run (executed) by the
computer if the object file is in an executable format. However, there are
additional steps that are required for a compilation: preprocessing and linking.

Compile-time

Defines the time and operations performed by a compiler (i.e., compile-time
operations) during a build (creation) of a program (executable or not). Most of
the uses of "static" on the C++ language is directly related to compile-time
information.

The operations performed at compile time usually include lexical analysis, syntax
analysis, various kinds of SEMANTIC ANALYSIS72 (e.g., TYPE CHECKS73, some
of the TYPE CASTS74, and INSTANTIATION OF TEMPLATE75) and CODE

GENERATION76.

The definition of a programming language will specify compile time
requirements that source code must meet to be successfully compiled.

Compile time occurs before LINK TIME77 (when the output of one or more
compiled files are joined together) and runtime (when a program is executed). In
some programming languages it may be necessary for some compilation and
linking to occur at runtime.

72 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMANTIC%20ANALYSIS%20%
28COMPUTER%20SCIENCE%29

73 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATATYPE
74 Chapter 3.4.14 on page 220
75 HTTP://EN.WIKIPEDIA.ORG/WIKI/INSTANTIATION%20OF%20TEMPLATE
76 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20GENERATION%20%28COMPILER%

29
77 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINK%20TIME

92

http://en.wikipedia.org/wiki/Semantic%20analysis%20%28computer%20science%29
http://en.wikipedia.org/wiki/Semantic%20analysis%20%28computer%20science%29
http://en.wikipedia.org/wiki/datatype
http://en.wikipedia.org/wiki/instantiation%20of%20template
http://en.wikipedia.org/wiki/code%20generation%20%28compiler%29
http://en.wikipedia.org/wiki/code%20generation%20%28compiler%29
http://en.wikipedia.org/wiki/link%20time

The Compiler

Run-time

Run-time, or execution time, starts at the moment the program starts to execute
and end as it exits. At this stage the compiler is irrelevant and has no control. This
is the most important location in regards to optimizations (a program will only
compile once but run many times) and debugging (tracing and interaction will
only be possible at this stage). But it is also in run-time that some of the TYPE

CASTING MAY OCCUR78 and that RUN-TIME TYPE INFORMATION (RTTI)79

has relevance. The concept of runtime will be mentioned again when relevant.

Lexical analysis
This is alternatively known as scanning or tokenisation. It happens before syntax
analysis and converts the code into TOKENS80, which are the parts of the code that
the program will actually use. The source code as expressed as characters
(arranged on lines) into a sequence of special tokens for each reserved keyword,
and tokens for data types and identifiers and values. The lexical analyzer is the
part of the compiler which removes whitespace and other non compilable
characters from the source code. It uses whitespace to separate different tokens,
and ignores the whitespace.

To give a simple illustration of the process:

int main()
{

std::cout << "hello world" << std::endl;
return 0;

}

Depending on the lexical rules used it might be tokenized as:

1 = string "int"

2 = string "main"

3 = opening parenthesis

4 = closing parenthesis

5 = opening brace

6 = string "std"

78 Chapter 3.4.14 on page 220
79 Chapter 5.5.5 on page 548
80 HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPILER%20CONSTRUCTION%23WHAT%

20IS%20A%20TOKEN

93

http://en.wikibooks.org/wiki/Compiler%20Construction%23What%20is%20a%20token
http://en.wikibooks.org/wiki/Compiler%20Construction%23What%20is%20a%20token

Fundamentals for getting started

7 = namespace operator

8 = string "cout"

9 = << operator

10 = string ""hello world""

11 = string "endl"

12 = semicolon

13 = string "return"

14 = number 0

15 = closing brace

And so for this program the lexical analyzer might send something like:

1 2 3 4 5 6 7 8 9 10 9 6 7 11 12 13 14 12 15

To the syntactical analyzer, which is talked about next, to be parsed. It is easier
for the syntactical analyzer to apply the rules of the language when it can work
with numerical values and can distinguish between language syntax (such as the
semicolon) and everything else, and knows what data type each thing has.

Syntax analysis
This step (also called sometimes syntax checking) ensures that the code is valid

and will sequence into an executable program. The syntactical analyzer applies
rules to the code, checking to make sure that each opening brace has a
corresponding closing brace, and that each declaration has a type, and that the
type exists, and that.... syntax analysis is more complicated than lexical analysis
=).

As an example:

int main()
{

std::cout << "hello world" << std::endl;
return 0;

}

• The syntax analyzer would first look at the string "int", check it against defined
keywords, and find that it is a type for integers. *The analyzer would then look
at the next token as an identifier, and check to make sure that it has used a valid
identifier name.

94

The Compiler

• It would then look at the next token. Because it is an opening parenthesis it will
treat "main" as a function, instead of a declaration of a variable if it found a
semicolon or the initialization of an integer variable if it found an equals sign.

• After the opening parenthesis it would find a closing parenthesis, meaning that
the function has 0 parameters.

• Then it would look at the next token and see it was an opening brace, so it
would think that this was the implementation of the function main, instead of a
declaration of main if the next token had been a semicolon, even though you
can not declare main in c++. It would probably create a counter also to keep
track of the level of the statement blocks to make sure the braces were in pairs.
*After that it would look at the next token, and probably not do anything with
it, but then it would see the :: operator, and check that "std" was a valid
namespace.

• Then it would see the next token "cout" as the name of an identifier in the
namespace "std", and see that it was a template.

• The analyzer would see the << operator next, and so would check that the <<
operator could be used with cout, and also that the next token could be used
with the << operator.

• The same thing would happen with the next token after the ""hello world""
token. Then it would get to the "std" token again, look past it to see the ::
operator token and check that the namespace existed again, then check to see if
"endl" was in the namespace.

• Then it would see the semicolon and so it would see that as the end of the
statement.

• Next it would see the keyword return, and then expect an integer value as the
next token because main returns an integer, and it would find 0, which is an
integer.

• Then the next symbol is a semicolon so that is the end of the statement.
• The next token is a closing brace so that is the end of the function. And there

are no more tokens, so if the syntax analyzer did not find any errors with the
code, it would send the tokens to the compiler so that the program could be
converted to machine language.

This is a simple view of syntax analysis, and real syntax analyzers do not really
work this way, but the idea is the same.

Here are some keywords which the syntax analyzer will look for to make sure you
are not using any of these as identifier names, or to know what type you are
defining your variables as or what function you are using which is included in the
C++ language.

95

Fundamentals for getting started

Compile speed

There are several factors that dictate how fast a compilation proceeds, like:

• Hardware
• Resources (Slow CPU, low memory and even a slow HDD can have an

influence)

• Software
• The compiler itself, new is always better, but may depend on how portable

you want the project to be.
• The design selected for the program (structure of object dependencies,

includes) will also factor in.

Experience tells that most likely if you are suffering from slow compile times, the
program you are trying to compile is poorly designed, take the time to structure
your own code to minimize re-compilation after changes. Large projects will
always compile slower. Use pre-compiled headers and external header guards.
We will discuss ways to reduce compile time in the OPTIMIZATION81 Section of
this book.

3.2.2 Where to get a compiler

When you select your compiler you must take in consideration your system OS,
your personal preferences and the documentation that you can get on using it.

Most compilers today are free and many open source platforms already include
one (mostly GCC), there are also various IDEs available.

In case you don’t have, want or need a compiler installed on you machine, you
can use a WEB free compiler available at HTTP://IDEONE.COM82 (or
HTTP://CODEPAD.ORG83 but you will have to change the code not to require
interactive input). You can always get one locally if you need it.

81 Chapter 6.8.3 on page 658
82 HTTP://IDEONE.COM
83 HTTP://CODEPAD.ORG

96

http://ideone.com
http://codepad.org

The Compiler

IDE (Integrated development environment)

Figure 7: Graphical Vim under GTK2a

a HTTP://EN.WIKIPEDIA.ORG/WIKI/GTK%2B

INTEGRATED DEVELOPMENT ENVIRONMENT84 is a software development
system, that often includes an editor, compiler and debugger in an integrated
package that is distributed together. Some IDEs will require the user to make the
integration of the components themselves, and others will refer as the IDE to the
set of separated tools they use for programming.

A good IDE is one that permits the programmer to use it to abstract and accelerate
some of the more common tasks and at the same time provide some help in
reading and managing the code. Except for the compiler the C++ Standard has no
control over the different implementations. Most IDEs are visually oriented,
especially the new ones, they will offer graphical debuggers and other visual aids,

84 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATED%20DEVELOPMENT%
20ENVIRONMENT

97

http://en.wikipedia.org/wiki/GTK%2B
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Integrated%20development%20environment

Fundamentals for getting started

but some people will still prefer the visual simplicity offered by potent text editors
like VIM85 or EMACS86.

When selecting an IDE, remember that you are also investing time to become
proficient in its use, completeness, stability and portability across OSs will be
important.

For Microsoft Windows, you have also the Microsoft Visual Studio Express,
currently freely available (but with reduced functionalities), it includes a C++
compiler that can be used from the command line or the supplied IDE.

In the book APPENDIX B:EXTERNAL REFERENCES87 you will find references to
other freely available compilers and IDEs you can use.

GCC88

One of most mature and compatible compilers is GCC. Also known as The GNU
Compiler Collection is a free set of compilers developed by the Free Software
Foundation, with RICHARD STALLMAN89 as one of the main architects.

There are many different pre-compiled GCC binaries on the Internet; some
popular choices are listed below (with detailed steps for installation).You can
easily find information on the GCC website on how to do it under another OS.

Note:
Is often common that the implementation language of a compiler to be C (since
it is normally first the system language above assembly that new systems imple-
ment). GCC has, since the end of May 2005, GOT THE GREEN LIGHTa to start
moving the core code-base to C++. Considering that this is the most common used
compiler and an open source implementation, it was an extremely positive step to
the compiler and the language in general.

a HTTP://ARTICLE.GMANE.ORG/GMANE.COMP.GCC.DEVEL/114407

85 HTTP://EN.WIKIBOOKS.ORG/WIKI/LEARNING%20THE%20VI%20EDITOR%
2FVIM

86 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMACS
87 Chapter 8.4 on page 672
88 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20COMPILER%20COLLECTION
89 HTTP://EN.WIKIPEDIA.ORG/WIKI/RICHARD%20STALLMAN

98

http://article.gmane.org/gmane.comp.gcc.devel/114407
http://en.wikibooks.org/wiki/Learning%20the%20vi%20Editor%2FVim
http://en.wikibooks.org/wiki/Learning%20the%20vi%20Editor%2FVim
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/Richard%20Stallman

The Compiler

On Windows
Cygwin:

1. Go to HTTP://WWW.CYGWIN.COM90 and click on the "Install Cygwin
Now" button in the upper right corner of the page.

2. Click "run" in the window that pops up, and click "next" several times,
accepting all the default settings.

3. Choose any of the Download sites ("ftp.easynet.be", etc.) when that
window comes up; press "next" and the Cygwin installer should start
downloading.

4. When the "Select Packages" window appears, scroll down to the heading
"Devel" and click on the "+" by it. In the list of packages that now displays,
scroll down and find the "gcc-c++" package; this is the compiler. Click
once on the word "Skip", and it should change to some number like "3.4"
etc. (the version number), and an "X" will appear next to "gcc-core" and
several other required packages that will now be downloaded.

5. Click "next" and the compiler as well as the Cygwin tools should start
downloading; this could take a while. While you’re waiting, go to
HTTP://WWW.CRIMSONEDITOR.COM91 and download that free
programmer’s editor; it’s powerful yet easy to use for beginners.

6. Once the Cygwin downloads are finished and you have clicked "next", etc.
to finish the installation, double-click the Cygwin icon on your desktop to
begin the Cygwin "command prompt". Your home directory will
automatically be set up in the Cygwin folder, which now should be at
"C:\cygwin" (the Cygwin folder is in some ways like a small Unix/Linux
computer on your Windows machine -- not technically of course, but it may
be helpful to think of it that way).

7. Type "g++" at the Cygwin prompt and press "enter"; if "g++: no input files"
or something like it appears you have succeeded and now have the gcc C++
compiler on your computer (and congratulations -- you have also just
received your first error message!).

MinGW + DevCpp-IDE

1. Go to HTTP://WWW.BLOODSHED.NET/DEVCPP.HTML,92 choose the
version you want (eventually scrolling down), and click on the appropriate
download link! For the most current version, you will be redirected to
http://www.bloodshed.net/dev/devcpp.html

90 HTTP://WWW.CYGWIN.COM
91 HTTP://WWW.CRIMSONEDITOR.COM
92 HTTP://WWW.BLOODSHED.NET/DEVCPP.HTML,

99

http://www.cygwin.com
http://www.crimsoneditor.com
http://www.bloodshed.net/devcpp.html,

Fundamentals for getting started

2. Scroll down to read the license and then to the download links. Download a
version with Mingw/GCC. It’s much easier than to do this assembling
yourself. With a very short delay (only some days) you will always get the
most current version of MinGW packaged with the devcpp IDE. It’s
absolutely the same as with manual download of the required modules.

3. You get an executable that can be executed at user level under any WinNT
version. If you want it to be setup for all users, however, you need admin
rights. It will install devcpp and mingw in folders of your wish.

4. Start the IDE and experience your first project!
You will find something mostly similar to MSVC, including menu and
button placement. Of course, many things are somewhat different if you
were familiar with the former, but it’s as simple as a handful of clicks to let
your first program run.

For DOS
DJGPP:

• Go to DELORIE SOFTWARE93 and download the GNU C++ compiler and other
necessary tools. The site provides a Zip Picker94 in order to help identify
which files you need, which is available from the main page.

• Use unzip32 or other extraction utility to place files into the directory of your
choice (i.e. C:\DJGPP).

• Set the envionment variables to configure DJGPP for compilation, by either
adding lines to autoexec.bat or a custom batch file:

set PATH=C:\DJGPP\BIN;%PATH%
set DJGPP=C:\DJGPP\DJGPP.ENV

• If you are running MS-DOS or Windows 3.1, you need to add a few lines to
config.sys if they are not already present:

shell=c:\dos\command.com c:\dos /e:2048 /p
files=40
fcbs=40,0

Note: The GNU C++ compiler under DJGPP is named gpp.

93 HTTP://WWW.DELORIE.COM
94 HTTP://WWW.DELORIE.COM/DJGPP/ZIP-PICKER.HTML

100

http://www.delorie.com
http://www.delorie.com/djgpp/zip-picker.html

The Compiler

For Linux

• For GENTOO95, GCC C++ is part of the system core (since everything in
Gentoo is compiled)

• For REDHAT96, get a gcc-c++ RPM97, e.g. using Rpmfind and then install (as
root) using rpm -ivh gcc-c++-version-release.arch.rpm

• For FEDORA CORE98, install the GCC C++ compiler (as root) by using YUM99

install gcc-c++
• For MANDRAKE100, install the GCC C++ compiler (as root) by using
URPMI101 gcc-c++

• For DEBIAN102, install the GCC C++ compiler (as root) by using APT-GET103

install g++
• For UBUNTU104, install the GCC C++ compiler by using sudo apt-get
install g++

• For OPENSUSE105, install the GCC C++ compiler (as root) by using
ZYPPER106 in gcc-c++

• If you cannot become root, get the tarball from ftp://ftp.gnu.org/ and follow the
instructions in it to compile and install in your home directory.

For Mac OS X
XCODE107 has GCC C++ compiler bundled. It can be invoked from the Terminal

in the same way as Linux, but can also be compiled in one of XCode’s projects.

95 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENTOO%20LINUX
96 HTTP://EN.WIKIPEDIA.ORG/WIKI/REDHAT
97 HTTP://EN.WIKIPEDIA.ORG/WIKI/RPM%20PACKAGE%20MANAGER
98 HTTP://EN.WIKIPEDIA.ORG/WIKI/FEDORA%20CORE
99 HTTP://EN.WIKIPEDIA.ORG/WIKI/YELLOW%20DOG%20UPDATER%20MODIFIED
100 HTTP://EN.WIKIPEDIA.ORG/WIKI/MANDRAKE
101 HTTP://EN.WIKIPEDIA.ORG/WIKI/URPMI
102 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBIAN
103 HTTP://EN.WIKIPEDIA.ORG/WIKI/APT
104 HTTP://EN.WIKIPEDIA.ORG/WIKI/UBUNTU
105 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPENSUSE
106 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZYPP
107 HTTP://EN.WIKIPEDIA.ORG/WIKI/XCODE

101

http://en.wikipedia.org/wiki/Gentoo%20Linux
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/RPM%20Package%20Manager
http://en.wikipedia.org/wiki/Fedora%20Core
http://en.wikipedia.org/wiki/Yellow%20Dog%20Updater%20Modified
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Apt
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/OpenSUSE
http://en.wikipedia.org/wiki/ZYpp
http://en.wikipedia.org/wiki/Xcode

Fundamentals for getting started

3.2.3 The Preprocessor

The PREPROCESSOR108 is either a separate program invoked by the COMPILER109

or part of the compiler itself. It performs intermediate operations that modify the
original source code and internal compiler options before the compiler tries to
compile the resulting source code.

The instructions that the preprocessor PARSES110 are called directives and come
in two forms: preprocessor and compiler directives. Preprocessor directives
direct the preprocessor on how it should process the source code, and compiler
directives direct the compiler on how it should modify internal compiler options.
Directives are used to make writing source code easier (by making it more
portable, for instance) and to make the source code more understandable. They
are also the only valid way to make use of facilities (classes, functions, templates,
etc.) provided by the C++ Standard Library.

Note:
Check the documentation of your compiler/preprocessor for information on
how it implements the preprocessing phase and for any additional features
not covered by the standard that may be available. For in depth informa-
tion on the subject of parsing, you can read "COMPILER CONSTRUCTIONa"
(http://en.wikibooks.org/wiki/Compiler_Construction)

a HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPILER%20CONSTRUCTION

All directives start with ’#’ at the beginning of a line. The standard directives are:

• #define
• #elif
• #else
• #endif

• #error
• #if
• #ifdef
• #ifndef

• #include
• #line
• #pragma
• #undef

108 HTTP://EN.WIKIPEDIA.ORG/WIKI/PREPROCESSOR
109 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER
110 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARSING

102

http://en.wikibooks.org/wiki/Compiler%20Construction
http://en.wikipedia.org/wiki/preprocessor
http://en.wikipedia.org/wiki/compiler
http://en.wikipedia.org/wiki/parsing

The Compiler

Inclusion of Header Files (#include)

The #include directive allows a programmer to include contents of one file inside
another file. This is commonly used to separate information needed by more than
one part of a program into its own file so that it can be included again and again
without having to re-type all the source code into each file.

C++ generally requires you to declare what will be used before using it. So, files
called HEADERS111 usually include declarations of what will be used in order for
the compiler to successfully compile source code. This is further explained in the
FILE ORGANIZATION SECTION112 of the book. The standard library (the
repository of code that is available with every standards-compliant C++ compiler)
and 3rd party libraries make use of headers in order to allow the inclusion of the
needed declarations in your source code, allowing you to make use of features or
resources that are not part of the language itself.

The first lines in any source file should usually look something like this:

#include <iostream>
#include "other.h"

The above lines cause the contents of the files iostream and other.h to be included
for use in your program. Usually this is implemented by just inserting into your
program the contents of iostream and other.h. When angle brackets (<>) are used
in the directive, the preprocessor is instructed to search for the specified file in a
compiler-dependent location. When double quotation marks (" ") are used, the
preprocessor is expected to search in some additional, usually user-defined,
locations for the header file and to fall back to the standard include paths only if it
is not found in those additional locations. Commonly when this form is used, the
preprocessor will also search in the same directory as the file containing the
#include directive.

The iostream header contains various declarations for input/output (I/O) using
an abstraction of I/O mechanisms called streams. For example there is an output
stream object called std::cout (where "cout" is short for "console output")
which is used to output text to the standard output, which usually displays the text
on the computer screen.

111 HTTP://EN.WIKIPEDIA.ORG/WIKI/HEADER%20%28INFORMATION%
20TECHNOLOGY%29

112 Chapter 3.1.5 on page 51

103

http://en.wikipedia.org/wiki/Header%20%28Information%20Technology%29
http://en.wikipedia.org/wiki/Header%20%28Information%20Technology%29

Fundamentals for getting started

Note:
When including standard libraries, compilers are allowed to make an exception as
to whether a header file by a given name actually exists as a physical file or is sim-
ply a logical entity that causes the preprocessor to modify the source code, with
the same end result as if the entity existed as a physical file. Check the documenta-
tion of your preprocessor/compiler for any vendor-specific implementation of the
#include directive and for specific search locations of standard and user-defined
headers. This can lead to portability problems and confusion.

A list of standard C++ header files is listed below:

Standard Template Library

104

The Compiler

113 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23ALGORITHM

114 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23BITSET

115 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23COMPLEX

116 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23DEQUE

117 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23EXCEPTION

118 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23FSTREAM

119 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23FUNCTIONAL

120 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23IOMANIP

121 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23IOS

122 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23IOSFWD

123 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23IOSTREAM

124 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23ISTREAM

125 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23ITERATOR

126 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23LIMITS

127 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23LIST

128 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23LOCALE

129 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23MAP

130 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23MEMORY

131 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23NEW

132 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23NUMERIC

133 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23OSTREAM

134 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23QUEUE

135 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23SET

136 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23SSTREAM

137 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23STACK

105

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23algorithm
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23algorithm
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23bitset
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23bitset
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23complex
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23complex
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23deque
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23deque
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23exception
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23exception
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23fstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23fstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23functional
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23functional
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iomanip
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iomanip
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ios
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ios
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iosfwd
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iosfwd
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23istream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23istream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iterator
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iterator
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23limits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23limits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23list
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23list
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23locale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23locale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23map
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23map
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23memory
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23memory
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23new
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23new
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23numeric
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23numeric
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23queue
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23queue
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23set
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23set
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23sstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23sstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stack
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stack

Fundamentals for getting started

•
ALGORITHM113

•
BITSET114

•
COMPLEX115

•
DEQUE116

•
EXCEPTION117

•
FSTREAM118

•
FUNCTIONAL119

•
IOMANIP120

•
IOS121

•
IOSFWD122

•
IOSTREAM123

•
ISTREAM124

•
ITERATOR125

•
LIMITS126

•
LIST127

•
LOCALE128

•
MAP129

•
MEMORY130

•
NEW131

•
NUMERIC132

•
OSTREAM133

•
QUEUE134

•
SET135

•
SSTREAM136

•
STACK137

•
STDEXCEPT138

•
STREAMBUF139

•
STRING140

•
STRSTREAM141

•
TYPEINFO142

•
UTILITY143

•
VALARRAY144

•
VECTOR145

and the

Standard C Library

138 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23STDEXCEPT

139 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23STREAMBUF

140 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23STRING

141 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23STRSTREAM

142 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23TYPEINFO

143 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23UTILITY

144 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23VALARRAY

145 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23VECTOR

106

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdexcept
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdexcept
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23streambuf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23streambuf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23string
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23string
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23typeinfo
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23typeinfo
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23utility
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23utility
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23valarray
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23valarray
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23vector
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23vector

The Compiler

•
CASSERT146

•
CCTYPE147

•
CERRNO148

•
CFLOAT149

•
CISO646150

•
CLIMITS151

•
CLOCALE152

•
CMATH153

•
CSETJMP154

•
CSIGNAL155

•
CSTDARG156

•
CSTDDEF157

•
CSTDIO158

•
CSTDLIB159

•
CSTRING160

•
CTIME161

•
CWCHAR162

•
CWCTYPE163

Everything inside C++’s standard library is kept in the std:: namespace.

146 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CASSERT

147 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CCTYPE

148 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CERRNO

149 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CFLOAT

150 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CISO646

151 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CLIMITS

152 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CLOCALE

153 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CMATH

154 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSETJMP

155 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSIGNAL

156 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSTDARG

157 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSTDDEF

158 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSTDIO

159 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSTDLIB

160 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CSTRING

161 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CTIME

162 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CWCHAR

163 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%
23CWCTYPE

107

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cassert
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cassert
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cerrno
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cerrno
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cfloat
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cfloat
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ciso646
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ciso646
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23climits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23climits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23clocale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23clocale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cmath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cmath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csetjmp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csetjmp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csignal
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csignal
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdarg
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdarg
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstddef
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstddef
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdio
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdio
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdlib
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdlib
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstring
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstring
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ctime
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ctime
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwchar
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwchar
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwctype

Fundamentals for getting started

Old compilers may include headers with a .h suffix (e.g. the non-standard
<iostream.h> vs. the standard <iostream>) instead of the standard headers.
These names were common before the standardization of C++ and some
compilers still include these headers for backwards compatibility. Rather than
using the std:: namespace, these older headers pollute the global namespace and
may otherwise only implement the standard in a limited way.

Some vendors use the SGI164 STL165 headers. This was the first implementation
of the standard template library.

Non-standard but somewhat common C++ libraries

•
STDIOSTREAM.H166,167

• STREAM.H168,169 •
STRSTREAM.H170,171

172

Note:
Before standardization of the headers, they were presented as separated files, like
<iostream.h> and so on. This is probably still a requirement on very old (non-
standards-compliant) compilers, but newer compilers will accept both methods.
There is also no requirement in the standard that headers should exist in a file form.
The old method of referring to standard libraries as separate files is obsolete.

164 HTTP://EN.WIKIPEDIA.ORG/WIKI/SILICON%20GRAPHICS
165 Chapter 5.1.5 on page 517
166 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%

23STDIOSTREAM.H
167 Streams based on FILE* from stdio.h.
168 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%

23STREAM.H
169 Precursor to iostream. Old stream library mostly included for backwards compatibility even

with old compilers.
170 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERS%

23STRSTREAM.H
171 Uses char* whereas sstream uses string. Prefer the standard library sstream.
172 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

108

http://en.wikipedia.org/wiki/Silicon%20Graphics
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdiostream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdiostream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream.h
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

The Compiler

#pragma

The pragma (pragmatic information) directive is part of the standard, but the
meaning of any pragma directive depends on the software implementation of the
standard that is used.

Pragma directives are used within the source program.

#pragma token(s)

You should check the software implementation of the C++ standard you intend to
use for a list of the supported tokens.

For example, one of the most widely used preprocessor pragma directives,
#pragma once, when placed at the beginning of a header file, indicates that the
file where it resides will be skipped if included several times by the preprocessor.

Note:
Another method exists, commonly referred to as include guards, that provides
this same functionality but uses other include directives.

In the GCC documentation, #pragma once has been described as an obsolete pre-
processor directive.

Macros

The C++ preprocessor includes facilities for defining "macros", which roughly
means the ability to replace a use of a named macro with one or more tokens.
This has various uses from defining simple constants (though const is more often
used for this in C++), conditional compilation, code generation and more --
macros are a powerful facility, but if used carelessly can also lead to code that is
hard to read and harder to debug!

109

Fundamentals for getting started

Note:
Macros do not depend only on the C++ Standard or your actions. They may exist
due to the use of external frameworks, libraries or even due the compiler you are
using and the specific OS. We will not cover that information on this book but you
may find more information in the Pre-defined C/C++ Compiler Macros page at (
HTTP://PREDEF.SOURCEFORGE.NET/a) the project maintains a complete list of
macros that are compiler and OS agnostic.

a HTTP://PREDEF.SOURCEFORGE.NET/

#define and #undef
The #define directive is used to define values or macros that are used by the

preprocessor to manipulate the program source code before it is compiled:

#define USER_MAX (1000)

The #undef directive deletes a current macro definition:

#undef USER_MAX

It is an error to use #define to change the definition of a macro, but it is not an
error to use #undef to try to undefine a macro name that is not currently defined.
Therefore, if you need to override a previous macro definition, first #undef it, and
then use #define to set the new definition.

110

http://predef.sourceforge.net/

The Compiler

Note:
Because preprocessor definitions are substituted before the compiler acts on the
source code, any errors that are introduced by #define are difficult to trace. For
example using value or macro names that are the same as some existing identifier
can create subtle errors, since the preprocessor will substitute the identifier names
in the source code.
Today, for this reason, #define is primarily used to handle compiler and platform
differences. E.g, a define might hold a constant which is the appropriate error code
for a system call. The use of #define should thus be limited unless absolutely
necessary; typedef statements, constant variables, enums, templates and INLINE

FUNCTIONSa can often accomplish the same goal more efficiently and safely.
By convention, values defined using #define are named in uppercase with "_-
" separators, this makes it clear to readers that the values is not alterable and in
the case of macros, that the construct requires care. Although doing so is not a
requirement, it is considered very bad practice to do otherwise. This allows the
values to be easily identified when reading the source code.
Try to use const and inline instead of #define.

a Chapter 3.7 on page 245

\ (line continuation)
If for some reason it is needed to break a given statement into more than one line,
use the \ (backslash) symbol to "escape" the line ends. For example,

#define MULTIPLELINEMACRO \
will use what you write here \
and here etc...

is equivalent to

#define MULTIPLELINEMACRO will use what you write here and here etc...

because the preprocessor joins lines ending in a backslash ("\") to the line after
them. That happens even before directives (such as #define) are processed, so it
works for just about all purposes, not just for macro definitions. The backslash is
sometimes said to act as an "escape" character for the newline, changing its
interpretation.

In some (fairly rare) cases macros can be more readable when split across
multiple lines. Good modern C++ code will use macros only sparingly, so the
need for multi-line macro definitions will not arise often.

111

Fundamentals for getting started

It is certainly possible to overuse this feature. It is quite legal but entirely
indefensible, for example, to write

int ma\
in//ma/
()/*ma/
in/*/{}

That is an abuse of the feature though: while an escaped newline can appear in
the middle of a token, there should never be any reason to use it there. Do not try
to write code that looks like it belongs in the International Obfuscated C Code
Competition.

Warning: there is one occasional "gotcha" with using escaped newlines: if there
are any invisible characters after the backslash, the lines will not be joined, and
there will almost certainly be an error message produced later on, though it might
not be at all obvious what caused it.

Function-like Macros
Another feature of the #define command is that it can take arguments, making it
rather useful as a pseudo-function creator. Consider the following code:

#define ABSOLUTE_VALUE(x) (((x) < 0) ? -(x) : (x))
// ...
int x = -1;
while(ABSOLUTE_VALUE(x)) {
// ...
}

Note:
It is generally a good idea to use extra parentheses for macro parameters, it avoids
the parameters from being parsed in a unintended ways. But there are some excep-
tions to consider:

1. Since comma operator have lower precedence than any other, this removes
the possibility of problems, no need for the extra parentheses.

2. When concatenating tokens with the ## operator, converting to strings using
the # operator, or concatenating adjacent string literals, parameters cannot
be individually parenthesized.

Notice that in the above example, the variable "x" is always within its own set of
parentheses. This way, it will be evaluated in whole, before being compared to 0
or multiplied by -1. Also, the entire macro is surrounded by parentheses, to

112

The Compiler

prevent it from being contaminated by other code. If you’re not careful, you run
the risk of having the compiler misinterpret your code.

Macros replace each occurrence of the macro parameter used in the text with the
literal contents of the macro parameter without any validation checking. Badly
written macros can result in code which will not compile or creates hard to
discover bugs. Because of side-effects it is considered a very bad idea to use
macro functions as described above. However as with any rule, there may be
cases where macros are the most efficient means to accomplish a particular goal.

int z = -10;
int y = ABSOLUTE_VALUE(z++);

If ABSOLUTE_VALUE() was a real function ’z’ would now have the value of
’-9’, but because it was an argument in a macro z++ was expanded 3 times (in this
case) and thus (in this situation) executed twice, setting z to -8, and y to 9. In
similar cases it is very easy to write code which has "undefined behavior",
meaning that what it does is completely unpredictable in the eyes of the C++
Standard.

// ABSOLUTE_VALUE(z++); expanded
(((z++) < 0) ? -(z++) : (z++));

Note:
With the GCC compiler extension called "statement expression" (not standard
C++), it is allowed to use statements in an expression, please consult the com-
piler manual for other considerations, it becomes then possible to only evaluate it
once:
define ABSOLUTE_VALUE(x) ({ typeof (x) temp = (x); (temp < 0) ? -temp : temp; })

Using inlined templated functions may then be an alternative to macros, removing
the problem of side effects inside the argument to the macro.
It is generally good idea to stay away from compiler specific extensions, unless the
dependency is planed for.

and

// An example on how to use a macro correctly

#include <iostream>

#define SLICES 8
#define PART(x) ((x) / SLICES) // Note the extra parentheses around ’’’x’’’

113

Fundamentals for getting started

int main() {
int b = 10, c = 6;

int a = PART(b + c);
std::cout << a;

return 0;
}

-- the result of "a" should be "2" (b + c passed to PART -> ((b + c) / SLICES) ->
result is "2")

Note:
Variadic Macros

A variadic macro is a feature of the preprocessor whereby a macro is declared to
accept a varying number of arguments (similar to a variadic function).
They are currently not part of the C++ programming language, though many recent
C++ implementations support variable-argument macros as an extension (ie: GCC,
MS Visual Studio C++), and it is expected that variadic macros may be added to
C++ at a later date.
Variable-argument macros were introduced in the ISO/IEC 9899:1999 (C99) revi-
sion of the C Programming Language standard in 1999.

and
The # and ## operators are used with the #define macro. Using # causes the first
argument after the # to be returned as a string in quotes. For example

#define as_string(s) # s

will make the compiler turn

std::cout << as_string(Hello World!) << std::endl;

into

std::cout << "Hello World!" << std::endl;

114

The Compiler

Note:
Observe the leading and trailing whitespace from the argument to # is removed,
and consecutive sequences of whitespace between tokens are converted to single
spaces.

Using ## concatenates what’s before the ## with what’s after it; the result must be
a well-formed preprocessing token. For example

#define concatenate(x, y) x ## y
...
int xy = 10;
...

will make the compiler turn

std::cout << concatenate(x, y) << std::endl;

into

std::cout << xy << std::endl;

which will, of course, display 10 to standard output.

String literals cannot be concatenated using ##, but the good news is that this is
not a problem: just writing two adjacent string literals is enough to make the
preprocessor concatenate them.

The dangers of macros
To illustrate the dangers of macros, consider this naive macro

#define MAX(a,b) a>b?a:b

and the code

i = MAX(2,3)+5;
j = MAX(3,2)+5;

Take a look at this and consider what the value after execution might be. The
statements are turned into

int i = 2>3?2:3+5;
int j = 3>2?3:2+5;

115

Fundamentals for getting started

Thus, after execution i=8 and j=3 instead of the expected result of i=j=8! This is
why you were cautioned to use an extra set of parenthesis above, but even with
these, the road is fraught with dangers. The alert reader might quickly realize that
if a,b contains expressions, the definition must parenthesize every use of a,b in
the macro definition, like this:

#define MAX(a,b) ((a)>(b)?(a):(b))

This works, provided a,b have no side effects. Indeed,

i = 2;
j = 3;
k = MAX(i++, j++);

would result in k=4, i=3 and j=5. This would be highly surprising to anyone
expecting MAX() to behave like a function.

So what is the correct solution? The solution is not to use macro at all. A global,
inline function, like this inline max(int a, int b) { return a>b?a:b }
has none of the pitfalls above, but will not work with all types. A template (see
below) takes care of this template<typename T> inline max(const T& a,
const T& b) { return a>b?a:b } Indeed, this is (a variation of) the
definition used in STL library for std::max(). This library is included with all
conforming C++ compilers, so the ideal solution would be to use this.

std::max(3,4);

Another danger on working with macro is that they are excluded form type
checking. In the case of the MAX macro, if used with a string type variable, it
will not generate a compilation error.

MAX("hello","world")

It is then preferable to use a inline function, which will be type checked.
Permitting the compiler to generate a meaningful error message if the inline
function is used as stated above.

String literal concatenation

One minor function of the preprocessor is in joining strings together, "string
literal concatenation" -- turning code like

std::cout << "Hello " "World!\n";

into

116

The Compiler

std::cout << "Hello World!\n";

Apart from obscure uses, this is most often useful when writing long messages, as
it is not legal in C++ (at this time) to have a string literal which spans multiple
lines in your source code (i.e., one which has a newline character inside it). It also
helps to keep program lines down to a reasonable length; we can write

function_name("This is a very long string literal, which would not fit "
"onto a single line very nicely -- but with string literal "
"concatenation, we can split it across multiple lines and "
"the preprocessor will glue the pieces together");

Note that this joining happens before compilation; the compiler sees only one
string literal here, and there’s no work done at runtime, i.e., your program will not
run any slower at all because of this joining together of strings.

Concatenation also applies to wide string literals (which are prefixed by an L):

L"this " L"and " L"that"

is converted by the preprocessor into

L"this and that".

Note:
For completeness, note that C99 has different rules for this than C++98, and that
C++0x seems almost certain to match C99’s more tolerant rules, which allow join-
ing of a narrow string literal to a wide string literal, something which was not valid
in C++98.

Conditional compilation

Conditional compilation is useful for two main purposes:

• To allow certain functionality to be enabled/disabled when compiling a program
• To allow functionality to be implemented in different ways, such as when

compiling on different platforms

It is also used sometimes to temporarily "comment-out" code, though using a
version control system is often a more effective way to do so.

• Syntax:

117

Fundamentals for getting started

#if condition
statement(s)

#elif condition2
statement(s)

...
#elif condition

statement(s)
#else

statement(s)
#endif

#ifdef defined-value
statement(s)

#else
statement(s)

#endif

#ifndef defined-value
statement(s)

#else
statement(s)

#endif

#if
The #if directive allows compile-time conditional checking of preprocessor

values such as created with #DEFINE173. If condition is non-zero the preprocessor
will include all statement(s) up to the #else, #elif or #endif directive in the output
for processing. Otherwise if the #if condition was false, any #elif directives will
be checked in order and the first condition which is true will have its statement(s)
included in the output. Finally if the condition of the #if directive and any present
#elif directives are all false the statement(s) of the #else directive will be included
in the output if present; otherwise, nothing gets included.

The expression used after #if can include boolean and integral constants and
arithmetic operations as well as macro names. The allowable expressions are a
subset of the full range of C++ expressions (with one exception), but are sufficient
for many purposes. The one extra operator available to #if is the defined operator,
which can be used to test whether a macro of a given name is currently defined.

#ifdef and #ifndef
The #ifdef and #ifndef directives are short forms of ’#if defined(defined-value)’
and ’#if !defined(defined-value)’ respectively. defined(identifier) is valid in any
expression evaluated by the preprocessor, and returns true (in this context,

173 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23%23DEFINE%20AND%20%23UNDEF

118

http://en.wikibooks.org/wiki/%23%23define%20and%20%23undef

The Compiler

equivalent to 1) if a preprocessor variable by the name identifier was defined with
#define and false (in this context, equivalent to 0) otherwise. In fact, the
parentheses are optional, and it is also valid to write defined identifier without
them.

(Possibly the most common use of #ifndef is in creating "include guards" for
header files, to ensure that the header files can safely be included multiple times.
This is explained in the section on header files.)

#endif
The #endif directive ends #if, #ifdef, #ifndef, #elif and #else directives.

• Example:

#if defined(__BSD__) || defined(__LINUX__)
#include <unistd.h>
#endif

This can be used for example to provide multiple platform support or to have one
common source file set for different program versions. Another example of use is
using this instead of the (non-standard) #pragma once.

• Example:

foo.hpp:

#’’’ifndef’’’ FOO_HPP
’’’define’’’ FOO_HPP

// code here...

#’’’endif’’’ // FOO_HPP

bar.hpp:

#’’’include’’’ "foo.h"

// code here...

foo.cpp:

#’’’include’’’ "foo.hpp"
#’’’include’’’ "bar.hpp"

// code here

When we compile foo.cpp, only one copy of foo.hpp will be included due to the
use of include guard. When the preprocessor reads the line #include "foo.hpp",
the content of foo.hpp will be expanded. Since this is the first time which foo.hpp

119

Fundamentals for getting started

is read (and assuming that there is no existing declaration of macro FOO_HPP)
FOO_HPP will not yet be declared, and so the code will be included normally.
When the preprocessor read the line #include "bar.hpp" in foo.cpp, the content
of bar.hpp will be expanded as usual, and the file foo.h will be expanded again.
Owing to the previous declaration of FOO_HPP, no code in foo.hpp will be
inserted. Therefore, this can achieve our goal - avoiding the content of the file
being included more than one time.

Compile-time warnings and errors

• Syntax:

#warning message
#error message

#error and #warning
The #error directive causes the compiler to stop and spit out the line number and

a message given when it is encountered. The #warning directive causes the
compiler to spit out a warning with the line number and a message given when it
is encountered. These directives are mostly used for debugging.

Note:
#error is part of Standard C++, whereas #warning is not (though it is widely
supported).

• Example:

#if defined(__BSD___)
#warning Support for BSD is new and may not be stable yet
#endif

#if defined(__WIN95__)
#error Windows 95 is not supported
#endif

Source file names and line numbering macros

The current filename and line number where the preprocessing is being performed
can be retrieved using the predefined macros __FILE__and __LINE__. Line
numbers are measured before any escaped newlines are removed. The current

120

The Compiler

values of __FILE__and __LINE__can be overridden using the #line directive; it
is very rarely appropriate to do this in hand-written code, but can be useful for
code generators which create C++ code base on other input files, so that (for
example) error messages will refer back to the original input files rather than to
the generated C++ code.

3.2.4 Linker

The linker is a program that makes executable files. The linker resolves linkage
issues, such as the use of symbols or identifiers which are defined in one
translation unit and are needed from other translation units. Symbols or identifiers
which are needed outside a single translation unit have external linkage. In short,
the linker’s job is to resolve references to undefined symbols by finding out which
other object defines a symbol in question, and replacing placeholders with the
symbol’s address. Of course, the process is more complicated than this; but the
basic ideas apply.

Linkers can take objects from a collection called a library. Depending on the
library (system or language or external libraries) and options passed, they may
only include its symbols that are referenced from other object files or libraries.
Libraries for diverse purposes exist, and one or more system libraries are usually
linked in by default. We will take a closer look into libraries on the LIBRARIES

SECTION174 of this book.

Linking

The process of connecting or combining object files produced by a compiler with
the libraries necessary to make a working executable program (or a library) is
called linking. Linkage refers to the way in which a program is built out of a
number of TRANSLATION UNITS175.

C++ programs can be compiled and linked with programs written in other
languages, such as C, Fortran, assembly language, and Pascal.

• The appropriate compiler compiles each module separately. A C++ compiler
compiles each ".cpp" file into a ".o" file, an assembler assembles each ".asm"

174 Chapter 6.3.3 on page 602
175 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSLATION%20UNIT%20%

28PROGRAMMING%29

121

http://en.wikipedia.org/wiki/translation%20unit%20%28programming%29
http://en.wikipedia.org/wiki/translation%20unit%20%28programming%29

Fundamentals for getting started

file into a ".o" file, a Pascal compiler compiles each ".pas" file into a ".o" file,
etc.

• The linker links all the ".o" files together in a separate step, creating the final
executable file.

Linkage

Every function has either external or internal linkage.

A function with internal linkage is only visible inside one translation unit. When
the compiler compiles a function with internal linkage, the compiler writes the
machine code for that function at some address and puts that address in all calls to
that function (which are all in that one translation unit), but strips out all mention
of that function in the ".o" file. If there is some call to a function that apparently
has internal linkage, but doesn’t appear to be defined in this translation unit, the
compiler can immediately tell the programmer about the problem (error). If there
is some function with internal linkage that never gets called, the compiler can do
"dead code elimination" and leave it out of the ".o" file.

The linker never hears about those functions with internal linkage, so it knows
nothing about them.

A function declared with external linkage is visible inside several translation
units. When a compiler compiles a call to that function in one translation unit, it
does not have any idea where that function is, so it leaves a placeholder in all calls
to that function, and instructions in the ".o" file to replace that placeholder with
the address of a function with that name. If that function is never defined, the
compiler can’t possibly know that, so the programmer doesn’t get a warning
about the problem (error) until much later.

When a compiler compiles (the definition of) a function with external linkage (in
some other translation unit), the compiler writes the machine code code of that
function at some address, and puts that address and the name of the function in
the ".o" file where the linker can find it. The compiler assumes that the function
will be called from some other translation unit (some other ".o" file), and must
leave that function in this ".o" file, even if it ends up that the function is never
called from any translation unit.

Most code conventions specify that header files contain only declarations, not
definitions. Most code conventions specify that implementation files (".cpp" files)
contain only definitions and local declarations, not external declarations.

122

The Compiler

This results in the "extern" keyword being used only in header files, never in
implementation files. This results in internal linkage being indicated only in
implementation files, never in header files. This results in the "static" keyword
being used only in implementation files, never in header files, except when
"static" is used inside a class definition inside a header file, where it indicates
something other than internal linkage.

We discuss header files and implementation files in more detail later in the FILE

ORGANIZATION SECTION176 of the book.

Internal

static

The static keyword can be used in four different ways:

• TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A

FUNCTION177.
• TO SPECIFY INTERNAL LINKAGE178.
• TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER

FUNCTIONS179.
• TO CREATE A SINGLE COPY OF A DATA MEMBER180.

Internal linkage

When used on a free function, a global variable, or a global constant, it specifies
internal linkage (as opposed to extern, which specifies external linkage).
Internal linkage limits access to the data or function to the current file.

Examples of use outside of any function or class:

static int apples = 15;

176 Chapter 3.1.5 on page 51
177 Chapter 3.3.4 on page 170
178 Chapter 3.2.4 on page 123
179 Chapter 4.3.5 on page 433
180 Chapter 4.3.4 on page 424

123

Fundamentals for getting started

defines a "static global" variable named apples, with initial value 15, only
visible from this translation unit.

static int bananas;

defines a "static global" variable named bananas, with initial value 0, only
visible from this translation unit.

int g_fruit;

defines a global variable named g_fruit, with initial value 0, visible from every
translation unit. Such variables are often frowned on as poor style.

static const int muffins_per_pan=12;

defines is a variable named muffins_per_pan, visible only in this translation
unit. The static keyword is redundant here.

const int hours_per_day=24;

defines a variable named hours_per_day, only visible in this translation unit.
(This acts the same as static const int hours_per_day=24;).

static void f();

declares that there is a function f taking no arguments and with no return value
defined in this translation unit. Such a forward declaration is often used when
defining mutually recursive functions.

static void f(){;}

defines the function f() declared above. This function can only be called from
other functions and members in this translation unit; it is invisible to other
translation units.

External
All entities in the C++ Standard Library have external linkage.

extern
The extern keyword tells the compiler that a variable is declared in another

source module (outside of the current scope). The linker then finds this actual
declaration and sets up the extern variable to point to the correct location.
Variables described by extern statements will not have any space allocated for
them, as they should be properly defined elsewhere. If a variable is declared

124

Variables

extern, and the linker finds no actual declaration of it, it will throw an
"Unresolved external symbol" error.

Examples:

extern int i;

declares that there is a variable named i of type int, defined somewhere in
the program.

extern int j = 0;

defines a variable j with external linkage; the extern keyword is redundant
here.

extern void f();

declares that there is a function f taking no arguments and with no return value
defined somewhere in the program; extern is redundant, but sometimes
considered good style.

extern void f() {;}

defines the function f() declared above; again, the extern keyword is
technically redundant here as external linkage is default.

extern const int k = 1;

defines a constant int k with value 1 and external linkage; extern is required
because const variables have internal linkage by default.

extern statements are frequently used to allow data to span the scope of multiple
files.

When applied to function declarations, the additional "C" or "C++" string literal
will change name mangling when compiling under the opposite language. That is,
extern "C" int plain_c_func(int param); allows C++ code to execute a C
library function plain_c_func.

3.3 Variables

Much like a person has a name that distinguishes him or her from other people, a
variable assigns a particular instance of an object type, a name or label by which
the instance can be referred to. The variable is the most important concept in
programming, it is how the code can manipulate data. Depending on its use in the
code a variable has a specific locality in relation to the hardware and based on the

125

Fundamentals for getting started

structure of the code it also has a specific scope where the compiler will recognize
it as valid. All these characteristics are defined by a programmer.

3.3.1 Internal storage

We need a way to store data that can be stored, accessed and altered on the
hardware by programming. Most computer systems operate using binary logic.
The computer represents value using two voltage levels, usually 0V for logic 0
and either +3.3 V or +5V for logic 1. These two voltage levels represent exactly
two different values and by convention the values are zero and one. These two
values, coincidentally, correspond to the two digits used by the binary number
system. Since there is a correspondence between the logic levels used by the
computer and the two digits used in the binary numbering system, it should come
as no surprise that computers employ the binary system.

The Binary Number System

The binary number system uses base 2 which requires therefore only the digits 0
and 1.

Bits and bytes

We typically write binary numbers as a sequence of bits (bits is short for binary
digits). It is also a normal convention that these bit sequences, to make binary
numbers more easier to read and comprehend, be added spaces in a specific
relevant boundary, to be selected from the context that the number is being used.
Much like we use a comma (UK and most ex-colonies) or a point to separated
every three digits in larger decimal numbers. For example, the binary value
1010111110110010 could be written 1010 1111 1011 0010.

These are defined boundaries for specific bit sequences.

Name Size (bits) Example
Bit 1 1
Nibble 4 0101
Byte 8 0000 0101
Word 16 0000 0000 0000 0101
Double Word 32 0000 0000 0000 0000

0000 0000 0000 0101

126

Variables

The bit

The smallest unit of data on a binary computer is a single bit. Since a single bit is
capable of representing only two different values (typically zero or one) you may
get the impression that there are a very small number of items you can represent
with a single bit. Not true! There are an infinite number of items you can
represent with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero
or one, true or false, on or off, male or female, and right or wrong. However, by
using more than one bit, you will not be limited to representing binary data types
(that is, those objects which have only two distinct values).

To confuse things even more, different bits can represent different things. For
example, one bit might be used to represent the values zero and one, while an
adjacent bit might be used to represent the colors red or black. How can you tell
by looking at the bits? The answer, of course, is that you can’t. But this illustrates
the whole idea behind computer data structures: data is what you define it to be.

If you use a bit to represent a boolean (true/false) value then that bit (by your
definition) represents true or false. For the bit to have any true meaning, you must
be consistent. That is, if you’re using a bit to represent true or false at one point in
your program, you shouldn’t use the true/false value stored in that bit to represent
red or black later.

Since most items you will be trying to model require more than two different
values, single bit values aren’t the most popular data type. However, since
everything else consists of groups of bits, bits will play an important role in your
programs. Of course, there are several data types that require two distinct values,
so it would seem that bits are important by themselves. however, you will soon
see that individual bits are difficult to manipulate, so we’ll often use other data
types to represent boolean values.

The nibble

A nibble is a collection of bits on a 4-bit boundary. It would not be a particularly
interesting data structure except for two items: BCD (binary coded decimal)
numbers and hexadecimal (base 16) numbers. It takes four bits to represent a
single BCD or hexadecimal digit.

127

Fundamentals for getting started

With a nibble, we can represent up to 16 distinct values. In the case of
hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
are represented with four bits.

BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and requires four bits. In
fact, any sixteen distinct values can be represented with a nibble, but hexadecimal
and BCD digits are the primary items we can represent with a single nibble.

The byte

The byte is the smallest individual piece of data that we can access or modify on a
computer, it is without question, the most important data structure used by
microprocessors today. Main memory and I/O addresses in the PC are all byte
addresses.

A byte consists of eight bits and is the smallest addressable datum (data item) in
the microprocessor, this is why processors only works on bytes or groups of
bytes, never on bits. To access anything smaller requires that you read the byte
containing the data and mask out the unwanted bits.

Since the computer is a byte addressable machine, it turns out to be more efficient
to manipulate a whole byte than an individual bit or nibble. For this reason, most
programmers use a whole byte to represent data types that require no more than
256 items, even if fewer than eight bits would suffice. For example, we will often
represent the boolean values true and false by 00000001 and 00000000
(respectively).

Note:
This is why the ASCII CODEa, is used in in most computers, it is based in a 7-bit
non-weighted binary code, that takes advantage of the byte boundary.

a Chapter 4.8.1 on page 470

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values.

128

Variables

Figure 8: A byte contains 8 bits

A byte (usually) contains 8 bits. A bit can only have the value of 0 or 1. If all bits
are set to 1, 11111111 in binary equals to 255 decimal.

The bits in a byte are numbered from bit zero (b0) through seven (b7) as follows:
b7 b6 b5 b4 b3 b2 b1 b0

Bit 0 (b0) is the low order bit or least significant bit (lsb), bit 7 is the high
order bit or most significant bit (msb) of the byte. We’ll refer to all other bits by
their number.

A byte also contains exactly two nibbles. Bits b0 through b3 comprise the low
order nibble, and bits b4 through b7 form the high order nibble.

Since a byte contains eight bits, exactly two nibbles, byte values require two
hexadecimal digits. It can represent 2ˆ8, or 256, different values. Generally, we’ll
use a byte to represent:

1. unsigned numeric values in the range 0 => 255
2. signed numbers in the range -128 => +127
3. ASCII character codes
4. other special data types requiring no more than 256 different values. Many

data types have fewer than 256 items so eight bits is usually sufficient.

In this representation of a computer byte, a bit number is used to label each bit in
the byte. The bits are labeled from 7 to 0 instead of 0 to 7 or even 1 to 8, because
processors always start counting at 0. It is simply more convenient to use 0 for
computers as we shall see. The bits are also shown in descending order because,
like with decimal numbers (normal base 10), we put the more significant digits to
the left.

129

Fundamentals for getting started

Consider the number 254 in decimal. The 2 here is more significant than the other
digits because it represents hundreds as opposed to tens for the 5 or singles for the
4. The same is done in binary. The more significant digits are put towards the left.
In binary, there are only 2 digits, instead of counting from 0 to 9, we only count
from 0 to 1, but counting is done by exactly the same principles as counting in
decimal. If we want to count higher than 1, then we need to add a more significant
digit to the left. In decimal, when we count beyond 9, we need to add a 1 to the
next significant digit. It sometimes may look confusing or different only because
humans are used to counting with 10 digits.

Note:
The most significant digit in a byte is bit#7 and the least significant digit is bit#0.
These are otherwise known as "msb" and "lsb" respectively in lowercase. If written
in uppercase, MSB will mean most significant BYTE. You will see these terms
often in programming or hardware manuals. Also, lsb is always bit#0, but msb can
vary depending on how many bytes we use to represent numbers. However, we
won’t look into that right now.

In decimal, each digit represents multiple of a power of 10. So, in the decimal
number 254.

• The 4 represents four multiples of one (4×100 since 100 = 1).
• Since we’re working in decimal (base 10), the 5 represents five multiples of 10

(5×101)
• Finally the 2 represents two multiples of 100 (2×102)

All this is elementary. The key point to recognize is that as we move from right to
left in the number, the significance of the digits increases by a multiple of 10.
This should be obvious when we look at the following equation:

(2×102)+(5×101)+(4×100) = 254

In binary, each digit can only be one of two possibilities (0 or 1), therefore when
we work with binary we work in base 2 instead of base 10. So, to convert the
binary number 1101 to decimal we can use the following base 10 equation, which
is very much like the one above:

(1×23)+(1×22)+(0×21)+(1×20) = 8+4+0+1 = 13

130

Variables

Figure 9: A byte contains 8 bits

To convert the number we simply add the bit values (2n) where a 1 shows up.
Let’s take a look at our example byte again, and try to find its value in decimal.

First off, we see that bit #5 is a 1, so we have 25 = 32 in our total. Next we have
bit#3, so we add 23 = 8. This gives us 40. Then next is bit#2, so 40 + 4 is 44. And
finally is bit#0 to give 44 + 1 = 45. So this binary number is 45 in decimal.

As can be seen, it is impossible for different bit combinations to give the same
decimal value. Here is a quick example to show the relationship between
counting in binary (base 2) and counting in decimal (base 10).

002 = 010, 012 = 110, 102 = 210, 112 = 310

The bases that these numbers are in are shown in subscript to the right of the
number.

Carry bit

131

Fundamentals for getting started

Figure 10

As a side note. What would happen if you added 1 to 255? No combination will
represent 256 unless we add more bits. The next value (if we could have another
digit) would be 256. So our byte would look like this.

But this 9th bit (bit#8) doesn’t exist. So where does it go? To be precise it actually
goes into the carry bit. The carry bit resides in the processor of the computer, has
an internal bit used exclusively for carry operations such as this. So if one adds 1
to 255 stored in a byte, the result would be 0 with the carry bit set in the CPU. Of
course, a C++ programmer, never gets to use this bit directly. You’ll would need
to learn assembly to do that.

Endianness
After examining a single byte, it is time to look at ways to represent numbers

larger than 255. This is done by grouping bytes together, we can represent
numbers that are much larger than 255. If we use 2 bytes together, we double the
number of bits in our number. In effect, 16 bits allows the representation numbers
up to 65535 (unsigned), and 32 bits allows the representation of numbers above
4 billion.

132

Variables

Figure 11: 3 basic primitive types char,short int,long int.

Here are a few basic primitive types:

• char (1 byte (by definition), max unsigned value: at least 255)

• short int (at least 16 bits, max unsigned value: at least 65535)

• long int (at least 32 bits, max unsigned value: at least 4294967295)

• float (typically 4 bytes, floating point)

• double (typically 8 bytes, floating point)

Note:
When using ’short int’ and ’long int’, you can leave out the ’int’ as the compiler
will know what type you want. You can also use ’int’ by itself and it will default to
whatever your compiler is set at for an int. On most recent compilers, int defaults
to a 32-bit type.

All the information already given about the byte is valid for the other primitive
types. The difference is simply the number of bits used is different and the msb is
now bit#15 for a short and bit#31 for a long (assuming a 32-bit long type).

In a short (16-bit), one may think that in memory the byte for bits 15 to 8 would
be followed by the byte for bits 7 to 0. In other words, byte #0 would be the high
byte and byte #1 would be the low byte. This is true for some other systems. For
example, the Motorola 68000 series CPUs do use this byte ordering. However, on
PCs (with 8088/286/386/486/Pentiums) this is not so. The ordering is reversed so
that the low byte comes before the high byte. The byte that represents bits 0 to 7

133

Fundamentals for getting started

always comes before all other bytes on PCs. This is called little-endian ordering.
The other ordering, such as on the M68000, is called big-endian ordering. This is
very important to remember when doing low level byte operations that aim to be
portable across systems.

For big-endian computers, the basic idea is to keep the higher bits on the left or in
front. For little-endian computers, the idea is to keep the low bits in the low byte.
There is no inherent advantage to either scheme except perhaps for an oddity.
Using a little-endian long int as a smaller type of int is theoretically possible as the
low byte(s) is/are always in the same location (first byte). With big-endian the low
byte is always located differently depending on the size of the type. For example
(in big-endian), the low byte is the 4th byte in a long int and the 2nd byte in a short
int. So a proper cast must be done and low level tricks become rather dangerous.

To convert from one endianness to the other, one reverses the values of the bytes,
putting the highest bytes value in the lowest byte and the lowest bytes value in the
highest byte, and swap all the values for the in between bytes, so that if you had a
4 byte little-endian integer 0x0A0B0C0D (the 0x signifies that the value is
hexadecimal) then converting it to big-endian would change it to 0x0D0C0B0A.

Bit endianness, where the bit order inside the bytes changes, is rarely used in data
storage and only really ever matters in serial communication links, where the
hardware deals with it.

Understanding two’s complement
Two’s complement is a way to store negative numbers in a pure binary

representation. The reason that the two’s complement method of storing negative
numbers was chosen is because this allows the CPU to use the same add and
subtract instructions on both signed and unsigned numbers.

To convert a positive number into its negative two’s complement format, you
begin by flipping all the bits in the number (1’s become 0’s and 0’s become 1’s)
and then add 1. (This also works to turn a negative number back into a positive
number Ex: -34 into 34 or vice-versa).

134

Variables

Figure 12: A byte contains 8 bits

Let’s try to convert our number 45.

Figure 13: A byte contains 8 bits

First, we flip all the bits...

135

Fundamentals for getting started

Figure 14: A byte contains 8 bits

And add 1. Now if we add up the values for all the one bits, we get...
128+64+16+2+1=211? What happened here? Well, this number actually is 211.
It all depends on how you interpret it. If you decide this number is unsigned,
then it’s value is 211. But if you decide it’s signed, then it’s value is -45. It is
completely up to you how you treat the number.

If and only if you decide to treat it as a signed number, then look at the msb (most
significant bit [bit#7]). If it’s a 1, then it’s a negative number. If it’s a 0, then
it’s positive. In C++, using unsigned in front of a type will tell the compiler you
want to use this variable as an unsigned number, otherwise it will be treated as
signed number.

Now, if you see the msb is set, then you know it’s negative. So convert it back to a
positive number to find out it’s real value using the process just described above.

Let’s go through a few examples.

Treat the following number as an unsigned byte. What is it’s value in decimal?

Figure 15: A byte contains 8 bits

136

Variables

Since this is an unsigned number, no special handling is needed. Just add up all
the values where there’s a 1 bit. 128+64+32+4=228. So this binary number is 228
in decimal.

Now treat the number above as a signed byte. What is its value in decimal?

Since this is now a signed number, we first have to check if the msb is set. Let’s
look. Yup, bit #7 is set. So we have to do a two’s complement conversion to get
its value as a positive number (then we’ll add the negative sign afterwards).

Figure 16: A byte contains 8 bits

Ok, so let’s flip all the bits...

Figure 17: A byte contains 8 bits

And add 1. This is a little trickier since a carry propagates to the third bit. For
bit#0, we do 1+1 = 10 in binary. So we have a 0 in bit#0. Now we have to add the
carry to the second bit (bit#1). 1+1=10. bit#1 is 0 and again we carry a 1 over to
the 3rd bit (bit#2). 0+1 = 1 and we’re done the conversion.

Now we add the values where there’s a one bit. 16+8+4 = 28. Since we did a
conversion, we add the negative sign to give a value of -28. So if we treat
11100100 (base 2) as a signed number, it has a value of -28. If we treat it as an
unsigned number, it has a value of 228.

Let’s try one last example.

137

Fundamentals for getting started

Give the decimal value of the following binary number both as a signed and
unsigned number.

Figure 18: A byte contains 8 bits

First as an unsigned number. So we add the values where there’s a 1 bit set. 4+1
= 5. For an unsigned number, it has a value of 5.

Now for a signed number. We check if the msb is set. Nope, bit #7 is 0. So for a
signed number, it also has a value of 5.

As you can see, if a signed number doesn’t have its msb set, then you treat it
exactly like an unsigned number.

Note:
A special case of two’s complement is where the sign bit (msb or bit#7 in a byte)
is set to one and all other bits are zero, then its two’s complement will be itself.
It is a fact that two’s complement notation (signed numbers) have 1 extra number
than can be negative than positive. So for bytes, you have a range of -128 to +127.
The reason for this is that the number zero uses a bit pattern (all zeros). Out of
all the 256 possibilities, this leaves 255 to be split between positive and negative
numbers. As you can see, this is an odd number and cannot be divided equally.
If you were to try and split them, you would be left with the bit pattern described
above where the sign bit is set (to 1) and all other bits are zeros. Since the sign bit
is set, it has to be a negative number.
If you see this bit pattern of a sign bit set with everything else a zero, you cannot
convert it to a positive number using two’s complement conversion. The way you
find out its value is to figure out the maximum number of bit patterns the value or
type can hold. For a byte, this is 256 possibilities. Divide that number by 2 and put
a negative sign in front. So -128 is this number for a byte. The following will be
discussed below, but if you had 16 bits to work with, you have 65536 possibilities.
Divide by 2 and add the negative sign gives a value of -32768.

138

Variables

Floating point representation
A generic real number with a decimal part can also be expressed in binary
format. For instance 110.01 in binary corresponds to:

1×22 +1×21 +0×20 +0×2−1 +1×2−2 = 22 +21 +2−2 = 6.25

Exponential notation (also known as scientific notation, or standard form, when
used with base 10, as in 3×108) can be also used and the same number expressed
as:

1.1001×22 (= 11.001×21 = 110.01)

When there is only one non-zero digit on the left of the decimal point, the
notation is termed normalized.

In computing applications a real number is represented by a sign bit (S) an
exponent (e) and a mantissa (M). The exponent field needs to represent both
positive and negative exponents. To do this, a bias E is added to the actual
exponent in order to get the stored exponent, and the sign bit (S), which indicates
whether or not the number is negative, is transformed into either +1 or -1, giving
s. A real number is thus represented as:

f = s×M×2e−E

S, e and M are concatenated one after the other in a 32-bit word to create a single
precision floating point number and in a 64-bit doubleword to create a double
precision one. For the single float type, 8 bits are used for the exponent and 23 bits
for the mantissa, and the exponent offset is E=127. For the double type 11 bits are
used for the exponent and 52 for the mantissa, and the exponent offset is E=1023.

There are two types of floating point numbers. Normalized and denormalized. A
normalized number will have an exponent e in the range 0<e<28 - 1 (between
00000000 and 11111111, non-inclusive) in a single precision float, and an
exponent e in the range 0<e<211 - 1 (between 00000000000 and 11111111111,
non-inclusive) for a double float. Normalized numbers are represented as sign
times 1.Mantissa times 2e-E. Denormalized numbers are numbers where the
exponent is 0. They are represented as sign times 0.Mantissa times 21-E.
Denormalized numbers are used to store the value 0, where the exponent and
mantissa are both 0. Floating point numbers can store both +0 and -0, depending
on the sign. When the number isn’t normalized or denormalized (it’s exponent is
all 1s) the number will be plus or minus infinity if the mantissa is zero and
depending on the sign, or plus or minus NaN (Not a Number) if the mantissa isn’t
zero and depending on the sign.

For instance the binary representation of the number 5.0 (using float type) is:

139

Fundamentals for getting started

0 10000001 01000000000000000000000

The first bit is 0, meaning the number is positive, the exponent is 129-127=2, and
the mantissa is 1.01 (note the leading one is not included in the binary
representation). 1.01 corresponds to 1.25 in decimal representation. Hence
1.25*4=5.

Floating point numbers are not always exact representations of values. a number
like 1010110110001110101001101 couldn’t be represented by a single precision
floating point number because, disregarding the leading 1 which isn’t part of the
mantissa, there are 24 bits, and a single precision float can only store 23 numbers
in its mantissa, so the 1 at the end would have to be dropped because it is the least
significant bit. Also, there are some value which simply cannot be represented in
binary which can be easily represented in decimal, E.g. 0.3 in decimal would be
0.0010011001100110011... or something. A lot of other numbers cannot be
exactly represented by a binary floating point number, no matter how many bits it
use for it’s mantissa, just because it would create a repeating pattern like this.

3.3.2 Locality (hardware)

Variables have two distinct characteristics: those that are created on the stack
(local variables), and those that are accessed via a hard-coded memory address
(global variables).

Globals

Typically a variable is bound to a particular address in COMPUTER MEMORY181

that is automatically assigned to at runtime, with a fixed number of bytes
determined by the size of the object type of a variable and any operations
performed on the variable effects one or more VALUES182 stored in that particular
memory location.

All global defined variables will have static lifetime. Only those not defined as
const will permit external linkage by default.

181 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20MEMORY%20
182 HTTP://EN.WIKIPEDIA.ORG/WIKI/VALUE%20%28COMPUTER%20SCIENCE%29

140

http://en.wikipedia.org/wiki/computer%20memory%20
http://en.wikipedia.org/wiki/value%20%28computer%20science%29

Variables

Locals

If the size and location of a variable is unknown beforehand, the location in
memory of that variable is stored in another variable instead, and the size of the
original variable is determined by the size of the type of the second value storing
the memory location of the first. This is called REFERENCING183, and the variable
holding the other variables memory location is called a pointer.

3.3.3 SCOPE184

Variables also reside in a specific SCOPE185. The scope of a variable is the most
important factor to determines the life-time of a variable. Entrance into a scope
begins the life of a variable and leaving scope ends the life of a variable. A
variable is visible when in scope unless it is hidden by a variable with the same
name inside an enclosed scope. A variable can be in global scope, namespace
scope, file scope or compound statement scope.

As an example, in the following fragment of code, the variable ’i’ is in scope only
in the lines between the appropriate comments:

{
int i; /*’i’ is now in scope */
i = 5;
i = i + 1;
cout << i;

}/* ’i’ is now no longer in scope */

There are specific keywords that extend the life-time of a variable, and
COMPOUND STATEMENT186 define their own local SCOPE187.

// Example of a compound statement defining a local scope
{

{
int i = 10; //inside a statement block

}

i = 2; //error, variable does not exist outside of the above compound statement
}

183 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTER%
20SCIENCE%29

184 Chapter 3.1.9 on page 82
185 Chapter 3.1.9 on page 82
186 Chapter 3.1.7 on page 62
187 Chapter 3.1.9 on page 82

141

http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29

Fundamentals for getting started

It is an error to declare the same variable twice within the same level of scope.

The only SCOPE188 that can be defined for a global variable is a namespace, this
deals with the visibility of variable not its validity, being the main purpose to
avoid name collisions.

The concept of scope in relation to variables becomes extremely important when
we get to classes, as the constructors are called when entering scope and the
destructors are called when leaving scope.

Note:
Variables should be declared as local and as late as possible, and initialized imme-
diately.

3.3.4 Type

So far we explained that internally data is stored in a way the hardware can read
as zeros and ones, bits. That data is conceptually divided and labeled in
accordance to the number of bits in each set. We must explain that since data can
be interpreted in a variety of sets according to established formats as to represent
meaningful information. This ultimately required that the programmer is capable
of differentiate to the compiler what is needed, this is done by using the different
types.

A variable can refer to simple values like integers called a primitive type or to a
set of values called a composite type that are made up of PRIMITIVE TYPES189

and other COMPOSITE TYPES190. Types consist of a set of valid values and a set
of valid operations which can be performed on these values. A variable must
declare what type it is before it can be used in order to enforce value and
operation safety and to know how much space is needed to store a value.

Major functions that type systems provide are:

• Safety - types make it impossible to code some operations which cannot be
valid in a certain context. This mechanism effectively catches the majority of
common mistakes made by programmers. For example, an expression "Hello,
Wikipedia"/1 is invalid because a STRING LITERAL191 cannot be divided by

188 Chapter 3.1.9 on page 82
189 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRIMITIVE%20TYPES
190 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPOSITE%20TYPES
191 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRING%20LITERAL

142

http://en.wikipedia.org/wiki/primitive%20types
http://en.wikipedia.org/wiki/composite%20types
http://en.wikipedia.org/wiki/string%20literal

Variables

an INTEGER192 in the usual sense. As discussed below, strong typing offers
more safety, but it does not necessarily guarantee complete safety (see
TYPE-SAFETY193 for more information).

• Optimization - static type checking might provide useful information to a
compiler. For example, if a type says a value is aligned at a multiple of 4, the
memory access can be optimized.

• Documentation - using types in languages also improves DOCUMENTATION194

of code. For example, the declaration of a variable as being of a specific type
documents how the variable is used. In fact, many languages allow
programmers to define semantic types derived from PRIMITIVE TYPE195s;
either composed of elements of one or more primitive types, or simply as
aliases for names of primitive types.

• Abstraction - types allow programmers to think about programs in higher
level, not bothering with low-level implementation. For example, programmers
can think of strings as values instead of a mere array of bytes.

• Modularity - types allow programmers to express the interface between two
subsystems. This localizes the definitions required for interoperability of the
subsystems and prevents inconsistencies when those subsystems communicate.

Data types

192 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGER
193 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE-SAFETY
194 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOCUMENTATION
195 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRIMITIVE%20TYPE

143

http://en.wikipedia.org/wiki/integer
http://en.wikipedia.org/wiki/type-safety
http://en.wikipedia.org/wiki/documentation
http://en.wikipedia.org/wiki/primitive%20type

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
char ≥ 8

• sizeof gives
the size
in units of
chars. These
"BYTES196"
need not be
8-bit bytes
(though
commonly
they are);
the num-
ber of bits
is given by
the CHAR_-
BIT macro in
the climits
header.

• Signedness is
implementation-
defined.

• Any encod-
ing of 8 bits
or less (e.g.
ASCII) can
be used to
store charac-
ters.

• Integer op-
erations can
be performed
portably only
for the range
0 ˜ 127.

• All bits con-
tribute to the
value of the
char, i.e.
there are no
"holes" or
"padding"
bits.

—

196 HTTP://EN.WIKIPEDIA.ORG/WIKI/BYTE

144

http://en.wikipedia.org/wiki/Byte

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
signed char same as char

• Characters
stored like for
type char.

• Can store
integers in
the range -
127 ˜ 127
portably[1]197

.

—

unsigned char same as char
• Characters

stored like for
type char.

• Can store
integers in
the range 0 ˜
255 portably.

—

197 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%20OF%20TYPES%20FOOTNOTES

145

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
short ≥ 16, ≥ size of

char • Can store in-
tegers in the
range -32767
˜ 32767
portably[2]198

.
• Used to re-

duce mem-
ory usage
(although
the resulting
executable
may be larger
and proba-
bly slower as
compared to
using int.

short int,
signed short,
signed short
int

unsigned short same as short
• Can store

integers in
the range
0 ˜ 65535
portably.

• Used to re-
duce mem-
ory usage
(although
the resulting
executable
may be larger
and proba-
bly slower as
compared to
using int.

unsigned short
int

198 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%20OF%20TYPES%20FOOTNOTES

146

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
int ≥ 16, ≥ size of

short • Represents
the "normal"
size of data
the proces-
sor deals with
(the word-
size); this is
the integral
data-type
used nor-
mally.

• Can store in-
tegers in the
range -32767
˜ 32767
portably[2]199

.

signed, signed
int

unsigned int same as int
• Can store

integers in
the range
0 ˜ 65535
portably.

unsigned

long ≥ 32, ≥ size of
int • Can store

integers in
the range -
2147483647 ˜
2147483647
portably[3]200

.

long int,
signed long,
signed long
int

199 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%20OF%20TYPES%20FOOTNOTES
200 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%20OF%20TYPES%20FOOTNOTES

147

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes
http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
unsigned long same as long

• Can store
integers in
the range 0 ˜
4294967295
portably.

unsigned long
int

bool ≥ size of char,
≤ size of long • Can store

the constants
true and
false.

—

148

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
wchar_t ≥ size of char,

≤ size of long • Signedness is
implementation-
defined.

• Can store
"wide"
(multi-byte)
characters,
which in-
clude those
stored in a
char and
probably
many more,
depending
on the imple-
mentation.

• Integer op-
erations are
better not
performed
with wchar_-
ts. Use int or
unsigned int
instead.

—

149

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
float ≥ size of char

• Used to re-
duce memory
usage when
the values
used do not
vary widely.

• The floating-
point format
used is im-
plementa-
tion defined
and need
not be the
IEEE single-
precision for-
mat.

• unsigned
cannot be
specified.

—

150

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
double ≥ size of float

• Represents
the "normal"
size of data
the proces-
sor deals
with; this is
the floating-
point data-
type used
normally.

• The floating-
point format
used is im-
plementa-
tion defined
and need
not be the
IEEE double-
precision for-
mat.

• unsigned
cannot be
specified.

—

long double ≥ size of dou-
ble • unsigned

cannot be
specified.

—

User Defined Types

151

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
struct or class ≥ sum of size of

each member • Default ac-
cess modifier
for structs
for mem-
bers and base
classes is
public.

• For classes
the default is
private.

• The CON-
VENTION201

is to use
struct only
for Plain Old
Data types.

• Said to be a
compound
type.

—

union ≥ size of the
largest member • Default ac-

cess modi-
fier for mem-
bers and base
classes is
public.

• Said to be a
compound
type.

—

201 Chapter 3.1.7 on page 63

152

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
enum ≥ size of char

• Enumerations
are a distinct
type from
ints. ints are
not implicitly
converted
to enums,
unlike in C.
Also ++/--
cannot be
applied to
enums unless
overloaded.

—

typedef same as the type
being given a
name

• Syntax simi-
lar to a stor-
age class
like static,
register or
extern.

—

template ≥ size of char — —
Derived Types[4]202

202 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%20OF%20TYPES%20FOOTNOTES

153

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
type&
(reference)

≥ size of char
• References

(unless op-
timized out)
are usually
internally im-
plemented
using point-
ers and hence
they do oc-
cupy extra
space sepa-
rate from the
locations they
refer to.

—

154

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
type*
(pointer)

≥ size of char
• 0 always rep-

resents the
null pointer
(an address
where no
data can be
placed), ir-
respective
of what bit
sequence rep-
resents the
value of a
null pointer.

• Pointers to
different
types may
have different
representa-
tions, which
means they
could also
be of differ-
ent sizes. So
they are not
convertible to
one another.

• Even in an
implemen-
tation which
guarantess all
data point-
ers to be of
the same
size, function
pointers and
data pointers
are in general
incompati-
ble with each
other.

• For functions
taking vari-
able number
of arguments,
the argu-
ments passed
must be of
appropriate
type, so even
0 must be
cast to the
appropriate
type in such
function-
calls.

—

155

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
type [integer]
(array)

≥ integer × size
of type • The brackets

([]) follow
the identifier
name in a
declaration.

• In a declara-
tion which
also initial-
izes the array
(including
a function
parameter
declaration),
the size of the
array (the in-
teger) can be
omitted.

• type [] is
not the same
as type*.
Only under
some circum-
stances one
can be con-
verted to the
other.

—

156

Variables

Type Size in Bits Comments Alternate
Names

Primitive Types
type (comma-
delimited list of
types/declara-
tions)
(function)

—
• The parenthe-

ses (()) fol-
low the iden-
tifier name
in a declara-
tion, e.g. a 2-
arg function
pointer: int
(* fptr)
(int arg1,
int arg2).

• Functions de-
clared with-
out any stor-
age class are
extern.

—

157

Fundamentals for getting started

Type Size in Bits Comments Alternate
Names

Primitive Types
type
aggregate_-
type::*
(member
pointer)

≥ size of char
• 0 always rep-

resents the
null pointer
(a value
which does
not point to
any member
of the aggre-
gate type),
irrespective
of what bit
sequence rep-
resents the
value of a
null pointer.

• Pointers to
different
types may
have different
representa-
tions, which
means they
could also
be of differ-
ent sizes. So
they are not
convertible to
one another.

—

[1] -128 can be stored in two’s-complement machines (i.e. most machines in
existence).
[2] -32768 can be stored in two’s-complement machines (i.e. most machines
in existence).
[3] -2147483648 can be stored in two’s-complement machines (i.e. most ma-
chines in existence).

158

Variables

[4] The precedences in
a declaration are:

[], () (left associa-
tive)

— Highest

&, *, ::* (right asso-
ciative)

— Lowest

Note:
Many compilers also support the (non-standard) long long and unsigned long
long data types. These can be expected to be added to the next revision of the
C++ Standard (in fact, they are in the current draft for that standard, and have been
standard in C since 1999).
Until the C++98 (and C99) standard adoption that defines char as signed, before
the type was undefined in regard to the use of the sign. This information is impor-
tant if you are using old compilers or reviewing old code.

Standard types

There are five basic primitive types called standard types, specified by particular
keywords, that store a single value. These types stand isolated from the
complexities of class type variables, even if the syntax of utilization at times
brings them all in line, standard types do not share class properties (i.e.: don’t
have a constructor).

The type of a variable determines what kind of values it can store:

• bool - a boolean value: true; false
• int - Integer: -5; 10; 100
• char - a character in some encoding, often something like ASCII, ISO-8859-1

("Latin 1") or ISO-8859-15: ’a’, ’=’, ’G’, ’2’.
• float - floating-point number: 1.25; -2.35*10ˆ23
• double - double-precision floating-point number: like float but more decimals

Note:
A char variable cannot store sequences of characters (strings), such as "C++"
({’C’, ’+’, ’+’, ’\0’}); it takes 4 char variables (including the null-terminator) to
hold it. This is a common confusion for beginners. There are several types in C++
that store string values, but we will discuss them later.

The float and double primitive data types are called ’floating point’ types and
are used to represent real numbers (numbers with decimal places, like 1.435324

159

Fundamentals for getting started

and 853.562). Floating point numbers and floating point arithmetic can be very
tricky, due to the nature of how a computer calculates floating point numbers.

Note:
Don’t use floating-point variables where discrete values are needed. Using a float
for a loop counter is a great way to shoot yourself in the foot. Always test floating-
point numbers as <= or >=, never use an exact comparison (== or !=).

Definition vs. declaration

There is an important concept, the distinction between the declaration of a
variable and its definition, two separated steps involved in the use of variables.
The declaration announces the properties (the type, size, etc.), on the other hand
the definition causes storage to be allocated in accordance to the declaration.

Variables as function, classes and other constructs that require declarations may
be declared many times, but each may only be defined one time.

Note:
There are ways around the definition limitation but uses and circumstances that
may require it are vary rare or too specific that forgetting to interiorize the general
rule is a quick way to get into errors that may be hard to resolve.

This concept will be further explained and with some particulars noted (such as
inline) as we introduce other components. Here are some examples, some
include concepts not yet introduced, but will give you a broader view:

int an_integer; // defines an_integer
extern const int a = 1; // defines a
int function(int b) { return b+an_integer; } // defines function and

defines b
struct a_struct { int a; int b; }; // defines a_struct,

a_struct::a, and a_struct::b
struct another_struct { // defines another_struct
int a; // defines nonstatic data

member a
static int b; // declares static data

member b
another_struct(): a(0) { } }; // defines a constructor of

another_struct
int another_struct::b = 1; // defines another_struct::b
enum { right, left }; // defines right and left
namespace FirstNamespace { int a; } // defines FirstNamespace

and FirstNamespace::a

160

Variables

namespace NextNamespace = FirstNamespace ; // defines NextNamespace
another_struct MySruct; // defines MySruct
extern int b; // declares b
extern const int c; // declares c
int another_function(int); // declares another_function
struct aStruct; // declares aStruct
typedef int MyInt; // declares MyInt
extern another_struct yet_another_struct; // declares

yet_another_struct
using NextNamespace::a; // declares NextNamespace::a

Declaration

C++ is a statically typed language. Hence, any variable cannot be used without
specifying its type. This is why the type figures in the declaration. This way the
compiler can protect you from trying to store a value of an incompatible type into
a variable, e.g. storing a string in an integer variable. Declaring variables before
use also allows spelling errors to be easily detected. Consider a variable used in
many statements, but misspelled in one of them. Without declarations, the
compiler would silently assume that the misspelled variable actually refers to
some other variable. With declarations, an "Undeclared Variable" error would be
flagged. Another reason for specifying the type of the variable is so the compiler
knows how much space in memory must be allocated for this variable.

The simplest variable declarations look like this (the parts in []s are optional):

[specifier(s)] type variable_name [= initial_value];

To create an integer variable for example, the syntax is

int sum;

where sum is the name you made up for the variable. This kind of statement is
called a declaration. It declares sum as a variable of type int, so that sum can store
an integer value. Every variable has to be declared before use and it is common
practice to declare variables as close as possible to the moment where they are
needed. This is unlike languages, such as C, where all declarations must precede
all other statements and expressions.

In general, you will want to make up variable names that indicate what you plan
to do with the variable. For example, if you saw these variable declarations:

char firstLetter;
char lastLetter;
int hour, minute;

161

Fundamentals for getting started

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type in the same statement: hour and minute are both integers (int type).
Notice how a comma separates the variable names.

int a = 123;
int b (456);

Those lines also declare variables, but this time the variables are initialized to
some value. What this means is that not only is space allocated for the variables
but the space is also filled with the given value. The two lines illustrate two
different but equivalent ways to initialize a variable. The assignment operator ’=’
in a declaration has a subtle distinction in that it assigns an initial value instead of
assigning a new value. The distinction becomes important especially when the
values we are dealing with are not of simple types like integers but more complex
objects like the input and output streams provided by the iostream class.

The expression used to initialize a variable need not be constant. So the lines:

int sum;
sum = a + b;

can be combined as:

int sum = a + b;

or:

int sum (a + b);

Declare a floating point variable ’f’ with an initial value of 1.5:

float f = 1.5 ;

Floating point constants should always have a ’.’ (decimal point) somewhere in
them. Any number that does not have a decimal point is interpreted as an integer,
which then must be converted to a floating point value before it is used.

For example:

double a = 5 / 2;

will not set a to 2.5 because 5 and 2 are integers and integer arithmetic will apply
for the division, cutting off the fractional part. A correct way to do this would be:

double a = 5.0 / 2.0;

162

Variables

You can also declare floating point values using scientific notation. The constant
.05 in scientific notation would be 5×10−2. The syntax for this is the base,
followed by an e, followed by the exponent. For example, to use .05 as a scientific
notation constant:

double a = 5e-2;

Note:
Single letters can sometimes be a bad choice for variable names when their pur-
pose cannot be determined. However, some single-letter variable names are so
commonly used that they’re generally understood. For example i, j, and k are
commonly used for loop variables and iterators; n is commonly used to represent
the number of some elements or other counts; s, and t are commonly used for
strings (that don’t have any other meaning associated with them, as in utility rou-
tines); c and d are commonly used for characters; and x and y are commonly used
for Cartesian co-ordinates.

Below is a program storing two values in integer variables, adding them and
displaying the result:

// This program adds two numbers and prints their sum.
#include <iostream>

int main()
{
int a = 123;
int b (456);
int sum;

sum = a + b;

std::cout << "The sum of " << a << " and " << b << " is " << sum << "\n";

return 0;
}

6203

or, if you like to save some space, the same above statement can be written as:

// This program adds two numbers and prints their sum, variation 1
#include <iostream>

203 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

163

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

#include <ostream>

using namespace std;

int main()
{
int a = 123, b (456), sum = a + b;

cout << "The sum of " << a << " and " << b << " is " << sum << endl;

return 0;
}

204

register
The register keyword is a request to the compiler that the specified variable is to

be stored in a register of the processor instead of memory as a way to gain speed,
mostly because it will be heavily used. The compiler may ignore the request.

The keyword fell out of common use when compilers became better at most code
optimizations than humans. Any valid program that uses the keyword will be
semantically identical to one without it, unless they appear in a stringized macro
(or similar context), where it can be useful to ensure that improper usage of the
macro will cause a compile-time error. This keywords relates closely to auto.

register int x=99;

Note:
Register has different semantics between C and C++. In C it is possible to forbid
the array-to-pointer conversion by making an array register declaration: register
int a[1];.

Modifiers

There are several modifiers that can be applied to data types to change the range
of numbers they can represent.

const
A variable declared with this specifier cannot be changed (as in read only). Either

204 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

164

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Variables

local or class-level variables (scope) may be declared const indicating that you
don’t intend to change their value after they’re initialized. You declare a variable
as being constant using the const keyword. Global const variables have static
linkage. If you need to use a global constant across multiple files the best option
is to use a special header file that can be included across the project.

const unsigned int DAYS_IN_WEEK = 7 ;

declares a positive integer constant, called DAYS_IN_WEEK, with the value 7.
Because this value cannot be changed, you must give it a value when you declare
it. If you later try to assign another value to a constant variable, the compiler will
print an error.

int main(){
const int i = 10;

i = 3; // ERROR - we can’t change "i"

int &j = i; // ERROR - we promised not to
// change "i" so we can’t
// create a non-const reference
// to it

const int &x = i; // fine - "x" is a const
// reference to "i"

return 0;
}

The full meaning of const is more complicated than this; when working through
pointers or references, const can be applied to mean that the object pointed (or
referred) to will not be changed via that pointer or reference. There may be other
names for the object, and it may still be changed using one of those names so long
as it was not originally defined as being truly const.

It has an advantage for programmers over #define command because it is
understood by the compiler, not just substituted into the program text by the
preprocessor, so any error messages can be much more helpful.

With pointer it can get messy...

T const *p; // p is a pointer to a const T
T *const p; // p is a const pointer to T
T const *const p; // p is a const pointer to a const T

If the pointer is a local, having a const pointer is useless. The order of T and
const can be reversed:

165

Fundamentals for getting started

const T *p;

is the same as

T const *p;

Note:
const can be used in the declaration of variables (arguments, return values and
methods) - some of which we will mention later on.
Using const has several advantages:
To users of the class, it is immediately obvious that the const methods will not
modify the object.
• Many accidental modifications of objects will be caught at compile time.
• Compilers like const since it allows them to do better optimization.

volatile
A hint to the compiler that a variable’s value can be changed externally; therefore
the compiler must avoid aggressive optimization on any code that uses the
variable.

Unlike in Java, C++’s volatile specifier does not have any meaning in relation
to multi-threading. Standard C++ does not include support for multi-threading
(though it is a common extension) and so variables needing to be synchronized
between threads need a synchronization mechanisms such as mutexes to be
employed, keep in mind that volatile implies only safety in the presence of
implicit or unpredictable actions by the same thread (or by a signal handler in the
case of a volatile sigatomic_t object). Accesses to mutable volatile variables
and fields are viewed as synchronization operations by most compilers and can
affect control flow and thus determine whether or not other shared variables are
accessed, this implies that in general ordinary memory operations cannot be
reordered with respect to a mutable volatile access. This also means that mutable
volatile accesses are sequentially consistent. This is not (as yet) part of the
standard, it is under discussion and should be avoided until it gets defined.

mutable
This specifier may only be applied to a non-static, non-const member variables.
It allows the variable to be modified within const member functions.

166

Variables

mutable is usually used when an object might be logically constant, i.e., no
outside observable behavior changes, but not bitwise const, i.e. some internal
member might change state.

The canonical example is the proxy pattern. Suppose you have created an image
catalog application that shows all images in a long, scrolling list. This list could
be modeled as:

class image {
public:
// construct an image by loading from disk
image(const char* const filename);

// get the image data
char const * data() const;

private:
// The image data
char* m_data;

}

class scrolling_images {
image const* images[1000];

};

Note that for the image class, bitwise const and logically const is the same: If
m_data changes, the public function data() returns different output.

At a given time, most of those images will not be shown, and might never be
needed. To avoid having the user wait for a lot of data being loaded which might
never be needed, the proxy pattern might be invoked:

class image_proxy {
public:
image_proxy(char const * const filename)

: m_filename(filename),
m_image(0)

{}
~image_proxy() { delete m_image; }
char const * data() const {

if (!m_image) {
m_image = new image(m_filename);

}
return m_image->data();

}
private:
char const* m_filename;
mutable image* m_image;

};

class scrolling_images {
image_proxy const* images[1000];

};

167

Fundamentals for getting started

Note that the image_proxy does not change observable state when data() is
invoked: it is logically constant. However, it is not bitwise constant since
m_image changes the first time data() is invoked. This is made possible by
declaring m_image mutable. If it had not been declared mutable, the
image_proxy::data() would not compile, since m_image is assigned to within
a constant function.

Note:
Like exceptions to most rules, the mutable keyword exists for a reason, but should
not be overused. If you find that you have marked a significant number of the
member variables in your class as mutable you should probably consider whether
or not the design really makes sense.

short
The short specifier can be applied to the int data type. It can decrease the

number of bytes used by the variable, which decreases the range of numbers that
the variable can represent. Typically, a short int is half the size of a regular int
-- but this will be different depending on the compiler and the system that you
use. When you use the short specifier, the int type is implicit. For example:

short a;

is equivalent to:

short int a;

Note:
Although short variables may take up less memory, they can be slower than reg-
ular int types on some systems. Because most machines have plenty of memory
today, it is rare that using a short int is advantageous.

long
The long specifier can be applied to the int and double data types. It can

increase the number of bytes used by the variable, which increases the range of
numbers that the variable can represent. A long int is typically twice the size of
an int, and a long double can represent larger numbers more precisely. When
you use long by itself, the int type is implied. For example:

long a;

168

Variables

is equivalent to:

long int a;

The shorter form, with the int implied rather than stated, is more idiomatic (i.e.,
seems more natural to experienced C++ programmers).

Use the long specifier when you need to store larger numbers in your variables.
Be aware, however, that on some compilers and systems the long specifier may
not increase the size of a variable. Indeed, most common 32-bit platforms (and
one 64-bit platform) use 32 bits for int and also 32 bits for long int.

Note:
C++ does not yet allow long long int like modern C does, though it is likely to
be added in a future C++ revision, and then would be guaranteed to be at least a
64-bit type. Most C++ implementations today offer long long or an equivalent
as an extension to standard C++.

unsigned
The unsigned keyword is a data type specifier, that makes a variable only
represent positive numbers and zero. It can be applied only to the char,
short,int and long types. For example, if an int typically holds values from
-32768 to 32767, an unsigned int will hold values from 0 to 65535. You can
use this specifier when you know that your variable will never need to be negative.
For example, if you declared a variable ’myHeight’ to hold your height, you could
make it unsigned because you know that you would never be negative inches tall.

Note:
unsigned types use MODULAR ARITHMETICa. The default overflow behavior is
to wrap around, instead of raising an exception or saturating. This can be useful,
but can also be a source of bugs to the unwary.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULAR%20ARITHMETIC

signed
The signed specifier makes a variable represent both positive and negative
numbers. It can be applied only to the char, int and long data types. The
signed specifier is applied by default for int and long, so you typically will
never use it in your code.

169

http://en.wikipedia.org/wiki/modular%20arithmetic

Fundamentals for getting started

Note:
Plain char is a distinct type from both signed char and unsigned char although
it has the same range and representation as one or the other. On some platforms
plain char can hold negative values, on others it cannot. char should be used to
represent a character; for a small integral type, use signed char, or for a small type
supporting MODULAR ARITHMETICa use unsigned char.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULAR%20ARITHMETIC

static

The static keyword can be used in four different ways:

• TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A

FUNCTION205.
• TO SPECIFY INTERNAL LINKAGE206.
• TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER

FUNCTIONS207.
• TO CREATE A SINGLE COPY OF A DATA MEMBER208.

Permanent storage
Using the static modifier makes a variable have static lifetime and on global

variables makes them require internal linkage (variables will not be accessible
from code of the same project that resides in other files).

static lifetime

Means that a static variable will need to be initialized in the file scope and at run
time, will exist and maintain changes across until the program’s process is
closed, the particular order of destruction of static variables is undefined.

static variables instances share the same memory location. This means that they
keep their value between function calls. For example, in the following code, a
static variable inside a function is used to keep track of how many times that
function has been called:

205 Chapter 3.3.4 on page 170
206 Chapter 3.2.4 on page 123
207 Chapter 4.3.5 on page 433
208 Chapter 4.3.4 on page 424

170

http://en.wikipedia.org/wiki/modular%20arithmetic

Variables

void foo() {
static int counter = 0;
cout << "foo has been called " << ++counter << " times\n";

}

int main() {
for(int i = 0; i < 10; ++i) foo();

}

Enumerated data type

In programming it is often necessary to deal with data types that describe a fixed
set of alternatives. For example, when designing a program to play a card game it
is necessary to keep track of the suit of an individual card.

One method for doing this may be to create unique constants to keep track of the
suit. For example one could define

const int Clubs=0;
const int Diamonds=1;
const int Hearts=2;
const int Spades=3;

int current_card_suit=Diamonds;

Unfortunately there are several problems with this method. The most minor
problem is that this can be a bit cumbersome to write. A more serious problem is
that this data is indistinguishable from integers. It becomes very easy to start
using the associated numbers instead of the suits themselves. Such as:

int current_card_suit=1;

...and worse to make mistakes that may be very difficult to catch such as a typo...

current_card_suit=11;

...which produces a valid expression in C++, but would be meaningless in
representing the card’s suit.

One way around these difficulty is to create a new data type specifically designed
to keep track of the suit of the card, and restricts you to only use valid
possibilities. We can accomplish this using an enumerated data type using the
C++ enum keyword.

The enum keyword is used to create an enumerated type named name that consists
of the elements in name-list. The var-list argument is optional, and can be used to
create instances of the type along with the declaration.

171

Fundamentals for getting started

Syntax

enum name {name-list} var-list;

For example, the following code creates the desired data type:

enum card_suit {Clubs,Diamonds,Hearts,Spades};
card_suit first_cards_suit=Diamonds;
card_suit second_cards_suit=Hearts;
card_suit third_cards_suit=0; //Would cause an error, 0 is an "integer" not a
"card_suit"

card_suit forth_cards_suit=first_cards_suit; //OK, they both have the same type.

The line of code creates a new data type "card_suit" that may take on only one
of four possible values: "Clubs", "Diamonds", "Hearts", and "Spades". In
general the enum command takes the form:

enum new_type_name { possible_value_1,
possible_value_1,
/* ..., */
possible_value_n

} Optional_Variable_With_This_Type;

While the second line of code creates a new variable with this data type and
initializes it to value to Diamonds". The other lines create new variables of this
new type and show some initializations that are (and are not) possible.

Internally enumerated types are stored as integers, that begin with 0 and
increment by 1 for each new possible value for the data type.

enum apples { Fuji, Macintosh, GrannySmith };
enum oranges { Blood, Navel, Persian };
apples pie_filling = Navel; //error can’t make an apple pie with oranges.
apples my_fav_apple = Macintosh;
oranges my_fav_orange = Navel; //This has the same internal integer value as
my_favorite_apple

//Many compilers will produce an error or warning letting you know your comparing
two different quantities.
if(my_fav_apple == my_fav_orange)

std::cout << "You shouldn’t compare apples and oranges" << std::endl;

While enumerated types are not integers, they are in some case converted into
integers. For example, when we try to send an enumerated type to standard
output.

For example:

enum color {Red, Green, Blue};

172

Variables

color hair=Red;
color eyes=Blue;
color skin=Green;
std::cout << "My hair color is " << hair << std::endl;
std::cout << "My eye color is " << eyes << std::endl;
std::cout << "My skin color is " << skin << std::endl;
if (skin==Green)
std::cout << "I am seasick!" << std::endl;

Will produce the output:
My hair color is 0

My eye color is 2

My skin color is 1

I am seasick!

We could improve this example by introducing an array that holds the names of
our enumerated type such as:

std::string color_names[3]={"Red", "Green", "Blue"};
enum color {Red, Green, Blue};
color hair=Red;
color eyes=Blue;
color skin=Green;
std::cout << "My hair color is " << color_names[hair] << std::endl;
std::cout << "My eye color is " << color_names[eyes] << std::endl;
std::cout << "My skin color is " << color_names[skin] << std::endl;

In this case hair is automatically converted to an integer when it is index arrays.
This technique is intimately tied to the fact that the color Red is internally stored
as "0", Green is internally stored as "1", and Blue is internally stored as "2". Be
Careful! One may override these default choices for the internal values of the
enumerated types.

This is done by simply setting the value in the enum such as:

enum color {Red=2, Green=4, Blue=6};

In fact it is not necessary to an integer for every value of an enumerated type. In
the case the value, the compiler will simply increase the value of the previous
possible value by one.

Consider the following example:

enum colour {Red=2, Green, Blue=6, Orange};

Here the internal value of "Red" is 2, "Green" is 3, "Blue" is 6 and "Orange is 7.
Be careful to keep in mind when using this that the internal values do not need to
be unique.

173

Fundamentals for getting started

Enumerated types are also automatically converted into integers in arithmetic
expressions. Which makes it useful to be able to choose particular integers for the
internal representations of an enumerated type.

One may have enumerated for the width and height of a standard computer
screen. This may allow a program to do meaningful calculations, while still
maintaining the benefits of an enumerated type.

enum screen_width {SMALL=800, MEDIUM=1280};
enum screen_height {SMALL=600, MEDIUM=768};
screen_width MyScreenW=SMALL;
screen_height MyScreenH=SMALL;
std::cout << "The number of pixels on my screen is " << MyScreenW*MyScreenH <<
std::endl;

It should be noted that the internal values used in an enumerated type are
constant, and cannot be changed during the execution of the program.

It is perhaps useful to notice that while the enumerated types can be converted to
integers for the purpose arithmetic, they cannot be iterated through.

For example:

enum month { JANUARY=1, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER};

for(month cur_month = JANUARY; cur_month <= DECEMBER; cur_month=cur_month+1)
{
std::cout << cur_month << std::endl;

}

This will fail to compile. The problem is with the for loop. The first two
statements in the loop are fine. We may certainly create a new month variable and
initialize it. We may also compare two months, where they will be compared as
integers. We may not increment the cur_month variable. "cur_month+1"
evaluates to an integer which may not be stored into a "month" data type.

In the code above we might try to fix this by replacing the for loop with:

for(int monthcount = JANUARY; monthcount <= DECEMBER; monthcount++)
{
std::cout << monthcount << std::endl;

}

This will work because we can increment the integer "mounthcount".

typedef

typedef keyword is used to give a data type a new alias.

174

Variables

typedef existing-type new-alias;

The intent is to make it easier the use of an awkwardly labeled data type, make
external code conform to the coding styles or increase the comprehension of
source code as you can use typedef to create a shorter, easier-to-use name for that
data type. For example:

typedef int Apples;
typedef int Oranges;
Apples coxes;
Oranges jaffa;

The syntax above is a simplification. More generally, after the word "typedef",
the syntax looks exactly like what you would do to declare a variable of the
existing type with the variable name of the new type name. Therefore, for more
complicated types, the new type name might be in the middle of the syntax for the
existing type. For example:

typedef char (*pa)[3]; // "pa" is now a type for a pointer to an array of 3
chars
typedef int (*pf)(float); // "pf" is now a type for a pointer to a function
which

// takes 1 float argument and returns an int

This keyword also covered in the CODING STYLE CONVENTIONS SECTION209.

Note:
You will only need to redeclare a typedef, if you want to redefine the same key-
word.

Derived types

Type conversion

Type conversion or typecasting refers to changing an entity of one data type into
another.

Implicit type conversion
Implicit type conversion, also known as coercion, is an automatic and
temporary type conversion by the compiler. In a mixed-type expression, data of

209 Chapter 3.1.8 on page 65

175

Fundamentals for getting started

one or more subtypes can be converted to a supertype as needed at runtime so that
the program will run correctly.

For example:

double d;
long l;
int i;

if (d > i) d = i;
if (i > l) l = i;
if (d == l) d *= 2;

As you can see d, l and i belong to different data types, the compiler will then
automatically and temporarily converted the original types to equal data types
each time a comparison or assignment is executed.

Note:
This behavior should be used with caution, and most modern compiler will provide
a warning, as unintended consequences can arise.
Data can be lost when floating-point representations are converted to integral rep-
resentations as the fractional components of the floating-point values will be trun-
cated (rounded down). Conversely, converting from an integral representation to
a floating-point one can also lose precision, since the floating-point type may be
unable to represent the integer exactly (for example, float might be an IEEE 754
single precision type, which cannot represent the integer 16777217 exactly, while
a 32-bit integer type can). This can lead to situations such as storing the same
integer value into two variables of type int and type single which return false if
compared for equality.

Explicit type conversion
Explicit type conversion manually converts one type into another, and is used in

cases where automatic type casting doesn’t occur.

double d = 1.0;

printf ("%d\n", (int)d);

In this example, d would normally be a double and would be passed to the
PRINTF210 function as such. This would result in unexpected behavior, since

210 Chapter 3.7.11 on page 306

176

Operators

PRINTF211 would try to look for an int. The typecast in the example corrects this,
and passes the integer to PRINTF212 as expected.

Note:
Explicit type casting should only be used as required. It should not be used if
implicit type conversion would satisfy the requirements.

3.4 Operators

Now that we have covered the VARIABLES213 and DATA TYPES214 it becomes
possible to introduce operators. Operators are special symbols that are used to
represent and direct simple computations, this is significative importance in
programming, since they serve to define, in a very direct, non-abtractive way and
simple way, actions and simple interaction with data.

Since computers are mathematical devices, COMPILERS215 and
INTERPRETERS216 require a full syntactic theory of all operations in order to
parse formulas involving any combinations correctly. In particular they depend on
OPERATOR PRECEDENCE217 rules, on ORDER OF OPERATIONS218, that are tacitly
assumed in mathematical writing and the same applies to programming
languages. Conventionally, the computing usage of operator also goes beyond the
MATHEMATICAL USAGE219 (for functions).

C++ like all PROGRAMMING LANGUAGES220 uses a set of operators, they are
subdivided into several groups:

• arithmetic operators (like addition and multiplication).
• boolean operators.
• string operators (used to manipulate STRINGS OF TEXT221).

211 Chapter 3.7.11 on page 306
212 Chapter 3.7.11 on page 306
213 Chapter 3.2.4 on page 125
214 Chapter 3.3.3 on page 142
215 Chapter 3.1.10 on page 91
216 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER
217 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20PRECEDENCE
218 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORDER%20OF%20OPERATIONS
219 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR
220 Chapter 2.1.3 on page 11
221 HTTP://EN.WIKIPEDIA.ORG/WIKI/LITERAL%20STRING

177

http://en.wikipedia.org/wiki/interpreter
http://en.wikipedia.org/wiki/operator%20precedence
http://en.wikipedia.org/wiki/order%20of%20operations
http://en.wikipedia.org/wiki/operator
http://en.wikipedia.org/wiki/literal%20string

Fundamentals for getting started

• pointer operators.
• named operators (operators such as sizeof, new, and delete defined by

alphanumeric names rather than a punctuation character).

Most of the operators in C++ do exactly what you would expect them to do,
because most are common mathematical symbols. For example, the operator for
adding two integers is +. C++ does allows the re-definition of some operators
(OPERATOR OVERLOADING222) on more complex types, this be covered later on.

Expressions can contain both variables names and integer values. In each case the
name of the variable is replaced with its value before the computation is
performed.

3.4.1 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence can
get complicated, but just to get you started:

Multiplication and division happen before addition and subtraction. So 2*3-1
yields 5, not 4, and 2/3-1 yields -1, not 1 (remember that in integer division 2/3 is
0). If the operators have the same precedence they are evaluated from left to right.
So in the expression minute*100/60, the multiplication happens first, yielding
5900/60, which in turn yields 98. If the operations had gone from right to left, the
result would be 59*1 which is 59, which is wrong. Any time you want to override
the rules of precedence (or you are not sure what they are) you can use
parentheses. Expressions in parentheses are evaluated first, so 2 * (3-1) is 4. You
can also use parentheses to make an expression easier to read, as in (minute *
100) / 60, even though it doesn’t change the result.

3.4.2 PRECEDENCE223 (Composition)

At this point we have looked at some of the elements of a programming language
like variables, expressions, and statements in isolation, without talking about how
to combine them.

One of the most useful features of programming languages is their ability to take
small building blocks and compose them (solving big problems by taking small

222 Chapter 4.6 on page 456
223 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20PRECEDENCE

178

http://en.wikipedia.org/wiki/Operator%20precedence

Operators

steps at a time). For example, we know how to multiply integers and we know
how to output values; it turns out we can do both at the same time:

std::cout << 17 * 3;

Actually, I shouldn’t say "at the same time," since in reality the multiplication has
to happen before the output, but the point is that any expression, involving
numbers, characters, and variables, can be used inside an output statement. We’ve
already seen one example:

std::cout << hour * 60 + minute << std::endl;

You can also put arbitrary expressions on the right-hand side of an assignment
statement:

int percentage;
percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly and
concisely.

Note:
There are limits on where you can use certain expressions; most notably, the left-
hand side of an assignment statement (normally) has to be a variable name, not an
expression. That’s because the left side indicates the storage location where the
result will go. Expressions do not represent storage locations, only values.

The following is illegal:minute+1 = hour;

The exact rule for what can go on the left-hand side of an assignment expression
is not so simple as it was in C; as OPERATOR OVERLOADING224 and reference
types can complicate the picture.

3.4.3 Chaining

std::cout << "The sum of " << a << " and " << b << " is " << sum
<< "\n";

224 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20OVERLOADING

179

http://en.wikipedia.org/wiki/operator%20overloading

Fundamentals for getting started

The above line illustrates what is called chaining of insertion operators to print
multiple expressions. How this works is as follows:

1. The leftmost insertion operator takes as its operands, std::cout and the
string "The sum of ", it prints the latter using the former, and returns a
reference to the former.

2. Now std::cout << a is evaluated. This prints the value contained in the
location a, i.e. 123 and again returns std::cout.

3. This process continues. Thus, successively the expressions std::cout <<
" and ", std::cout << b, std::cout << " is ", std::cout << "
sum ", std::cout << "\n" are evaluated and the whole series of chained
values is printed.

225

3.4.4 Table of operators

Operators in the same group have the same precedence and the order of
evaluation is decided by the associativity (left-to-right or right-to-left). Operators
in a preceding group have higher precedence than those in a subsequent group.

Note:
Binding of operators actually cannot be completely described by "precedence"
rules, and as such this table is an approximation. Correct understanding of the
rules requires an understanding of the grammar of expressions.

Operators Description Example Usage Associativity
Scope Resolution Operator

—:: unary scope res-
olution operator
for globals

::NUM_-
ELEMENTS

:: binary scope
resolution oper-
ator
for class and
namespace
members

std::cout

225 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

180

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Operators

Function Call, Member Access, Post-
Increment/Decrement Operators, RTTI and C++
Casts

Left to right

() function call
operator

swap (x, y)

[] array index op-
erator

arr [i]

. member access
operator
for an object of
class/union type
or a reference
to it

obj.member

-> member access
operator
for a pointer to
an object of
class/union type

ptr->member

++ -- post-
increment/decrement
operators

num++

typeid() run time type
identification
operator
for an object or
type

typeid
(std::cout)
typeid
(std::iostream)

181

Fundamentals for getting started

static_-
cast<>()
dynamic_-
cast<>()
const_-
cast<>()
reinterpret_-
cast<>()

C++ style cast
operators
for compile-
time type con-
version
See TYPE CAST-
ING226 for more
info

static_-
cast<float>
(i)
dynamic_-
cast<std::istream>
(stream)
const_-
cast<char*>
("Hello,
World!")
reinterpret_-
cast<const
long*>
("C++")

type()
functional cast
operator
(static_castis
preferred
for conversion
to a primitive
type)

float (i)

also used as a
constructor call
for creating a
temporary ob-
ject, esp.
of a class type

std::string
("Hello,
world!", 0,
5)

Unary Operators

Right to left

!, not logical not oper-
ator

!eof_reached

˜, compl bitwise not op-
erator

˜mask

+ - unary plus/mi-
nus operators

-num

226 Chapter 3.4.14 on page 220

182

Operators

++ -- pre-
increment/decrement
operators

++num

&, bitand address-of oper-
ator

&data

* indirection op-
erator

*ptr

new
new[]
new()
new()[]

new operators
for single ob-
jects or arrays

new
std::string
(5, ’*’)
new int [100]
new (raw_-
mem) int
new (arg1,
arg2) int
[100]

delete
delete[]

delete operator
for pointers to
single objects or
arrays

delete ptr
delete[] arr

sizeof
sizeof()

sizeof opera-
tor
for expressions
or types

sizeof 123
sizeof (int)

(type) C-style cast op-
erator (depre-
cated)

(float)i

Member Pointer Operators
Right to left.* member pointer

access operator
for an object of
class/union type
or a reference
to it

obj.*memptr

->* member pointer
access operator
for a pointer to
an object of
class/union type

ptr->*memptr

183

Fundamentals for getting started

Multiplicative Operators
Left to right

* / % multiplication,
division and
modulus opera-
tors

celsius_diff
* 9 / 5

Additive Operators
Left to right

+ - addition and
subtraction op-
erators

end - start
+ 1

Bitwise Shift Operators
Left to right

<<
>>

left and right
shift operators

bits <<
shift_len
bits >>
shift_len

Relational Inequality Operators
Left to right

< > <= >= less-than,
greater-than,
less-than or
equal-to,
greater-than or
equal-to

i < num_-
elements

Relational Equality Operators
Left to right

== !=, not_eq equal-to, not-
equal-to

choice !=
’n’

Bitwise And Operator
Left to right

&, bitand bits &
clear_mask_-
complement

184

Operators

Bitwise Xor Operator
Left to right

ˆ, xor bits ˆ
invert_mask

Bitwise Or Operator
Left to right

|, bitor bits | set_mask

Logical And Operator
Left to right

&&, and arr != 0 &&
arr->len !=
0

Logical Or Operator
Left to right

||, or arr == 0 ||
arr->len ==
0

Conditional Operator
Right to left

?: size >= 0 ?
size : 0

Assignment Operators
Right to left= assignment op-

erator
i = 0

+= -= *= /=
%=
&=, and_eq
|=, or_eq
ˆ=, xor_eq <<=
>>=

shorthand as-
signment opera-
tors
(foo op= bar-
represents
foo = foo op
bar)

num /= 10

Exceptions
—

185

Fundamentals for getting started

throw throw "Array
index out of
bounds"

Comma Operator
Left to right

, i = 0, j = i
+ 1, k = 0

227

3.4.5 Assignment

The most basic assignment operator is the "=" operator. It assigns one variable to
have the value of another. For instance, the statement x = 3 assigns x the value of
3, and y = x assigns whatever was in x to be in y. When the "=" operator is used
to assign a class or struct, it acts like using the "=" operator on every single
element. For instance:

//Example to demonstrate default "=" operator behavior.

struct A
{
int i;
float f;
A * next_a;

};

//Inside some function
{
A a1, a2; // Create two A objects.

a1.i = 3; // Assign 3 to i of a1.
a1.f = 4.5; // Assign the value of 4.5 to f in a1
a1.next_a = &a2; // a1.next_a now points to a2

a2.next_a = NULL; // a2.next_a is guaranteed to point at nothing now.
a2.i = a1.i; // Copy over a1.i, so that a2.i is now 3.
a1.next_a = a2.next_a; // Now a1.next_a is NULL

a2 = a1; // Copy a2 to a1, so that now a2.f is 4.5. The other two
are unchanged, since they were the same.
}

227 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

186

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Operators

Assignments can also be chained since the assignment operator returns the value
it assigns. But this time the chaining is from right to left. For example, to assign
the value of z to y and assign the same value (which is returned by the = operator)
to x you use:

x = y = z;

When the "=" operator is used in a declaration, it has special meaning. It tells the
COMPILER228 to directly initialize the variable from whatever is on the right-hand
side of the operator. This is called defining a variable, in the same way that you
define a class or a function. With classes, this can make a difference, especially
when assigning to a function call:

class A { /* ... */ };
A foo () { /* ... */ };

// In some function
{
A a;
a = foo();

A a2 = foo();
}

In the first case, a is constructed, then is changed by the "=" operator. In the
second statement, a2 is constructed directly from the return value of foo(). In
many cases, the COMPILER229 can save a lot of time by constructing foo()’s
return value directly into a2’s memory, which makes the program run faster.

Whether or not you define can also matter in a few cases where a definition can
result in different linkage, making the variable more or less available to other
source files.

3.4.6 Arithmetic operators

Arithmetic operations that can be performed on integers (also common in many
other languages) include:

• Addition, using the + operator
• Subtraction, using the - operator
• Multiplication, using the * operator
• Division, using the / operator

228 Chapter 3.1.10 on page 91
229 Chapter 3.1.10 on page 91

187

Fundamentals for getting started

• Remainder, using the % operator

Consider the next example, it will perform an addition and show the result:

#include<iostream>

using namespace std;
int main()
{

int a = 3, b = 5;
cout << a << ’+’ << b << ’=’ << (a+b);
return 0;

}

The line relevant for the operatio is where the + operator adds the values stored in
the locations a and b. a and b are said to be the operands of +. The combination a
+ b is called an expression, specifically an arithmetic expression since + is an
arithmetic operator.

Addition, subtraction and multiplication all do what you expect, but you might be
surprised by division. For example, the following program:

int hour, minute;
hour = 11;
minute = 59;
std::cout << "Number of minutes since midnight: ";
std::cout << hour*60 + minute << std::endl;
std::cout << "Fraction of the hour that has passed: ";
std::cout << minute/60 << std::endl;

would generate the following output:

Number of minutes since midnight: 719

Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for the
discrepancy is that C++ is performing integer division.

When both of the operands are integers (operands are the things operators operate
on), the result must also be an integer, and by definition integer division always
rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

std::cout << "Percentage of the hour that has passed: ";
std::cout << minute*100/60 << std::endl;

188

Operators

The result is:

Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.

This next example:

#include<iostream>

using namespace std;
int main()
{

int a = 33, b = 5;
cout << "Quotient = " << a / b << endl;
cout << "Remainder = "<< a % b << endl;
return 0;

}

will return:

Quotient = 6
Remainder = 3

The multiplicative operators *, / and % are always evaluated before the additive
operators + and -. Among operators of the same class, evaluation proceeds from
left to right. This order can be overridden using grouping by parentheses, (and);
the expression contained within parentheses is evaluated before any other
neighboring operator is evaluated. But note that some COMPILERS230 may not
strictly follow these rules when they try to optimize the code being generated,
unless violating the rules would give a different answer.

For example the following statements convert a temperature expressed in degrees
Celsius to degrees Fahrenheit and vice versa:

deg_f = deg_c * 9 / 5 + 32;
deg_c = (deg_f - 32) * 5 / 9;

3.4.7 Compound assignment

One of the most common patterns in software with regards to operators is to
update a value:

230 Chapter 3.1.10 on page 91

189

Fundamentals for getting started

a = a + 1;
b = b * 2;
c = c / 4;

Since this pattern is used many times, there is a shorthand for it called compound
assignment operators. They are a combination of an existing arithmetic operator
and assignment operator:

• +=
• -=
• *=
• /=
• %=
• <<=
• >>=
• |=
• &=
• ˆ=

Thus the example given in the beginning of the section could be rewritten as

a += 1; // Equivalent to (a = a + 1)
b *= 2; // Equivalent to (b = b * 2)
c /= 4; // Equivalent to (c = c / 4)

3.4.8 Character operators

Interestingly, the same mathematical operations that work on integers also work
on characters.

char letter;
letter = ’a’ + 1;
std::cout << letter << std::endl;

For the above example, outputs the letter b (on most systems -- note that C++
doesn’t assume use of ASCII, EBCDIC, Unicode etc. but rather allows for all of
these and other CHARSETS231). Although it is syntactically legal to multiply
characters, it is almost never useful to do it.

Earlier I said that you can only assign integer values to integer variables and
character values to character variables, but that is not completely true. In some

231 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARSET

190

http://en.wikipedia.org/wiki/charset

Operators

cases, C++ converts automatically between types. For example, the following is
legal.

int number;
number = ’a’;
std::cout << number << std::endl;

On most mainstream desktop computers the result is 97, which is the number that
is used internally by C++ on that system to represent the letter ’a’. However, it is
generally a good idea to treat characters as characters, and integers as integers,
and only convert from one to the other if there is a good reason. Unlike some
other languages, C++ does not make strong assumptions about how the
underlying platform represents characters; ASCII, EBCDIC and others are
possible, and portable code will not make assumptions (except that ’0’, ’1’, ..., ’9’
are sequential, so that e.g. ’9’-’0’ == 9).

Automatic type conversion is an example of a common problem in designing a
programming language, which is that there is a conflict between formalism,
which is the requirement that formal languages should have simple rules with few
exceptions, and convenience, which is the requirement that programming
languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert
programmers, who are spared from rigorous but unwieldy formalism, but bad for
beginning programmers, who are often baffled by the complexity of the rules and
the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

3.4.9 Bitwise operators

These operators deal with a bitwise operations. Bit operations needs the
understanding of binary numeration since it will deal with on one or two bit
patterns or binary numerals at the level of their individual bits. On most
microprocessors, bitwise operations are sometimes slightly faster than addition
and subtraction operations and usually significantly faster than multiplication and
division operations.

Bitwise operations especially important for much low-level programming from
optimizations to writing device drivers, low-level graphics, communications
protocol packet assembly and decoding.

191

Fundamentals for getting started

Although machines often have efficient built-in instructions for performing
arithmetic and logical operations, in fact all these operations can be performed
just by combining the bitwise operators and zero-testing in various ways.

The bitwise operators work bit by bit on the operands. The operands must be of
integral type (one of the types used for integers).

For this section, recall that a number starting with 0x is hexadecimal (hexa, or hex
for short or referred also as base-16). Unlike the normal decimal system using
powers of 10 and the digits 0123456789, hex uses powers of 16 and the symbols
0123456789abcdef. In the examples remember that Oxc equals 1100 in binary
and 12 in decimal. C++ does not directly support binary notation, which would
hamper readability of the code.

NOT

˜a

bitwise complement of a.

˜0xc produces the value -1-0xc (in binary, ˜1100 produces ...11110011 where
"..." may be many more 1 bits)

The negation operator is a unary operator which precedes the operand, This
operator must not be confused with the "logical not" operator, "!" (exclamation
point), which treats the entire value as a single BOOLEAN232—changing a true
value to false, and vice versa. The "logical not" is not a bitwise operation.

These others are binary operators which lie between the two operands. The
precedence of these operators is lower than that of the relational and equivalence
operators; it is often required to parenthesize expressions involving bitwise
operators.

AND

a & b

bitwise boolean and of a and b

232 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOOLEAN%20DATATYPE

192

http://en.wikipedia.org/wiki/Boolean%20datatype

Operators

0xc & 0xa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

The TRUTH TABLE233 of a AND b:

a b ∧∧∧

1 1 1
1 0 0
0 1 0
0 0 0

OR

a | b

bitwise boolean or of a and b

0xc | 0xa produces the value 0xe (in binary, 1100 | 1010 produces 1110)

The TRUTH TABLE234 of a OR b is:

a b ∨∨∨

1 1 1
1 0 1
0 1 1
0 0 0

XOR

a ˆ b

bitwise xor of a and b

0xc ˆ 0xa produces the value 0x6 (in binary, 1100 ˆ 1010 produces 0110)

The TRUTH TABLE235 of a XOR b:

233 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH%20TABLE
234 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH%20TABLE
235 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH%20TABLE

193

http://en.wikipedia.org/wiki/truth%20table
http://en.wikipedia.org/wiki/truth%20table
http://en.wikipedia.org/wiki/truth%20table

Fundamentals for getting started

a b ⊕⊕⊕

1 1 0
1 0 1
0 1 1
0 0 0

Bit shifts

a << b

shift a left by b (multiply a by 2b)

0xc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value
11000)

a >> b

shift a right by b (divide a by 2b)

0xc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

3.4.10 Derived types operators

There are three data types known as pointers, references, and arrays, that have
their own operators for dealing with them. Those are *, &, [], ->, .*, and ->*.

Pointers, references, and arrays are fundamental data types that deal with
accessing other variables. Pointers are used to pass around a variables address
(where it is in memory), which can be used to have multiple ways to access a
single variable. References are aliases to other objects, and are similar in use to
pointers, but still very different. Arrays are large blocks of contiguous memory
that can be used to store multiple objects of the same type, like a sequence of
characters to make a string.

Subscript operator []

This operator is used to access an object of an array. It is also used when
declaring array types, allocating them, or deallocating them.

194

Operators

Arrays
An ARRAY236 stores a constant-sized sequential set of blocks, each block
containing a value of the selected type under a single name. Arrays often help
organize collections of data efficiently and intuitively.

It is easiest to think of an array as simply a list with each value as an item of the
list. Where individual elements are accessed by their position in the array called
its index, also known as subscript. Each item in the array has an index from 0 to
(the size of the array) -1, indicating its position in the array.

Advantages of arrays include:

• Random access in O(1) (BIG O NOTATION237)
• Ease of use/port: Integrated into most modern languages

Disadvantages include:

• Constant size
• Constant data-type
• Large free sequential block to accommodate large arrays
• When used as non-static data members, the element type must allow default

construction
• Arrays do not support copy assignment (you cannot write arraya = arrayb)
• Arrays cannot be used as the value type of a standard container
• Syntax of use differs from standard containers
• Arrays and inheritance don’t mix (an array of Derived is not an array of Base,

but can too easily be treated like one)

Note:
If complexity allows you should consider the use of containers (as in the C++
Standard Library). You should and can use for example std::vector which are
as fast as arrays in most situations, can be dynamically resized, support iterators,
and lets you treat the storage of the vector just like an array.
(Modern C allows VLAs, variable length arrays, but these are not used in C++,
which already had a facility for re-sizable arrays in std::vector.)
The pointer operator as you will see is similar to the array operator.

For example, here is an array of integers, called List with 5 elements, numbered 0
to 4. Each element of the array is an integer. Like other integer variables, the
elements of the array start out uninitialized. That means it is filled with unknown

236 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARRAY
237 HTTP://EN.WIKIPEDIA.ORG/WIKI/BIG%20O%20NOTATION

195

http://en.wikipedia.org/wiki/array
http://en.wikipedia.org/wiki/Big%20o%20notation

Fundamentals for getting started

values until we initialize it by assigning something to it. (Remember primitive
types in C are not initialized to 0.)

Index Data
00 unspecified
01 unspecified
02 unspecified
03 unspecified
04 unspecified

Since an array stores values, what type of values and how many values to store
must be defined as part of an array declaration, so it can allocate the needed
space. The size of array must be a const integral expression greater than zero.
That means that you cannot use user input to declare an array. You need to
allocate the memory (with operator new[]), so the size of an array has to be
known at compile time. Another disadvantage of the sequential storage method is
that there has to be a free sequential block large enough to hold the array. If you
have an array of 500,000,000 blocks, each 1 byte long, you need to have roughly
500 megabytes of sequential space to be free; Sometimes this will require a
defragmentation of the memory, which takes a long time.

To declare an array you can do:

int numbers[30]; // creates an array of 30 integers

or

char letters[4]; // create an array of 4 characters

and so on...

to initialize as you declare them you can use:

int vector[6]={0,0,1,0,0,0};

this will not only create the array with 6 int elements but also initialize them to
the given values.

Assigning and accessing data
You can assign data to the array by using the name of the array, followed by the

index.

For example to assign the number 200 into the element at index 2 in the array

196

Operators

List[2] = 200;

will give

Index Data
00 unspecified
01 unspecified
02 200
03 unspecified
04 unspecified

You can access the data at an element of the array the same way.

std::cout << List[2] << std::endl;

This will print 200.

Basically working with individual elements in an array is no different then
working with normal variables.

As you see accessing a value stored in an array is easy. Take this other example:

int x;
x = vector[2];

The above declaration will assign x the valued store at index 2 of variable vector
which is 1.

Arrays are indexed starting at 0, as opposed to starting at 1. The first element of
the array above is vector[0]. The index to the last value in the array is the array
size minus one. In the example above the subscripts run from 0 through 5. C++
does not do bounds checking on array accesses. The compiler will not complain
about the following:

char y;
int z = 9;
char vector[6] = { 1, 2, 3, 4, 5, 6 };

// examples of accessing outside the array. A compile error is not raised
y = vector[15];
y = vector[-4];
y = vector[z];

During program execution, an out of bounds array access does not always cause a
run time error. Your program may happily continue after retrieving a value from

197

Fundamentals for getting started

vector[-1]. To alleviate indexing problems, the sizeof expression is
commonly used when coding loops that process arrays.

int ix;
short anArray[]= { 3, 6, 9, 12, 15 };

for (ix=0; ix< (sizeof(anArray)/sizeof(short)); ++ix) {
DoSomethingWith(anArray[ix]);

}

Notice in the above example, the size of the array was not explicitly specified.
The compiler knows to size it at 5 because of the five values in the initializer list.
Adding an additional value to the list will cause it to be sized to six, and because
of the sizeof expression in the for loop, the code automatically adjusts to this
change.

You can also use multi-dimensional arrays. The simplest type is a two
dimensional array. This creates a rectangular array - each row has the same
number of columns. To get a char array with 3 rows and 5 columns we write...

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;
ch = two_d[2][4];

or

two_d[0][0] = ’x’;

There are also weird notations possible:

int a[100];
int i = 0;
if (a[i]==i[a])
printf("Hello World!\n");

a[i] and i[a] point to the same location. You will understand this better after
knowing about pointers.

To get an array of a different size, you must explicitly deal with memory using
realloc, malloc, memcpy, etc.

Why start at 0?
Most programming languages number arrays from 0. This is useful in languages

where arrays are used interchangeably with a pointer to the first element of the

198

Operators

array. In C++ the address of an element in the array can be computed from
(address of first element) + i, where i is the index starting at 0 (a[1] == *(a + 1)).
Notice here that "(address of the first element) + i" is not a literal addition of
numbers. Different types of data have different sizes and the compiler will
correctly take this into account. Therefore, it is simpler for the pointer arithmetic
if the index started at 0.

Why no bounds checking on array indexes?
C++ does allow for, but doesn’t force, bounds-checking implementations, in
practice little or no checking is done. It affects storage requirements (needing "fat
pointers") and impacts runtime performance. However, the std::vector
template class as we will see is an object representing an array, and it provides the
at() method, which does enforce bounds checking. Also in many
implementations, the standard containers include particularly complete bounds
checking in debug mode. They might not support these checks in release builds,
as any performance reduction in container classes relative to built-in arrays might
prevent programmers from migrating from arrays to the more modern, safer
container classes.

address-of operator &

To get the address of a variable so that you can assign a pointer, you use the
"address of" operator, which is denoted by the ampersand & symbol. The "address
of" operator does exactly what it says, it returns the "address of" a variable, a
symbolic constant, or a element in an array, in the form of a pointer of the
corresponding type. To use the "address of" operator, you tack it on in front of the
variable that you wish to have the address of returned. It is also used when
declaring reference types.

Now, do not confuse the "address of" operator with the declaration of a reference.
Because use of operators is restricted to expression, the COMPILER238 knows that
&sometype is the "address of" operator being used to denote the return of the
address of sometype as a POINTER239.

References
References are a way of assigning a "handle" to a variable. References can also

238 Chapter 3.1.10 on page 91
239 Chapter 3.4.10 on page 201

199

Fundamentals for getting started

be thought of as "aliases"; they’re not real objects, they’re just alternative names
for other objects.

Assigning References

This is the less often used variety of references, but still worth noting as an
introduction to the use of references in function arguments. Here we create a
reference that looks and acts like a standard variable except that it operates on
the same data as the variable that it references.

int tZoo = 3; // tZoo == 3
int &refZoo = tZoo; // tZoo == 3
refZoo = 5; // tZoo == 5

refZoo is a reference to tZoo. Changing the value of refZoo also changes the
value of tZoo.

Note:
One use of variable references is to pass function arguments using references. This
allows the function to update / change the data in the variable being referenced

For example say we want to have a function to swap 2 integers

void swap(int &a, int &b){
int temp = a;
a = b;
b = temp;

}

int main(){
int x = 5;
int y = 6;
int &refx = x;
int &refy = y;
swap(refx, refy); // now x = 6 and y = 5
swap(x, y); // and now x = 5 and y = 6 again

}

References cannot be null as they refer to instantiated objects, while pointers can
be null. References cannot be reassigned, while pointers can be.

int main(){
int x = 5;
int y = 6;
int &refx = x;
&refx = y; // won’t compile

}

200

Operators

As references provide strong guarantees when compared with pointers, using
references makes the code simpler. Therefore using references should usually be
preferred over using pointers. Of course, pointers have to be used at the time of
dynamic memory allocation (new) and deallocation (delete).

Pointers, Operator *

The * operator is used when declaring pointer types but it is also used to get the
variable pointed to by a pointer.

Figure 19: Pointer a pointing
variable b. Note that b stores
number, whereas a stores address of
b in memory (1462)

Pointers are important data types due to special characteristics. They may be used
to indicate a variable without actually creating a variable of that type. They can be
a difficult concept to understand, some special effort should be spent on
understanding the power they give to programmers.

Pointers have a very descriptive name. Pointers variables only store memory
addresses, usually the addresses of other variables. Essentially, they point to
another variable memory location, a reserved location on the computer memory.
You can use a pointer to PASS THE LOCATION OF A VARIABLE TO A

201

Fundamentals for getting started

FUNCTION240, this enables the function’s pointer to use the variable space, so that
it can retrieve or modify its data. You can even have pointers to pointers, and
pointers to pointers to pointers and so on and so forth.

Declaring
Pointers are declared by adding a * before the variable name in the declaration,

as in the following example:

int* x; // pointer to int.
int * y; // pointer to int. (legal, but rarely used)
int *z; // pointer to int.
int*i; // pointer to int. (legal, but rarely used)

Note:
As always whitespace does not matter, so the position of the * doesn’t matter only
the order of the use.

Due to historical reasons some programmers refer to a specific use as:
// C codestyle int *z;

// C++ codestyle int* z;

As seen before on the CODING STYLE CONVENTIONS SECTIONa adherence to a
single style is preferred.

a Chapter 3.1.7 on page 63

Watch out, though, because the * associates to the following declaration only:

int* i, j; // CAUTION! i is pointer to int, j is int.
int *i, *j; // i and j are both pointer to int.

You can also have multiple pointers chained together, as in the following example:

int **i; // Pointer to pointer to int.
int ***i; // Pointer to pointer to pointer to int (rarely used).

Assigning values
Everyone gets confused about pointers as assigning values to pointers may be a

bit tricky but if you know the basic you can proceed more easily. By carefully

240 Chapter 3.7 on page 245

202

Operators

going through the examples rather than a simple description, try to understand the
points as they are presented to you.

Assigning values to pointers (non-char type)

double vValue = 25.0;// declares and initializes a vValue as type double
double* pValue = &vValue;
cout << *pValue << endl;

The second statement uses "&" the reference operator and "*" to tell the compiler
this is a pointer variable and assign vValue variable’s address to it. In the last
statement, it outputs the value from the vValue variable by de-referencing the
pointer using the "*" operator.

Assigning values to pointers (char type)

char pArray[20] = {"Name1"};
char* pValue(pArray);// or 0 in old compilers, nullptr is a part of C++0X
pValue = "Value1";
cout << pValue << endl ;// this will return the Value1;

So as mentioned early, a pointer is a variable which stores the address of another
variable, as you need to initialize an array because you can not directly assign
values to it. You will need to use pointers directly or a pointer to array in a mixed
context, to use pointers alone, examine the next example.

char* pValue("String1");
pValue = "String2";
cout << pValue << endl ;

Remember you can’t leave the pointer alone or initialize it as nullptr cause it will
case an error. The compiler thinks it is as a memory address holder variable since
you didn’t point to anything and will try to assign values to it, that will cause an
error since it does not point to anywhere.

Dereferencing
This is the * operator. It is used to get the variable pointed to by a pointer. It is
also used when declaring pointer types.

When you have a pointer, you need some way to access the memory that it points
to. When it is put in front of a pointer, it gives the variable pointed to. This is an
lvalue, so you can assign values to it, or even initialize a reference from it.

203

Fundamentals for getting started

#include <iostream>

int main()
{
int i;
int * p = &i;
i = 3;

std::cout<<*p<<std::endl; // prints "3"

return 0;
}

Since the result of an & operator is a pointer, *&i is valid, though it has absolutely
no effect.

Now, when you combine the <Tt>* operator with classes, you may notice a
problem. It has lower precedence than .! See the example:

struct A { int num; };

A a;
int i;
A * p;

p = &a;
a.num = 2;

i = *p.num; // Error! "p" isn’t a class, so you can’t use "."
i = (*p).num;

The error happens because the compiler looks at p.num first ("." has higher
precedence than "*") and because p does not have a member named num the
compiler gives you an error. Using grouping symbols to change the precedence
gets around this problem.

It would be very time-consuming to have to write (*p).num a lot, especially
when you have a lot of classes. Imagine writing
(*(*(*(*MyPointer).Member).SubMember).Value).WhatIWant! As a result,
a special operator, ->, exists. Instead of (*p).num, you can write p->num, which
is completely identical for all purposes. Now you can write
MyPointer->Member->SubMember->Value->WhatIWant. It’s a lot easier on the
brain!

Null pointer
The null pointer is a special status of pointers. It means that the pointer points to
absolutely nothing. It is an error to attempt to dereference (using the * or ->

204

Operators

operators) a null pointer. A null pointer can be referred to using the constant zero,
as in the following example:

int i;
int *p;

p = 0; //Null pointer.
p = &i; //Not the null pointer.

Note that you can’t assign a pointer to an integer, even if it’s zero. It has to be the
constant. The following code is an error:

int i = 0;
int *p = i; //Error: 0 only evaluates to null if it’s a pointer

There is an old macro, defined in the standard library, derived from the C
language that inconsistently has evolved into #define NULL ((void *)0), this
makes NULL, always equal to a null pointer value (essentially, 0).

Note:
It is considered as good practice to avoid the use of macros and defines as much as
possible. In the particular case at hand the NULL isn’t type-safe. Any rational to
use it for visibility of the use of a pointer can be addressed by the proper naming
of the pointer variable.

Since a null pointer is 0, it will always compare to 0. Like an integer, if you use it
in a true/false expression, it will return false if it is the null pointer, and true if it’s
anything else:

#include <iostream>

void IsNull (int * p)
{
if (p)
std::cout<<"Pointer is not NULL"<<std::endl;

else
std::cout<<"Pointer is NULL"<<std::endl;

}

int main()
{
int * p;
int i;

p = NULL;
IsNull(p);
p = &i;
IsNull(&i);
IsNull(p);

205

Fundamentals for getting started

IsNull(NULL);

return 0;
}

This program will output that the pointer is NULL, then that it isn’t NULL twice,
then again that it is.

Pointers and multi-dimensional arrays

Pointers and Multi-Dimensional non-Char Arrays

This is tricky part and might be hard but relatively than next part we are going to
talk about ,first of all you need to know at least how to use Two Dimensional
Arrays /Assign Values to Arrays / Return Values from Arrays ,since this is
reserved for Pointer I am not going to mention about Arrays separately but when
Arrays needed it will mixed up with pointer

The main objects are

1. Assign Values to Multi Dimensional Pointers
2. How to use Pointers with Multi Dimensional Arrays
3. Return Values
4. Initialize Pointers and Arrays
5. How to Arrange Values in them

1. Assign Values to Multi Dimensional Pointers.

In non-Char Type you need to involve arrays with Pointers cause since Pointers
treat char* type to in special way and other type to another way like only refer the
address or get the address and get the value by indirect method.

If you declare it like this way:

double (*pDVal)[2] = {{1,2},{1,2}};

It will probably generate an error! Because pointers used in non-Char type only
directly, in char types refer the address of another variable by assigning a variable
first then you can get its(that assigned variable)value by indirect way.!

double ArrayVal[5][5] = {
{1,2,3,4,5},
{1,2,3,4,5},

206

Operators

{1,2,3,4,5},
{1,2,3,4,5},
{1,2,3,4,5},
};
double(*pArray)[5] = ArrayVal;

1)*(*(pArray+0)+0) = 10;
1)*(*(pArray+0)+1) = 20;
1)*(*(pArray+0)+2) = 30;
1)*(*(pArray+0)+3) = 40;
1)*(*(pArray+0)+4) = 50;
1)*(*(pArray+1)+0) = 60;
1)*(*(pArray+1)+1) = 70;
1)*(*(pArray+1)+2) = 80;
1)*(*(pArray+1)+3) = 90;
1)*(*(pArray+1)+4) = 100;
1)*(*(pArray+2)+0) = 110;
1)*(*(pArray+2)+1) = 120;
1)*(*(pArray+2)+2) = 130;
1)*(*(pArray+2)+3) = 140;
1)*(*(pArray+2)+4) = 150;
1)*(*(pArray+3)+0) = 160;
1)*(*(pArray+3)+1) = 170;
1)*(*(pArray+3)+2) = 180;
1)*(*(pArray+3)+3) = 190;
1)*(*(pArray+3)+4) = 200;
1)*(*(pArray+4)+0) = 210;
1)*(*(pArray+4)+1) = 220;
1)*(*(pArray+4)+2) = 230;
1)*(*(pArray+4)+3) = 240;
1)*(*(pArray+4)+4) = 250;

There is another way instead
1)*(*(pArray+0)+0)
it’s
1)*(pArray[0]+0)
You can use one of them to assign value to Array through the pointer to return
values you can use either the appropriate Array or Pointer.

Pointers and multi-dimensional char arrays

This is bit hard and even hard to remember so I suggest keep practice until you
get the spirit Pointers only.! You can’t use Pointers + Multi Dimensional Arrays
with Char Type. Only for non-char type.

Multi-dimensional pointer with char type

char* pVar[5] = { "Name1" , "Name2" , "Name3", "Name4", "Name5" }

207

Fundamentals for getting started

pVar[0] = "XName01";
cout << pVar[0] << endl ; //this will return the XName01 instead Name1 which was
replaced with Name1.

in here the 5 means of the first statement is the number of rows (there are no
columns need to be specified in pointer it’s only in Arrays) the next statement
assigns another string to position 0 which is the position of first place of first
statement. finally return the answer

Dynamic memory allocation

In your system memory each memory block got an address so whenever you
compile the code at the beginning all variable reserve some space in the memory
but in Dynamic Memory Allocation it only reserve when it needed it means at
execution time of that statement this allocates memory in your free space
area(unused space) so it means if there is no space or no contiguous blocks then
the compiler will generate and error message

Dynamic memory allocation and pointer non-char type

This is same as assign non-char 1 dimensional Array to Pointer

double* pVal = new double; //or double* pVal = new double[5]; 1)*(pVal+0) =
10; 1)*(pVal+1) = 20; 1)*(pVal+2) = 30; 1)*(pVal+3) = 40; 1)*(pVal+4) = 50;

cout << *(pVal+0) << endl;

The first statement’s Lside(left side) declares an variable and Rside request a
space for double type variable and allocate it in free space area in your memory.
So next and so fourth you can see it increases the integer value that means
*(pVal+0) pVal -> if this uses alone it will return the address corresponding to
first memory block. (that used to store the 10) and 0 means move 0 block ahead
but it’s 0 it means don’t move stay in current memory block, and you use ()
parenthesis cause + < * < () consider the priority so you need to use parenthesis
avoid to calculating the * fist

• is called INDIRECT Operator which DE-REFERENCE THE Pointer and return
the value corresponding to the memory block.

(Memory Block Address+steps)

• -> De-reference.

Dynamic memory allocation and pointer char type

208

Operators

char* pVal = new char;
pVal = "Name1";
cout << pVal << endl;
delete pVal; //this will delete the allocated space
pVal = nullptr //null the pointer

You can see this is the same as static memory declaration, in static declaration it
goes:

<code>char* pVal("Name1");</code>

Dynamic memory allocation and pointer non-char array type

double (*pVal2)[2]= new double[2][2]; //this will add 2x2 memory blocks to type
double pointer 1)*(*(pVal2+0)+0) = 10; 1)*(*(pVal2+0)+1) = 10;
1)*(*(pVal2+0)+2) = 10; 1)*(*(pVal2+0)+3) = 10; 1)*(*(pVal2+0)+4) = 10;

1)*(*(pVal2+1)+0) = 10; 1)*(*(pVal2+1)+1) = 10; 1)*(*(pVal2+1)+2) = 10;
1)*(*(pVal2+1)+3) = 10; 1)*(*(pVal2+1)+4) = 10;

delete [] pVal; //it doesn’t matter the dimension you only need to mention []
pVal = nullptr

Note:
Never use a multi-dimensional pointer array with char type, as it will generate an
error.
char (*pVal)[5] ;// this is different from pointer of array

// which is char* pVal[5] ;

But both are different.

Pointers to classes

Indirection operator ->
This pointer indirection operator is used to access a member of a class pointer.

Member dereferencing operator .*
This pointer-to-member dereferencing operator is used to access the variable
associated with a specific class instance, given an appropriate pointer.

209

Fundamentals for getting started

Member indirection operator ->*
This pointer-to-member indirection operator is used to access the variable

associated with a class instance pointed to by one pointer, given another
pointer-to-member that’s appropriate.

Pointers to functions
When used to point to functions, pointers can be exceptionally powerful. A call

can be made to a function anywhere in the program, knowing only what kinds of
parameters it takes. POINTERS TO FUNCTIONS241 are used several times in the
standard library, and provide a powerful system for other libraries which need to
adapt to any sort of user code. This case is examined more in depth in the
FUNCTIONS SECTION242 of this book.
243

3.4.11 sizeof

The sizeof keyword refers to an operator that works at compile time to report on
the size of the storage occupied by a TYPE244 of the argument passed to it
(equivalently, by a variable of that type). That size is returned as a multiple of the
size of a char, which on many personal computers is 1 byte (or 8 bits). The
number of bits in a char is stored in the CHAR_BIT constant defined in the
<climits> header file. This is one of the operators for which OPERATOR
OVERLOADING245 is not allowed.

//Examples of sizeof use
int int_size(sizeof(int));// Might give 1, 2, 4, 8 or other values.

// or

int answer(42);
int answer_size(sizeof(answer));// Same value as sizeof(int)
int answer_size(sizeof answer); // Equivalent syntax

For example, the following code uses sizeof to display the sizes of a number of
variables:

struct EmployeeRecord {
int ID;

241 Chapter 3.7.7 on page 271
242 Chapter 3.7 on page 245
243 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
244 Chapter 3.3.3 on page 142
245 Chapter 4.6 on page 456

210

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Operators

int age;
double salary;
EmployeeRecord* boss;

};

//...

cout << "sizeof(int): " << sizeof(int) << endl
<< "sizeof(float): " << sizeof(float) << endl
<< "sizeof(double): " << sizeof(double) << endl
<< "sizeof(char): " << sizeof(char) << endl
<< "sizeof(EmployeeRecord): " << sizeof(EmployeeRecord) << endl;

int i;
float f;
double d;
char c;
EmployeeRecord er;

cout << "sizeof(i): " << sizeof(i) << endl
<< "sizeof(f): " << sizeof(f) << endl
<< "sizeof(d): " << sizeof(d) << endl
<< "sizeof(c): " << sizeof(c) << endl
<< "sizeof(er): " << sizeof(er) << endl;

On most machines (considering the size of char), the above code displays this
output:

sizeof(int): 4
sizeof(float): 4
sizeof(double): 8
sizeof(char): 1
sizeof(EmployeeRecord): 20
sizeof(i): 4
sizeof(f): 4
sizeof(d): 8
sizeof(c): 1
sizeof(er): 20

It is also important to note that the sizes of various types of variables can change
depending on what system you’re on. Check the DATA TYPES PAGE246 for more
information.

Syntactically, sizeof appears like a function call when taking the size of a type,
but may be used without parentheses when taking the size of a variable type (e.g.
sizeof(int)). Parentheses can be left out if the argument is a variable or array
(e.g. sizeof x, sizeof myArray). Style guidelines vary on whether using the
latitude to omit parentheses in the latter case is desirable.

Consider the next example:

246 Chapter 3.3.4 on page 143

211

Fundamentals for getting started

#include <cstdio>

short func(short x)
{
printf("%d", x);
return x;

}

int main()
{
printf("%d", sizeof(sizeof(func(256))));

}

Since sizeof does not evaluate anything at run time, the func() function is
never called. All information needed is the return type of the function, the first
sizeof will return the size of a short (the return type of the function) as the value
2 (in size_t, an integral type defined in the include file STDDEF.H) and the
second sizeof will return 4 (the size of size_t returned by the first sizeof).

sizeof measures the size of an object in the simple sense of a contiguous area of
storage; for types which include pointers to other storage, the indirect storage is
not included in the value returned by sizeof. A common mistake made by
programming newcomers working with C++ is to try to use sizeof to determine
the length of a string; the std::strlen or std::string::length functions are
more appropriate for that task.

sizeof has also found new life in recent years in template meta programming,
where the fact that it can turn types into numbers, albeit in a primitive manner, is
often useful, given that the TEMPLATE METAPROGRAMMING247 environment
typically does most of its calculations with types.

3.4.12 Dynamic memory allocation

Dynamic memory allocation is the allocation of MEMORY248 storage for use in a
COMPUTER PROGRAM249 during the RUNTIME250 of that program. It is a way of
distributing ownership of limited memory resources among many pieces of data
and code. Importantly, the amount of memory allocated is determined by the
program at the time of allocation and need not be known in advance. A dynamic
allocation exists until it is explicitly released, either by the programmer or by a

247 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING
248 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20STORAGE
249 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM
250 HTTP://EN.WIKIPEDIA.ORG/WIKI/RUNTIME

212

http://en.wikipedia.org/wiki/template%20metaprogramming
http://en.wikipedia.org/wiki/computer%20storage
http://en.wikipedia.org/wiki/computer%20program
http://en.wikipedia.org/wiki/runtime

Operators

GARBAGE COLLECTOR251 implementation; this is notably different from
AUTOMATIC252 and STATIC MEMORY ALLOCATION253, which require advance
knowledge of the required amount of memory and have a fixed duration. It is said
that an object so allocated has dynamic lifetime.

The task of fulfilling an allocation request, which involves finding a block of
unused memory of sufficient size, is complicated by the need to avoid both
internal and external FRAGMENTATION254 while keeping both allocation and
deallocation EFFICIENT255. Also, the allocator’s METADATA256 can inflate the size
of (individually) small allocations; CHUNKING257 attempts to reduce this effect.

Usually, memory is allocated from a large pool of unused memory area called the
heap (also called the free store). Since the precise location of the allocation is
not known in advance, the memory is accessed indirectly, usually via a
REFERENCE258. The precise algorithm used to organize the memory area and
allocate and deallocate chunks is hidden behind an abstract interface and may use
any of the methods described below.

You have probably wondered how programmers allocate memory efficiently
without knowing, prior to running the program, how much memory will be
necessary. Here is when the fun starts with dynamic memory allocation.

new and delete
For dynamic memory allocation we use the new and delete keywords, the old
malloc from C functions can now be avoided but are still accessible for
compatibility and low level control reasons.

As covered before, we assign values to pointers using the "address of" operator
because it returns the address in memory of the variable or constant in the form of
a pointer. Now, the "address of" operator is NOT the only operator that you can
use to assign a pointer. You have yet another operator that returns a pointer, which
is the new operator. The new operator allows the programmer to allocate memory

251 HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE%20COLLECTION%20%
28COMPUTER%20SCIENCE%29

252 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUTOMATIC%20MEMORY%20ALLOCATION
253 HTTP://EN.WIKIPEDIA.ORG/WIKI/STATIC%20MEMORY%20ALLOCATION
254 HTTP://EN.WIKIPEDIA.ORG/WIKI/FRAGMENTATION%20%28COMPUTER%29
255 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALGORITHMIC_EFFICIENCY
256 HTTP://EN.WIKIPEDIA.ORG/WIKI/METADATA%20%28COMPUTING%29
257 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHUNKING%20%28COMPUTING%29
258 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTER%

20SCIENCE%29

213

http://en.wikipedia.org/wiki/garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/automatic%20memory%20allocation
http://en.wikipedia.org/wiki/static%20memory%20allocation
http://en.wikipedia.org/wiki/fragmentation%20%28computer%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/metadata%20%28computing%29
http://en.wikipedia.org/wiki/chunking%20%28computing%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29

Fundamentals for getting started

for a specific data type, struct, class, etc., and gives the programmer the address of
that allocated sect of memory in the form of a pointer. The new operator is used
as an rvalue, similar to the "address of" operator. Take a look at the code below to
see how the new operator works.

By assigning the pointers to an allocated sector of memory, rather than having to
use a variable declaration, you basically override the "middleman" (the variable
declaration). Now, you can allocate memory dynamically without having to know
the number of variables you should declare.

int n = 10;
SOMETYPE *parray, *pS;
int *pint;

parray = new SOMETYPE[n];
pS = new SOMETYPE;
pint = new int;

If you looked at the above piece of code, you can use the new operator to allocate
memory for arrays too, which comes quite in handy when we need to manipulate
the sizes of large arrays and or classes efficiently. The memory that your pointer
points to because of the new operator can also be "deallocated," not destroyed but
rather, freed up from your pointer. The delete operator is used in front of a pointer
and frees up the address in memory to which the pointer is pointing.

delete [] parray;// note the use of [] when destroying an array allocated with
new
delete pint;

The memory pointed to by parray and pint have been freed up, which is a very
good thing because when you’re manipulating multiple large arrays, you try to
avoid losing the memory someplace by leaking it. Any allocation of memory
needs to be properly deallocated or a leak will occur and your program won’t run
efficiently. Essentially, every time you use the new operator on something, you
should use the delete operator to free that memory before exiting. The delete
operator, however, not only can be used to delete a pointer allocated with the new
operator, but can also be used to "delete" a null pointer, which prevents attempts
to delete non-allocated memory (this action compiles and does nothing).

You must keep in mind that new T and new T() are not equivalent. This will be
more understandable after you are introduced to more complex types like classes,
but keep in mind that when using new T() it will initialize the T memory location
("zero out") before calling the constructor (if you have non-initialized members
variables, they will be initialized by default).

214

Operators

The new and delete operators do not have to be used in conjunction with each
other within the same function or block of code. It is proper and often advised to
write functions that allocate memory and other functions that deallocate memory.
Indeed, the currently favored style is to release resources in object’s destructors,
using the so-called RESOURCE ACQUISITION IS INITIALIZATION259 (RAII)
idiom.

As we will see when we get to the Classes, a class destructor is the ideal location
for its deallocator, it is often advisable to leave memory allocators out of classes’
constructors. Specifically, using new to create an array of objects, each of which
also uses new to allocate memory during its construction, often results in runtime
errors. If a class or structure contains members which must be pointed at
dynamically-created objects, it is best to sequentially initialize arrays of the
parent object, rather than leaving the task to their constructors.

Note:
If possible you should use new and delete instead of malloc and free.

// Example of a dynamic array

const int b = 5;
int *a = new int[b];

//to delete
delete[] a;

The ideal way is to not use arrays at all, but rather the STL’s vector type (a
container similar to an array). To achieve the above functionality, you should do:

const int b = 5;
std::vector<int> a;
a.resize(b);

//to delete
a.clear();

Vectors allow for easy insertions even when "full." If, for example, you filled up
a, you could easily make room for a 6th element like so:

int new_number = 99;
a.push_back(new_number);//expands the vector to fit the 6th element

259 HTTP://EN.WIKIPEDIA.ORG/WIKI/RAII

215

http://en.wikipedia.org/wiki/RAII

Fundamentals for getting started

You can similarly dynamically allocate a rectangular multidimensional array (be
careful about the type syntax for the pointers):

const int d = 5;
int (*two_d_array)[4] = new int[d][4];

//to delete
delete[] two_d_array;

You can also emulate a ragged multidimensional array (sub-arrays not the same
size) by allocating an array of pointers, and then allocating an array for each of
the pointers. This involves a loop.

const int d1 = 5, d2 = 4;
int **two_d_array = new int*[d1];
for(int i = 0; i < d1; ++i)
two_d_array[i] = new int[d2];

//to delete
for(int i = 0; i < d1; ++i)
delete[] two_d_array[i];

delete[] two_d_array;

3.4.13 Logical operators

The operators and (can also be written as &&) and or (can also be written as ||)
allow two or more conditions to be chained together. The and operator checks
whether all conditions are true and the or operator checks whether at least one of
the conditions is true. Both operators can also be mixed together in which case
the order in which they appear from left to right, determines how the checks are
performed. Older versions of the C++ standard used the keywords && and || in
place of and and or. Both operators are said to short circuit. If a previous and
condition is false, later conditions are not checked. If a previous or condition is
true later conditions are not checked.

216

Operators

Note:
The iso646.h header file is part of the C standard library, since 1995, as an amend-
ment to the C90 standard. It defines a number of macros which allow programmers
to use C language bitwise and logical operators in textual form, which, without
the header file, cannot be quickly or easily typed on some international and non-
QWERTY keyboards. These symbols are keywords in the ISO C++ programming
language and do not require the inclusion of a header file. For consistency, how-
ever, the C++98 standard provides the header <ciso646>. On MS Visual Studio
that historically implements nonstandard language extensions this is the only way
to enable these keywords (via macros) without disabling the extensions.

The not (can also be written as !) operator is used to return the inverse of one or
more conditions.

• Syntax:

condition1 andcondition2
condition1 orcondition2
not condition

• Examples:

When something should not be true. It is often combined with other conditions. If
x>5 but not x = 10, it would be written:

if ((x > 5) and not (x == 10)) // if (x greater than 5) and (not (x equal to 10)
)

{
//...code...

}

When all conditions must be true. If x must be between 10 and 20:

if (x > 10 and x < 20) // if x greater than 10 and x less than 20
{
//....code...

}

When at least one of the conditions must be true. If x must be equal to 5 or equal
to 10 or less than 2:

if (x == 5 or x == 10 or x < 2) // if x equal to 5 or x equal to 10 or x less
than 2

{
//...code...

}

217

Fundamentals for getting started

When at least one of a group of conditions must be true. If x must be between 10
and 20 or between 30 and 40.

if ((x >= 10 and x <= 20) or (x >= 30 and x <= 40)) // >= -> greater or equal
etc...

{
//...code...

}

Things get a bit more tricky with more conditions. The trick is to make sure the
parenthesis are in the right places to establish the order of thinking intended.
However, when things get this complex, it can often be easier to split up the logic
into nested if statements, or put them into bool variables, but it is still useful to be
able to do things in complex boolean logic.

Parenthesis around x > 10 and around x < 20 are implied, as the < operator has
a higher precedence than and. First x is compared to 10. If x is greater than 10, x
is compared to 20, and if x is also less than 20, the code is executed.

and (&&)

statement1 statement2 and
T T T
T F F
F T F
F F F

The logical AND operator, and, compares the left value and the right value. If
both statement1 and statement2 are true, then the expression returns TRUE.
Otherwise, it returns FALSE.

if ((var1 > var2) and (var2 > var3))
{
std::cout << var1 " is bigger than " << var2 << " and " << var3 << std::endl;

}

In this snippet, the if statement checks to see if var1 is greater than var2. Then, it
checks if var2 is greater than var3. If it is, it proceeds by telling us that var1 is
bigger than both var2 and var3.

218

Operators

Note:
The logical AND operator and is sometimes written as &&, which is not the same
as the address operator and the bitwise AND operator, both of which are repre-
sented with &

or (||)

statement1 statement2 or
T T T
T F T
F T T
F F F

The logical OR operator is represented with or. Like the logical AND operator, it
compares statement1 and statement2. If either statement1 or statement2 are true,
then the expression is true. The expression is also true if both of the statements
are true.

if ((var1 > var2) or (var1 > var3))
{
std::cout << var1 " is either bigger than " << var2 << " or " << var3 <<
std::endl;

}

Let’s take a look at the previous expression with an OR operator. If var1 is bigger
than either var2 or var3 or both of them, the statements in the if expression are
executed. Otherwise, the program proceeds with the rest of the code.

not (!)

The logical NOT operator, not, returns TRUE if the statement being compared is
not true. Be careful when you’re using the NOT operator, as well as any logical
operator.

not x > 10

The logical expressions have a higher precedence than normal operators.
Therefore, it compares whether "not x" is greater than 10. However, this
statement always returns false, no matter what "x" is. That’s because the logical
expressions only return boolean values(1 and 0).

219

Fundamentals for getting started

3.4.14 Conditional Operator

Conditional operators (also known as ternary operators) allow a programmer to
check: if (x is more than 10 and eggs is less than 20 and x is not equal to a...).

Most operators compare two variables; the one to the left, and the one to the right.
However, C++ also has a ternary operator (sometimes known as the conditional
operator), ?: which chooses from two expressions based on the value of a
condition expression. The basic syntax is:

condition-expression ? expression-if-true : expression-if-false

If condition-expression is true, the expression returns the value of
expression-if-true. Otherwise, it returns the value of expression-if-false. Because
of this, the ternary operator can often be used in place of the if expression.

Note:
The use of the ternary operator versus the if expression often depends on the level
of complexity and overall impact of the logical decision tree, using the if expres-
sion in convoluted or less than obvious situations should be preferred as it can not
only be more clearly written but easier to understand, thus avoiding simple logical
errors that would otherwise be hard to perceive.

• For example:

int foo = 8;
std::cout << "foo is " << (foo < 10 ? "smaller than" : "greater than or equal
to") << " 10." << std::endl;

The output will be "foo is smaller than 10.".

3.5 Type Conversion

Type conversion (often a result of type casting) refers to changing an entity of
one DATA TYPE260, expression, function argument, or return value into another.
This is done to take advantage of certain features of type hierarchies. For
instance, values from a more limited set, such as integers, can be stored in a more
compact format and later converted to a different format enabling operations not

260 Chapter 3.3.4 on page 143

220

Type Conversion

previously possible, such as division with several decimal places’ worth of
accuracy. In the OBJECT-ORIENTED261 programming paradigm, type conversion
allows programs also to treat objects of one type as one of another. One must do it
carefully as type casting can lead to loss of data.

Note:
The Wikipedia article about STRONGLY TYPEDa suggests that there is not enough
consensus on the term "strongly typed" to use it safely. So you should re-check the
intended meaning carefully, the above statement is what C++ programmers refer
as strongly typed in the language scope.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/STRONGLY-TYPED_PROGRAMMING_
LANGUAGE

3.5.1 Automatic type conversion

Automatic type conversion (or standard conversion) happens whenever the
compiler expects data of a particular type, but the data is given as a different type,
leading to an automatic conversion by the compiler without an explicit indication
by the programmer.

Note:
This is not "casting" or explicit type conversions. There is no such thing as an
"automatic cast".

When an expression requires a given type that cannot be obtained through an
implicit conversion or if more than one standard conversion creates an ambiguous
situation, the programmer must explicitly specify the target type of the
conversion. If the conversion is impossible it will result in an error or warning at
compile time. Warnings may vary depending on the compiler used or compiler
options.

This type of conversion is useful and relied upon to perform integral promotions,
integral conversions, floating point conversions, floating-integral conversions,
arithmetic conversions, pointer conversions.

int a = 5.6;
float b = 7;

261 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-ORIENTED

221

http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/object-oriented

Fundamentals for getting started

In the example above, in the first case an expression of type float is given and
automatically interpreted as an integer. In the second case (more subtle), an
integer is given and automatically interpreted as a float.

There are two types of automatic type conversions between numeric types:
promotion and conversion. Numeric promotion causes a simple type conversion
whenever a value is used, while more complex numeric conversions can take
place if the context of the expression requires it.

Any automatic type conversion is an implicit conversion if not done explicitly
in the source code.

Automatic type conversions (implicit conversions) can also occur in the implicit
"decay" from an array to a corresponding pointer type based or as a USER

DEFINED BEHAVIOR262. We will cover that after we introduce classes (user
defined types) as the automatic type conversions of references (derived class
reference to base class reference) and pointer-to-member (from pointing to
member of a base class to pointing to member of a derived class).

Promotion

A numeric promotion is the conversion of a value to a type with a wider range
that happens whenever a value of a narrower type is used. Values of integral types
narrower than int (char, signed char, unsigned char, short int and
unsigned short) will be promoted to int if possible, or unsigned int if int
can’t represent all the values of the source type. Values of bool type will also be
converted to int, and in particular true will get promoted to 1 and false to 0.

// promoting short to int
short left = 12;
short right = 23;

short total = left + right;

In the code above, the values of left and right are both of type short and could
be added and assigned as such. However, in C++ they will each be promoted to
int before being added, and the result converted back to short afterwards. The
reason for this is that the int type is designed to be the most natural integer
representation on the machine architecture, so requiring that the compiler do its
calculations with smaller types may cause an unnecessary performance hit.

262 Chapter 4.3.1 on page 412

222

Type Conversion

Since the C++ standard guarantees only the minimum sizes of the data types, the
sizes of the types commonly vary between one architecture and another (and may
even vary between one compiler and another). This is the reason why the compiler
is allowed the flexibility to promote to int or unsigned int as necessary.

Promotion works in a similar way on floating-point values: a float value will be
promoted to a double value, leaving the value unchanged.

Since promotion happens in cases where the expression does not require type
conversion in order to be compiled, it can cause unexpected effects, for example
in overload resolution:

void do_something(short arg)
{

cout << "Doing something with a short" << endl;
}

void do_something(int arg)
{

cout << "Doing something with an int" << endl;
}

int main(int argc, char **argv)
{

short val = 12;

do_something(val); // Prints "Doing something with a short"
do_something(val * val); // Prints "Doing something with an int"

}

Since val is a short, you might expect that the expression val * val would also
be a short, but in fact val is promoted to int, and the int overload is selected.

Numeric conversion

After any numeric promotion has been applied, the value can then be converted to
another numeric type if required, subject to various constraints.

Note:
The standard guarantees that some conversions are possible without specifying
what the exact result will be. This means that certain conversions that are legal can
unexpectedly give different results using different compilers.

A value of any integer type can be converted to any other integer type, and a value
of an enumeration type can be converted to an integer type. This only gets
complicated when overflow is possible, as in the case where you convert from a

223

Fundamentals for getting started

larger type to a smaller type. In the case of conversion to an unsigned type,
overflow works in a nice predictable way: the result is the smallest unsigned
integer congruent to the value being converted (modulo 2n, where n is the number
of bits in the destination type).

When converting to a signed integer type where overflow is possible, the result of
the conversion depends on the compiler. Most modern compilers will generate a
warning if a conversion occurs where overflow could happen. Should the loss of
information be intended, the programmer may do explicit type casting to suppress
the warning; bit masking may be a superior alternative.

Floating-point types can be converted between each other, but are even more
prone to platform-dependence. If the value being converted can be represented
exactly in the new type then the exact conversion will happen. Otherwise, if there
are two values possible in the destination type and the source value lies between
them, then one of the two values will be chosen. In all other cases the result is
implementation-defined.

Floating-point types can be converted to integer types, with the fractional part
being discarded.

double a = 12.5;
int b = a;

cout << b; // Prints "12"

Note:
If a floating-point value is converted to an integer and the result can’t be expressed
in the destination type, behavior is undefined by the C++ standard, meaning that
your program may crash.

A value of an integer type can be converted to a floating point type. The result is
exact if possible, otherwise it is the next lowest or next highest representable
value (depending on the compiler).

3.5.2 Explicit type conversion (casting)

Explicit type conversion (casting) is the use of direct and specific notation in the
source code to request a conversion or to specify a member from an overloaded
class. There are cases where no automatic type conversion can occur or where the
compiler is unsure about what type to convert to, those cases require explicit
instructions from the programmer or will result in error.

224

Type Conversion

Specific type casts

A set of casting operators have been introduced into the C++ language to address
the shortcomings of the old C-style casts, maintained for compatibility purposes.
Bringing with them a clearer syntax, improved semantics and type-safe
conversions.

All of the casting operators share a similar syntax and as we will see are used in a
manner similar to TEMPLATES263, with these new keywords casting becomes
easier to understand, find, and maintain.

The basic form of type cast

The basic explicit form of typecasting is the static cast.

A static cast looks like this:

static_cast<target type>(expression)

The compiler will try its best to interpret the expression as if it would be of type
type. This type of cast will not produce a warning, even if the type is demoted.

int a = static_cast<int>(7.5);

The cast can be used to suppress the warning as shown above. static_cast
cannot do all conversions; for example, it cannot remove const qualifiers, and it
cannot perform "cross-casts" within a class hierarchy. It can be used to perform
most numeric conversions, including conversion from a integral value to an
enumerated type.

static_cast
The static_cast keyword can be used for any normal conversion between types.
Conversions that rely on static (compile-time) type information. This includes
any casts between numeric types, casts of pointers and references up the
hierarchy, conversions with unary constructor, conversions with conversion
operator. For conversions between numeric types no runtime checks if data fits
the new type is performed. Conversion with unary constructor would be
performed even if it is declared as explicit.

Syntax

263 Chapter 5 on page 501

225

Fundamentals for getting started

TYPE static_cast<TYPE> (object);

It can also cast pointers or references down and across the hierarchy as long as
such conversion is available and unambiguous. For example, it can cast void* to
the appropriate pointer type or vice-versa. No runtime checks are performed.

BaseClass* a = new DerivedClass();
static_cast<DerivedClass*>(a)->derivedClassMethod();

Common usage of type casting

Performing arithmetical operations with varying types of data type without an
explicit cast means that the compiler has to perform an implicit cast to ensure that
the values it uses in the calculation are of the same type. Usually, this means that
the compiler will convert all of the values to the type of the value with the highest
precision.

The following is an integer division and so a value of 2 is returned.

float a = 5 / 2;

To get the intended behavior, you would either need to cast one or both of the
constants to a float.

float a = static_cast<float>(5) / static_cast<float>(2);

Or, you would have to define one or both of the constants as a float.

float a = 5f / 2f;

const_cast
The const_cast keyword can be used to remove the const or volatile property

from an object. The target data type must be the same as the source type, except
(of course) that the target type doesn’t have to have the same const qualifier. The
type TYPE must be a pointer or reference type.

Syntax

TYPE const_cast<TYPE> (object);

226

Type Conversion

For example, the following code uses const_cast to remove the const qualifier
from a object:

class Foo {
public:
void func() {} // a non-const member function

};

void someFunction(const Foo& f) {
f.func(); // compile error: cannot call a non-const

// function on a const reference
Foo &fRef = const_cast<Foo&>(f);
fRef.func(); // okay

}

dynamic_cast
The dynamic_cast keyword is used to casts a datum from one pointer or
reference a of polymorphic type to another, similar to static_cast but
performing a type safety check at runtime to ensure the validity of the cast.
Generally for the purpose of casting a pointer or reference up or down an
inheritance chain (INHERITANCE HIERARCHY264) in a safe way, including
performing so-called cross casts.

Syntax

TYPE& dynamic_cast<TYPE&> (object);
TYPE* dynamic_cast<TYPE*> (object);

The target type must be a pointer or reference type, and the expression must
evaluate to a pointer or reference.

If you attempt to cast to a pointer type, and that type is not an actual type of the
argument object, then the result of the cast will be NULL.

If you attempt to cast to a reference type, and that type is not an actual type of the
argument object, then the cast will throw a std::bad_cast exception.

When it doesn’t fail, dynamic cast returns a pointer or reference of the target type
to the object to which expression referred.

struct A {
virtual void f() { }

};

264 Chapter 2.3.4 on page 20

227

Fundamentals for getting started

struct B : public A { };
struct C { };

void f () {
A a;
B b;

A* ap = &b;
B* b1 = dynamic_cast<B*> (&a); // NULL, because ’a’ is not a ’B’
B* b2 = dynamic_cast<B*> (ap); // ’b’
C* c = dynamic_cast<C*> (ap); // NULL.

A& ar = dynamic_cast<A&> (*ap); // Ok.
B& br = dynamic_cast<B&> (*ap); // Ok.
C& cr = dynamic_cast<C&> (*ap); // std::bad_cast

}

reinterpret_cast
The reinterpret_cast keyword is used to simply cast one type bitwise to another.
Any pointer or integral type can be casted to any other with reinterpret cast, easily
allowing for misuse. For instance, with reinterpret cast one might, unsafely, cast
an integer pointer to a string pointer. It should be used to cast between
incompatible pointer types.

Syntax

TYPE reinterpret_cast<TYPE> (object);

The reinterpret_cast<>() is used for all non portable casting operations. This
makes it simpler to find these non portable casts when porting an application from
one OS to another.
The reinterpret_cast<T>() will change the type of an expression without
altering its underlying bit pattern. This is useful to cast pointers of a particular
type into a void* and subsequently back to the original type.

int a = 0xffe38024;
int* b = reinterpret_cast<int*>(a);

Old C-style casts

Other common type casts exist, they are of the form type(expression) (a
functional, or function-style, cast) or (type)expression (often known simply as
a C-style cast). The format of (type)expression is more common in C (where
it is the only cast notation). It has the basic form:

228

Control flow statements

int i = 10;
long l;

l = (long)i; //C programming style cast
l = long(i); //C programming style cast in functional form (preferred by some C++
programmers)

//note: initializes a new long to i, this is not an explicit cast as
in the example above

//however an implicit cast does occur. i = long((long)i);

A C-style cast can, in a single line of source code, make two conversions. For
instance remove a variable consteness and alter its type. In C++, the old C-style
casts are retained for backwards compatibility.

const char string[]="1234";
function((unsigned char*) string); //remove const, add unsigned

There are several shortcomings in the old C-style casts:

1. They allows casting practically any type to any other type. Leading to lots
of unnecessary trouble, even to creating source code that will compile but
not to the intended result.

2. The syntax is the same for every casting operation. Making it impossible
for the compiler and users to tell the intended purpose of the cast.

3. Hard to identify in the source code.

The C++ specific cast keyword are more controlled. Some will make the code
safer since they will enable to catch more errors at compile-time, and all are
easier to search, identify and maintain in the source code. Performance wise they
are the same with the exception of dynamic_cast, for which there is no C
equivalent. This makes them generally preferred. 265

3.6 Control flow statements

Usually a program is not a linear sequence of instructions. It may repeat code or
take decisions for a given path-goal relation. Most programming languages have
control flow statements (constructs) which provide some sort of control
structures that serve to specify order to what has to be done to perform our
program that allow variations in this sequential order:

• statements may only be obeyed under certain conditions (conditionals),
• statements may be obeyed repeatedly under certain conditions (loops),

265 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

229

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

• a group of remote statements may be obeyed (subroutines).

Logical Expressions as conditions

Logical expressions can use logical operators in loops and conditional
statements as part of the conditions to be met.

3.6.1 Exceptional and unstructured control flow

Some instructions have no particular structure but will have an exceptional
usefulness in shaping how other control flow statements are structured, a special
care must be taken to prevent unstructured and confusing programming.

break

A break will force the exiting of the present loop iteration into the next statement
outside of the loop. It has no usefulness outside of a loop structure except for the
switch control statement.

continue

The continue instruction is used inside loops where it will stop the current loop
iteration, initiating the next one.

goto

The goto keyword is discouraged as it makes it difficult to follow the program
logic, this way inducing to errors. The goto statement causes the current thread
of execution to jump to the specified label.

Syntax

label:
statement(s);

goto label;

In some rare cases, the goto statement allows to write uncluttered code, for
example, when handling multiple exit points leading to the cleanup code at a

230

Control flow statements

function exit (and neither exception handling or object destructors are better
options). Except in those rare cases, the use of unconditional jumps is a frequent
symptom of a complicated design, as the presence of many levels of nested
statements.

In exceptional cases, like heavy optimization, a programmer may need more
control over code behavior; a goto allows the programmer to specify that
execution flow jumps directly and unconditionally to a desired label. A label is
the name given to a label statement elsewhere in the function.

Note:
There is a classic paper in software engineering by W. A. WULFa called "A CASE

AGAINST THE GOTO"b, presented in the 25th ACMc National Conference in
October 1972, a time when the debate about goto statements was reaching its peak.
In this paper Wulf defends that goto statements should be regarded as dangerous.
Wulf is also known by one of his comments regarding efficiency: "More computing
sins are committed in the name of efficiency (without necessarily achieving it) than
for any other single reason -- including blind stupidity.".

a HTTP://EN.WIKIPEDIA.ORG/WIKI/WILLIAM%20WULF
b HTTP://PORTAL.ACM.ORG/CITATION.CFM?ID=1241523
c HTTP://EN.WIKIPEDIA.ORG/WIKI/ASSOCIATION%20FOR%20COMPUTING%

20MACHINERY

A goto can, for example, be used to break out of two nested loops. This example
breaks after replacing the first encountered non-zero element with zero.

for (int i = 0; i < 30; ++i) {
for (int j = 0; j < 30; ++j) {
if (a[i][j] != 0) {

a[i][j] = 0;
goto done;

}
}

}
done:
/* rest of program */

Although simple, they quickly lead to illegible and unmaintainable code.

// snarled mess of gotos

int i = 0;
goto test_it;

body:
a[i++] = 0;

test_it:
if (a[i])

231

http://en.wikipedia.org/wiki/William%20Wulf
http://portal.acm.org/citation.cfm?id=1241523
http://en.wikipedia.org/wiki/Association%20for%20Computing%20Machinery
http://en.wikipedia.org/wiki/Association%20for%20Computing%20Machinery

Fundamentals for getting started

goto body;
/* rest of program */

is much less understandable than the equivalent:

for (int i = 0; a[i]; ++i) {
a[i] = 0;

}
/* rest of program */

Gotos are typically used in functions where performance is critical or in the
output of machine-generated code (like a parser generated by YACC266.)

The goto statement should almost always be avoided, there are rare cases when it
enhances the readability of code. One such case is an "error section".

Example

#include <new>
#include <iostream>

int *my_allocated_1;
char *my_allocated_2, *my_allocated_3;
my_allocated_1 = new (std::nothrow) int[500];

if (my_allocated_1 == NULL)
{
std::cerr << "error in allocated_1" << std::endl;
goto error;

}

my_allocated_2 = new (std::nothrow) char[1000];

if (my_allocated_2 == NULL)
{
std::cerr << "error in allocated_2" << std::endl;
goto error;

}

my_allocated_3 = new (std::nothrow) char[1000];

if (my_allocated_3 == NULL)
{
std::cerr << "error in allocated_3" <<std::endl;
goto error;

}
return 0;

error:
if (my_allocated_1) delete [] my_allocated_1;
if (my_allocated_2) delete [] my_allocated_2;
if (my_allocated_3) delete [] my_allocated_3;
return 1;

266 HTTP://EN.WIKIPEDIA.ORG/WIKI/YACC

232

http://en.wikipedia.org/wiki/yacc

Control flow statements

This construct avoids hassling with the origin of the error and is cleaner than an
equivalent construct with control structures. It is thus less error prone.

Note:
While the above example shows a reasonable use of gotos, it is uncommon in prac-
tice. Exceptions handle such cases in a clearer, more effective and more organized
way. This will be discussed in "Exception Handling" in detail. Using RAII to
manage resources such as memory also avoids the need for most of the explicit
cleanup code that is shown above.

abort(), exit() and atexit()

As we will see later the STANDARD C LIBRARY267 that is included in C++ also
supplies some useful functions that can alter the flow control. Some will permit
you to terminate the execution of a program, enabling you to set up a return value
or initiate special tasks upon the termination request. You will have to jump ahead
into the ABORT()268 - EXIT()269 - ATEXIT()270 sections for more information.

3.6.2 Conditionals

There is likely no meaningful program written in which a computer does not
demonstrate basic decision-making skills based upon certain set conditions. It can
actually be argued that there is no meaningful human activity in which no
decision-making, instinctual or otherwise, takes place. For example, when driving
a car and approaching a traffic light, one does not think, "I will continue driving
through the intersection." Rather, one thinks, "I will stop if the light is red, go if
the light is green, and if yellow go only if I am traveling at a certain speed a
certain distance from the intersection." These kinds of processes can be simulated
using conditionals.

A conditional is a statement that instructs the computer to execute a certain block
of code or alter certain data only if a specific condition has been met.

267 Chapter 3.7.10 on page 280
268 Chapter 3.7.11 on page 372
269 Chapter 3.7.11 on page 375
270 Chapter 3.7.11 on page 373

233

Fundamentals for getting started

The most common conditional is the if-else statement, with conditional
expressions and switch-case statements typically used as more shorthanded
methods.

if (Fork branching)

The if-statement allows one possible path choice depending on the specified
conditions.
Syntax

if (condition)
{
statement;

}

Semantic

First, the condition is evaluated:

• if condition is true, statement is executed before continuing with the body.
• if condition is false, the program skips statement and continues with the rest of

the program.

Note:
The condition in an if statement can be any code that resolves in any expression
that will evaluate to either a boolean, or a null/non-null value; you can declare
variables, nest statements, etc. This is true to other flow control conditionals (ie:
while), but is generally regarded as bad style, since it only benefit is ease of typing
by making the code less readable.
This characteristic can easily lead simple errors, like tipping a=b (assign a value) in
place of a a==b (condition). This has resulted in the adoption of a coding practice
that would automatically put the errors in evidence, by inverting the expression (or
using constant variables) the compiler will generate an error.
Recent compilers support the detection of such events and generate compilation
warnings.

Example

if(condition)
{
int x; // Valid code
for(x = 0; x < 10; ++x) // Also valid.
{
statement;

234

Control flow statements

}
}

Figure 20: flowchart from the example

235

Fundamentals for getting started

Note:
If you wish to avoid typing std::cout, std::cin, or std::endl; all the time, you may
include using namespace std at the beginning of your program since cout, cin, and
endl are members of the std namespace.

Sometimes the program needs to choose one of two possible paths depending on a
condition. For this we can use the if-else statement.

if (user_age < 18)
{

std::cout << "People under the age of 18 are not allowed." << std::endl;
}
else
{

std::cout << "Welcome to Caesar’s Casino!" << std::endl;
}

Here we display a message if the user is under 18. Otherwise, we let the user in.
The if part is executed only if ’user_age’ is less than 18. In other cases (when
’user_age’ is greater than or equal to 18), the else part is executed.

if conditional statements may be chained together to make for more complex
condition branching. In this example we expand the previous example by also
checking if the user is above 64 and display another message if so.

if (user_age < 18)
{
std::cout << "People under the age of 18 are not allowed." << std::endl;

}
else if (user_age > 64)
{
std::cout << "Welcome to Caesar’s Casino! Senior Citizens get 50% off." <<

std::endl;
}
else
{
std::cout << "Welcome to Caesar’s Casino!" << std::endl;

}

236

Control flow statements

Figure 21: flowchart from the example

Note:

• break and continue do not have any relevance to an if or else.
• Although you can use multiple else if statements, when handling many related

conditions it is recommended that you use the switch statement, which we will
be discussing next.

switch (Multiple branching)

The switch statement branches based on specific integer values.

237

Fundamentals for getting started

switch (integer expression) {
case label1:

statement(s)
break;

case label2:
statement(s)
break;

/* ... */
default:

statement(s)
}

As you can see in the above scheme the case and default have a "break;"
statement at the end of block. This expression will cause the program to exit from
the switch, if break is not added the program will continue execute the code in
other cases even when the integer expression is not equal to that case. This can be
exploited in some cases as seen in the next example.

We want to separate an input from digit to other characters.

char ch = cin.get(); //get the character
switch (ch) {

case ’0’:
// do nothing fall into case 1

case ’1’:
// do nothing fall into case 2

case ’2’:
// do nothing fall into case 3

/* ... */
case ’8’:

// do nothing fall into case 9
case ’9’:

std::cout << "Digit" << endl; //print into stream out
break;

default:
std::cout << "Non digit" << endl; //print into stream out

}

In this small piece of code for each digit below ’9’ it will propagate through the
cases until it will reach case ’9’ and print "digit".

If not it will go straight to the default case there it will print "Non digit"

238

Control flow statements

Note:

• Be sure to use break commands unless you want multiple conditions to have the
same action. Otherwise, it will "fall through" to the next set of commands.

• break can only break out of the innermost level. If for example you are inside
a switch and need to break out of a enclosing for loop you might well consider
adding a boolean as a flag, and check the flag after the switch block instead
of the alternatives available. (Though even then, refactoring the code into a
separate function and returning from that function might be cleaner depending
on the situation, and with inline functions and/or smart compilers there need not
be any runtime overhead from doing so.)

• continue is not relevant to switch block. Calling continue within a switch block
will lead to the "continue" of the loop which wraps the switch block.

3.6.3 Loops (iterations)

A loop (also referred to as an iteration or repetition) is a sequence of statements
which is specified once but which may be carried out several times in succession.
The code "inside" the loop (the body of the loop) is obeyed a specified number of
times, or once for each of a collection of items, or until some condition is met.

ITERATION271 is the repetition of a process, typically within a computer program.
Confusingly, it can be used both as a general term, synonymous with repetition,
and to describe a specific form of repetition with a MUTABLE272 state.

When used in the first sense, RECURSION273 is an example of iteration.

However, when used in the second (more restricted) sense, iteration describes the
style of programming used in imperative programming languages. This contrasts
with recursion, which has a more declarative approach.

Due to the nature of C++ there may lead to an even bigger problems when
differentiating the use of the word, so to simplify things use "loops" to refer to
simple recursions as described in this section and use iteration or iterator274 (the
"one" that performs an iteration) to class iterator (or in relation to objects/classes)
as used in the STL.

271 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATION
272 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTABLE%20OBJECT
273 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION
274 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATOR

239

http://en.wikipedia.org/wiki/iteration
http://en.wikipedia.org/wiki/Mutable%20object
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/iterator

Fundamentals for getting started

Infinite Loops

Sometimes it is desirable for a program to loop forever, or until an exceptional
condition such as an error arises. For instance, an event-driven program may be
intended to loop forever handling events as they occur, only stopping when the
process is killed by the operator.

More often, an infinite loop is due to a programming error in a
condition-controlled loop, wherein the loop condition is never changed within the
loop.

// as we will see, these are infinite loops...
while (1) { }

// or

for (;;) { }

Note:
When the compiler optimizes the source code, all statement after the detected in-
finite loop (that will never run), will be ignored. A compiler warning is generally
given on detecting such cases.

Condition-controlled loops

Most programming languages have constructions for repeating a loop until some
condition changes.

Condition-controlled loops are divided into two categories Preconditional or
Entry-Condition that place the test at the start of the loop, and Postconditional or
Exit-Condition iteration that have the test at the end of the loop. In the former
case the body may be skipped completely, while in the latter case the body is
always executed at least once.

In the condition controlled loops, the keywords break and continue take
significance. The break keyword causes an exit from the loop, proceeding with
the rest of the program. The continue keyword terminates the current iteration of
the loop, the loop proceeds to the next iteration.

240

Control flow statements

while (Preconditional loop)

Syntax

while (’’condition’’) ’’statement’’; ’’statement2’’;

Semantic First, the condition is evaluated:

1. if condition is true, statement is executed and condition is evaluated again.
2. if condition is false continues with statement2

Remark: statement can be a block of code { ... } with several instructions.

What makes ’while’ statements different from the ’if’ is the fact that once the
body (referred to as statement above) is executed, it will go back to ’while’ and
check the condition again. If it is true, it is executed again. In fact, it will execute
as many times as it has to until the expression is false.

Example 1

#include <iostream>
using namespace std;

int main()
{
int i=0;
while (i<10) {
cout << "The value of i is " << i << endl;
i++;

}
cout << "The final value of i is : " << i << endl;
return 0;

}

Execution

The value of i is 0
The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4
The value of i is 5
The value of i is 6
The value of i is 7
The value of i is 8
The value of i is 9
The final value of i is 10

Example 2

// validation of an input

241

Fundamentals for getting started

#include <iostream>
using namespace std;

int main()
{
int a;
bool ok=false;
while (!ok) {
cout << "Type an integer from 0 to 20 : ";
cin >> a;
ok = ((a>=0) && (a<=20));
if (!ok) cout << "ERROR - ";

}
return 0;

}

Execution

Type an integer from 0 to 20 : 30
ERROR - Type an integer from 0 to 20 : 40
ERROR - Type an integer from 0 to 20 : -6
ERROR - Type an integer from 0 to 20 : 14

do-while (Postconditional loop)

Syntax

do {
statement(s)

} while (condition);

statement2;

Semantic

1. statement(s) are executed.
2. condition is evaluated.
3. if condition is true goes to 1).
4. if condition is false continues with statement2

The do - while loop is similar in syntax and purpose to the while loop. The
construct moves the test that continues condition of the loop to the end of the
code block so that the code block is executed at least once before any evaluation.

Example

#include <iostream>

using namespace std;

242

Control flow statements

int main()
{
int i=0;

do {
cout << "The value of i is " << i << endl;
i++;

} while (i<10);

cout << "The final value of i is : " << i << endl;
return 0;

}

Execution

The value of i is 0
The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4
The value of i is 5
The value of i is 6
The value of i is 7
The value of i is 8
The value of i is 9
The final value of i is 10

for (Preconditional and counter-controlled loop)

The for keyword is used as special case of a pre-conditional loop that supports
constructors for repeating a loop only a certain number of times in the form of a
step-expression that can be tested and used to set a step size (the rate of change)
by incrementing or decrementing it in each loop.

Syntax

for (initialization ; condition; step-expression)
statement(s);

The for construct is a general looping mechanism consisting of 4 parts:

1. . the initialization, which consists of 0 or more comma-delimited variable
initialization statements

2. . the test-condition, which is evaluated to determine if the execution of the
for loop will continue

3. . the increment, which consists of 0 or more comma-delimited statements
that increment variables

243

Fundamentals for getting started

4. . and the statement-list, which consists of 0 or more statements that will be
executed each time the loop is executed.

Note:
Variables declared and initialized in the loop initialization (or body) are only valid
in the SCOPEa of the loop itself.

a Chapter 3.1.10 on page 82

The for loop is equivalent to next while loop:

initialization
while(condition)
{
statement(s);
step-expression;

}

Note:
Each step of the loop (initialization, condition, and step-expression) can have more
than one command, separated by a , (comma operator). initialization,condition,
and step expression are all optional arguments. In C++ the comma is very rarely
used as an operator. It is mostly used as a separator (ie. int x, y;).

Example 1

// a unbounded loop structure
for (;;)
{
statement(s);
if(statement(s))
break;

}

Example 2

// calls doSomethingWith() for 0,1,2,..9
for (int i = 0; i != 10; ++i)
{
doSomethingWith(i);

}

can be rewritten as:

// calls doSomethingWith() for 0,1,2,..9

244

Functions

int i = 0;
while(i != 10)
{
doSomethingWith(i);
++i;

}

The for loop is a very general construct, which can run unbounded loops
(Example 1) and does not need to follow the rigid iteration model enforced by
similarly named constructs in a number of more formal languages. C++ (just as
modern C) allows variables (Example 2) to be declared in the initialization part
of the for loop, and it is often considered good form to use that ability to declare
objects only when they can be initialized, and to do so in the smallest scope
possible. Essentially, the for and while loops are equivalent. Most for statements
can also be rewritten as while statements.

3.7 Functions

A FUNCTION275, which can also be referred to as SUBROUTINE276, procedure,
subprogram or even METHOD277, carries out tasks defined by a sequence of
statements called a STATEMENT BLOCK278 that need only be written once and
called by a program as many times as needed to carry out the same task.

Functions may depend on variables passed to them, called ARGUMENTS279, and
may pass results of a task on to the caller of the function, this is called the
RETURN VALUE280.

It is important to note that a function that exists in the GLOBAL SCOPE281 can
also be called global function and a function that is defined inside a class is
called a member function. (The term method is commonly used in other
programming languages to refer to things like member functions, but this can lead
to confusion in dealing with C++ which supports both virtual and non-virtual
dispatch of member functions.)

275 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE
276 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE
277 HTTP://EN.WIKIPEDIA.ORG/WIKI/METHOD_%28COMPUTER_SCIENCE%29
278 Chapter 3.1.6 on page 60
279 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PARAMETERS%20AND%20ARGUMENTS
280 HTTP://EN.WIKIPEDIA.ORG/WIKI/RETURN%20STATEMENT
281 Chapter 3.1.9 on page 82

245

http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikibooks.org/wiki/%23Parameters%20and%20arguments
http://en.wikipedia.org/wiki/Return%20statement

Fundamentals for getting started

Note:
When talking or reading about programming, you must consider the language
background and the topic of the source. It is very rare to see a C++ programmer use
the words procedure or subprogram, this will vary from language to language. In
many programming languages the word function is reserved for subroutines that
return a value, this is not the case with C++.

3.7.1 Declarations

A function must be declared before being used, with a name to identify it, what
type of value the function returns and the types of any arguments that are to be
passed to it. Parameters must be named and declare what type of value it takes.
Parameters should always be passed as const if their arguments are not modified.
Usually functions performs actions, so the name should make clear what it does.
By using verbs in function names and following other naming conventions
programs can be read more naturally.

The next example we define a function named main that returns an integer value
int and takes no parameters. The content of the function is called the body of the
function. The word int is a keyword. C++ keywords are reserved words, i.e.,
cannot be used for any purpose other than what they are meant for. On the other
hand main is not a keyword and you can use it in many places where a keyword
cannot be used (though that is not recommended, as confusion could result).

int main()
{
// code
return 0;

}

inline

The inline keyword declares an inline function, the declaration is a (non-binding)
request to the compiler that a particular function be subjected to IN-LINE
EXPANSION282; that is, it suggests that the compiler insert the complete body of
the function in every context where that function is used and so it is used to avoid
the overhead implied by making a CPU jump from one place in code to another
and back again to execute a subroutine, as is done in naive implementations of
subroutines.

282 HTTP://EN.WIKIPEDIA.ORG/WIKI/INLINE%20EXPANSION

246

http://en.wikipedia.org/wiki/inline%20expansion

Functions

inline swap(int& a, int& b) { int const tmp(b); b=a; a=tmp; }

When a function definition is included in a class/struct definition, it will be an
implicit inline, the compiler will try to automatically inline that function. No
inline keyword is necessary in this case; it is legal, but redundant, to add the
inline keyword in that context, and GOOD STYLE283 is to omit it.

Example:

struct length
{
explicit length(int metres) : m_metres(metres) {}
operator int&() { return m_metres; }
private:
int m_metres;

};

Inlining can be an optimization, or a pessimization. It can increase code size (by
duplicating the code for a function at multiple call sites) or can decrease it (if the
code for the function, after optimization, is less than the size of the code needed
to call a non-inlined function). It can increase speed (by allowing for more
optimization and by avoiding jumps) or can decrease speed (by increasing code
size and hence cache misses).

One important side-effect of inlining is that more code is then accessible to the
optimizer.

Marking a function as inline also has an effect on linking: multiple definitions of
an inline function are permitted (so long as each is in a different translation unit)
so long as they are identical. This allows inline function definitions to appear in
header files; defining non-inlined functions in header files is almost always an
error (though function templates can also be defined in header files, and often are).

Mainstream C++ compilers like MICROSOFT VISUAL C++284 and GCC285

support an option that lets the compilers automatically inline any suitable
function, even those that are not marked as inline functions. A compiler is often
in a better position than a human to decide whether a particular function should
be inlined; in particular, the compiler may not be willing or able to inline many
functions that the human asks it to.

283 Chapter 3.1.7 on page 63
284 HTTP://EN.WIKIPEDIA.ORG/WIKI/VISUAL%20C%20PLUS%20PLUS
285 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20COMPILER%20COLLECTION

247

http://en.wikipedia.org/wiki/Visual%20C%20Plus%20Plus
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

Fundamentals for getting started

Excessive use of inlined functions can greatly increase coupling/dependencies
and compilation time, as well as making header files less useful as documentation
of interfaces.

Normally when calling a function, a program will evaluate and store the
arguments, and then call (or branch to) the function’s code, and then the function
will later return back to the caller. While function calls are fast (typically taking
much less than a microsecond on modern processors), the overhead can
sometimes be significant, particularly if the function is simple and is called many
times.

One approach which can be a performance optimization in some situations is to
use so-called inline functions. Marking a function as inline is a request
(sometimes called a hint) to the compiler to consider replacing a call to the
function by a copy of the code of that function.

The result is in some ways similar to the use of the #define macro, but as
MENTIONED BEFORE286, macros can lead to problems since they are not
evaluated by the PREPROCESSOR287. inline functions do not suffer from the
same problems.

If the inlined function is large, this replacement process (known for obvious
reasons as "inlining") can lead to "code bloat", leading to bigger (and hence
usually slower) code. However, for small functions it can even reduce code size,
particularly once a compiler’s optimizer runs.

Note that the inlining process requires that the function’s definition (including the
code) must be available to the compiler. In particular, inline headers that are used
from more than one source file must be completely defined within a header file
(whereas with regular functions that would be an error).

The most common way to designate that a function is inline is by the use of the
inline keyword. One must keep in mind that compilers can be configured to
ignore this keyword and use their own optimizations.

Further considerations are given when dealing with INLINE MEMBER

FUNCTION288, this will be covered on the OBJECT-ORIENTED
PROGRAMMING CHAPTER289 .

286 Chapter 3.2.3 on page 102
287 Chapter 3.2.2 on page 101
288 Chapter 4.3.5 on page 427
289 Chapter 3.9 on page 401

248

Functions

3.7.2 Parameters and arguments

The function declaration defines its parameters. A parameter is a variable which
takes on the meaning of a corresponding argument passed in a call to a function.

An argument represents the value you supply to a function parameter when you
call it. The calling code supplies the arguments when it calls the function.

The part of the function declaration that declares the expected parameters is
called the parameter list and the part of function call that specifies the arguments
is called the argument list.

//Global functions declaration
int subtraction_function(int parameter1, int parameter2) { return (parameter1
- parameter2); }

//Call to the above function using 2 extra variables so the relation becomes more
evident

int argument1 = 4;
int argument2 = 3;
int result = subtraction_function(argument1, argument2);
// will have the same result as
int result = subtraction_function(4, 3);

Many programmers use parameter and argument interchangeably, depending on
context to distinguish the meaning. In practice, distinguishing between the two
terms is usually unnecessary in order to use them correctly or communicate their
use to other programmers. Alternatively, the equivalent terms formal parameter
and actual parameter may be used instead of parameter and argument.

3.7.3 Parameters

You can define a function with no parameters, one parameter, or more than one,
but to use a call to that function with arguments you must take into consideration
what is defined.

Empty parameter list

//Global functions with no parameters
void function() { /*...*/ }
//empty parameter declaration equivalent the use of void
void function(void) (/*...*/ }

249

Fundamentals for getting started

Note:
This is the only valid case were void can be used as a parameter type, you can only
derived types from void (ie: void*).

Multiple parameters

The syntax for declaring and invoking functions with multiple parameters can be
a source of errors. When you write the function definition, you must declare the
type of each and every parameter.

// Example - function using two int parameters by value
void printTime (int hour, int minute) {

std::cout << hour;
std::cout << ":";
std::cout << minute;

}

It might be tempting to write (int hour, minute), but that format is only legal for
variable declarations, not for parameter declarations.

However, you do not have to declare the types of arguments when you call a
function. (Indeed, it is an error to attempt to do so).

Example

int main void(){
int hour = 11;

int minute = 59;
printTime(int hour, int minute); // WRONG!
printTime(hour, minute); // Right!

}

In this case, the compiler can tell the type of hour and minute by looking at their
declarations. It is unnecessary and illegal to include the type when you pass them
as arguments..

by pointer

A function may use pass by pointer when the object pointed to might not exist,
that is, when you are giving either the address of a real object or NULL. Passing a
pointer is not different to passing anything else. Its a parameter the same as any
other. The characteristics of the pointer type is what makes it a worth
distinguishing.

250

Functions

The passing a pointer to a function is very similar to passing it as a reference. It is
used to avoid the overhead of copying, and the slicing problem (since child
classes have a bigger memory footprint that the parent) that can occur when
passing base class objects by value. This is also the preferred method in C (for
historical reasons), were passing by pointer signifies that wanted to modify the
original variable. In C++ it is preferred to use references to pointers and guarantee
that the function before dereferencing it, verifies the pointer for validity.

#include <iostream>

void MyFunc(int *x)
{
std::cout << *x << std::endl; // See next section for explanation

}

int main()
{
int i;
MyFunc(&i);

return 0;
}

Since a reference is just an alias, it has exactly the same address as what it refers
to, as in the following example:

#include <iostream>

void ComparePointers (int * a, int * b)
{
if (a == b)
std::cout<<"Pointers are the same!"<<std::endl;

else
std::cout<<"Pointers are different!"<<std::endl;

}

int main()
{
int i, j;
int& r = i;

ComparePointers(&i, &i);
ComparePointers(&i, &j);
ComparePointers(&i, &r);
ComparePointers(&j, &r);

return 0;
}

This schizophrenic program will tell you that the pointers are the same, then that
they are different, then the same, then different again.

251

Fundamentals for getting started

Arrays are similar to pointers, remember?

Now might be a good time to reread the section on arrays. If you do not feel like
flipping back that far, though, here’s a brief recap: Arrays are blocks of memory
space.

int my_array[5];

In the statement above, my_array is an area in memory big enough to hold five
ints. To use an element of the array, it must be dereferenced. The third element in
the array (remember they’re zero-indexed) is my_array[2]. When you write
my_array[2], you’re actually saying "give me the third integer in the array
my_array". Therefore, my_array is an array, but my_array[2] is an int.

Passing a single array element

So let’s say you want to pass one of the integers in your array into a function.
How do you do it? Simply pass in the dereferenced element, and you’ll be fine.

Example

#include <iostream>

void printInt(int printable){
std::cout << "The int you passed in has value " << printable << std::endl;

}
int main(){
int my_array[5];

// Reminder: always initialize your array values!
for(int i = 0; i < 5; i++)
my_array[i] = i * 2;

for(int i = 0; i < 5; i++)
printInt(my_array[i]); // <-- We pass in a dereferenced array element

}

This program outputs the following:

The int you passed in has value 0
The int you passed in has value 2
The int you passed in has value 4
The int you passed in has value 6
The int you passed in has value 8

This passes array elements just like normal integers, because array elements like
my_array[2] are integers.

252

Functions

Passing a whole array

Well, we can pass single array elements into a function. But what if we want to
pass a whole array? We can not do that directly, but you can treat the array as a
pointer.

Example

#include <iostream>

void printIntArr(int *array_arg, int array_len){
std::cout << "The length of the array is " << array_len << std::endl;
for(int i = 0; i < array_len; i++)
std::cout << "Array[" << i << "] = " << array_arg[i] << std::endl;

}

int main(){
int my_array[5];

// Reminder: always initialize your array values!
for(int i = 0; i < 5; i++)
my_array[i] = i * 2;

printIntArr(my_array, 5);
}

Note:
Due to array-pointer interchangeability in the context of parameter declarations
only, we can also declare pointers as arrays in function parameter lists. It is treated
identically. For example, the first line of the function above can also be written as
void printIntArr(int array_arg[], int array_len)
It is important to note that even if it is written as int array_arg[], the parameter
is still a pointer of type int *. It is not an array; an array passed to the function will
still be automatically converted to a pointer to its first element.

This will output the following:

The length of the array is 5
Array[0] = 0
Array[1] = 2
Array[2] = 4
Array[3] = 6
Array[4] = 8

As you can see, the array in main is accessed by a pointer. Now here’s some
important points to realize:

253

Fundamentals for getting started

• Once you pass an array to a function, it is converted to a pointer so that function
has no idea how to guess the length of the array. Unless you always use arrays
that are the same size, you should always pass in the array length along with the
array.

• You’ve passed in a POINTER. my_array is an array, not a pointer. If you
change array_arg within the function, my_array does not change (i.e., if you
set array_arg to point to a new array). But if you change any element of
array_arg, you’re changing the memory space pointed to by array_arg,
which is the array my_array.

by reference

The same concept of references is used when passing variables.

Example

void foo(int &i)
{
++i;

}

int main()
{
int bar = 5; // bar == 5
foo(bar); // bar == 6
foo(bar); // bar == 7

return 0;
}

Here we display one of the two common uses of references in function arguments
-- they allow us to use the conventional syntax of passing an argument by value
but manipulate the value in the caller.

Note:
If the parameter is a non-const reference, the caller expects it to be modified. If the
function does not want to modify the parameter, a const reference should be used
instead.

However there is a more common use of references in function arguments -- they
can also be used to pass a handle to a large data structure without making multiple
copies of it in the process. Consider the following:

void foo(const std::string & s) // const reference, explained below
{

254

Functions

std::cout << s << std::endl;
}

void bar(std::string s)
{
std::cout << s << std::endl;

}

int main()
{
std::string const text = "This is a test.";

foo(text); // doesn’t make a copy of "text"
bar(text); // makes a copy of "text"

return 0;
}

In this simple example we’re able to see the differences in pass by value and pass
by reference. In this case pass by value just expends a few additional bytes, but
imagine for instance if text contained the text of an entire book.

The reason why we use a constant reference instead of a reference is the user of
this function can assure that the value of the variable passed does not change
within the function. We technically call this "const-to-reference".

The ability to pass it by reference keeps us from needing to make a copy of the
string and avoids the ugliness of using a pointer.

Note:
It should also be noted that "const-to-reference" only makes sense for complex
types -- classes and structs. In the case of ordinal types -- i.e. int, float, bool, etc. -
- there is no savings in using a reference instead of simply using pass by value, and
indeed the extra costs associated with indirection may make code using a reference
slower than code that copies small objects.

Passing an array of fixed-length by using reference

In some case, a function requires an array of a specific length to work:

void func(int(¶)[4]);

Unlike the case of array changed into pointer above, the parameter is not a
PLAIN array that can be changed into a pointer, but rather a reference to array
with 4 ints. Therefore, only array of 4 ints, not array of any other length, not
pointer to int, can be passed into this function. This helps you prevent buffer

255

Fundamentals for getting started

overflow errors because the array object is ALWAYS allocated unless you
circumvent the type system by casting.

It can be used to pass an array without specifying the number of elements
manually:

template<int n>void func(int(¶)[n]);

The compiler generates the value of length at compile time, inside the function, n
stores the number of elements. However, the use of template generates code bloat.

In C++, a multi-dimensional array cannot be converted to a multi-level pointer,
therefore, the code below is invalid:

// WRONG
void foo(int**matrix,int n,int m);
int main(){

int data[10][5];
// do something on data
foo(data,10,5);

}

Although an int[10][5] can be converted to an (*int)[5], it cannot be converted to
int**. Therefore you may need to hard-code the array bound in the function
declaration:

// BAD
void foo(int(*matrix)[5],int n,int m);
int main(){

int data[10][5];
// do something on data
foo(data,10,5);

}

To make the function more generic, templates and function overloading should be
used:

// GOOD
template<int junk,int rubbish>void foo(int(&matrix)[junk][rubbish],int n,int m);
void foo(int**matrix,int n,int m);
int main(){

int data[10][5];
// do something on data
foo(data,10,5);

}

The reason for having n and m in the first version is mainly for consistency, and
also deal with the case that the array allocated is not used completely. It may also
be used for checking buffer overflows by comparing n/m with junk/rubbish.

256

Functions

by value

When we want to write a function which the value of the argument is independent
to the passed variable, we use pass-by-value approach.

int add(int num1, int num2)
{
num1 += num2; // change of value of "num1"
return num1;

}

int main()
{
int a = 10, b = 20, ans;
ans = add(a, b);
std::cout << a << " + " << b << " = " << ans << std::endl;
return 0;

}

Output:

10 + 20 = 30

The above example shows a property of pass-by-value, the arguments are copies
of the passed variable and only in the SCOPE290 of the corresponding function.
This means that we have to afford the cost of copying. However, this cost is
usually considered only for larger and more complex variables.

In this case, the values of "a" and "b" are copied to "num1" and "num2" on the
function "add()". We can see that the value of "num1" is changed in line 3.
However, we can also observe that the value of "a" is kept after passed to this
function.

Constant Parameters

The keyword const can also be used as a guarantee that a function will not
modify a value that is passed in. This is really only useful for references and
pointers (and not things passed by value), though there’s nothing syntactically to
prevent the use of const for arguments passed by value.

Take for example the following functions:

290 Chapter 3.1.9 on page 82

257

Fundamentals for getting started

void foo(const std::string &s)
{

s.append("blah"); // ERROR -- we can’t modify the string

std::cout << s.length() << std::endl; // fine
}

void bar(const Widget *w)
{

w->rotate(); // ERROR - rotate wouldn’t be const

std::cout << w->name() << std::endl; // fine
}

In the first example we tried to call a non-const method -- append() -- on an
argument passed as a const reference, thus breaking our agreement with the
caller not to modify it and the compiler will give us an error.

The same is true with rotate(), but with a const pointer in the second example.

Default values

Parameters in C++ functions (including member functions and constructors) can
be declared with default values, like this

int foo (int a, int b = 5, int c = 3);

Then if the function is called with fewer arguments (but enough to specify the
arguments without default values), the compiler will assume the default values for
the missing arguments at the end. For example, if I call

foo(6, 1)

that will be equivalent to calling

foo(6, 1, 3)

In many situations, this saves you from having to define two separate functions
that take different numbers of parameters, which are almost identical except for a
default value.

The "value" that is given as the default value is often a constant, but may be any
valid expression, including a function call that performs arbitrary computation.

258

Functions

Default values can only be given for the last arguments; i.e. you cannot give a
default value for a parameter that is followed by a parameter that does not have a
default value, since it will never be used.

Once you define the default value for a parameter in a function declaration, you
cannot re-define a default value for the same parameter in a later declaration, even
if it is the same value.

Ellipsis (...) as a parameter

If the parameter list ends with an ellipsis, it means that the arguments number
must be equal or greater than the number of parameters specified. It will in fact
create a variadic function, a function of variable arity; that is, one which can take
different numbers of arguments.

Note:
The variadic function feature is going to be readdressed in the upcoming C++
language standard, C++0x; with the possible inclusion of variatic macros and the
ability to create variadic template classes and variadic template functions. Variadic
templates will finally allow the creation of true tuple classes in C++.

3.7.4 Returning values

When declaring a function, you must declare it in terms of the type that it will
return, this is done in three steps, in the function declaration, the function
implementation (if distinct) and on the body of the same function with the
return keyword.

Functions with results

You might have noticed by now that some of the functions yield results. Other
functions perform an action but don’t return a value.

Other ways to get a value from a function is to use a pointer or a reference as
argument or use a global variable

Get more that a single value from a function

259

Fundamentals for getting started

The return type determines the capacity, any type will work from an array or a
std::vector, a struct or a class, it is only restricted by the return type you chose.

That raises some questions

• What happens if you call a function and you don’t do anything with the result
(i.e. you don’t assign it to a variable or use it as part of a larger expression)?

• What happens if you use a function without a result as part of an expression,
like newLine() + 7?

• Can we write functions that yield results, or are we stuck with things like
newLine and printTwice?

The answer to the third question is "yes, you can write functions that returns
values,". For now I will leave it up to you to answer the other two questions by
trying them out. Any time you have a question about what is legal or illegal in
C++, a first step to find out is to ask the compiler. However you should be aware
of two issues, that we already mentioned when introducing the compiler: First a
compiler may have bugs just like any other software, so it happens that not every
source code which is forbidden in C++ is properly rejected by the compiler, and
vice versa. The other issue is even more dangerous: You can write programs in
C++ which a C++ implementation is not required to reject, but whose behavior is
not defined by the language. Needless to say, running such a program can, and
occasionally will, do harmful things to the system it is running or produce corrupt
output!

For example:

int MyFunc(); // returns an int
SOMETYPE MyFunc(); // returns a SOMETYPE

int* MyFunc(); // returns a pointer to an int
SOMETYPE *MyFunc(); // returns a pointer to a SOMETYPE
SOMETYPE &MyFunc(); // returns a reference to a SOMETYPE

If you have understood the syntax of pointer declarations, the declaration of a
function that returns a pointer or a reference should seem logical. The above
piece of code shows how to declare a function that will return a reference or a
pointer; below are outlines of what the definitions (implementations) of such
functions would look like:

SOMETYPE *MyFunc(int *p)
{
//...

return p;
}

260

Functions

SOMETYPE &MyFunc(int &r)
{
//...

return r;
}

return

The return statement causes execution to jump from the current function to
whatever function called the current function. An optional a result (return
variable) can be returned. A function may have more than one return statement
(but returning the same type).

Syntax

return;
return value;

Within the body of the function, the return statement should NOT return a
pointer or a reference that has the address in memory of a local variable that was
declared within the function, because as soon as the function exits, all local
variables are destroyed and your pointer or reference will be pointing to some
place in memory which you no longer own, so you cannot guarantee its contents.
If the object to which a pointer refers is destroyed, the pointer is said to be a
dangling pointer until it is given a new value; any use of the value of such a
pointer is invalid. Having a dangling pointer like that is dangerous; pointers or
references to local variables must not be allowed to escape the function in which
those local (aka automatic) variables live.

However, within the body of your function, if your pointer or reference has the
address in memory of a data type, struct, or class that you dynamically allocated
the memory for, using the new operator, then returning said pointer or reference
would be reasonable:

SOMETYPE *MyFunc() //returning a pointer that has a dynamically
{ //allocated memory address is valid code
int *p = new int[5];

//...

return p;
}

261

Fundamentals for getting started

In most cases, a better approach in that case would be to return an object such as
a smart pointer which could manage the memory; explicit memory management
using widely distributed calls to new and delete (or malloc and free) is tedious,
verbose and error prone. At the very least, functions which return dynamically
allocated resources should be carefully documented. See this book’s section on
memory management for more details.

const SOMETYPE *MyFunc(int *p)
{
//...

return p;
}

In this case the SOMETYPE object pointed to by the returned pointer may not be
modified, and if SOMETYPE is a class then only const member functions may be
called on the SOMETYPE object.

If such a const return value is a pointer or a reference to a class then we cannot
call non-const methods on that pointer or reference since that would break our
agreement not to change it.

Note:
As a general rule methods should be const except when it’s not possible to make
them such. While getting used to the semantics you can use the compiler to inform
you when a method may not be const -- it will (usually) give an error if you declare
a method const that needs to be non-const.

Static returns

When a function returns a variable (or a pointer to one) that is statically located,
one must keep in mind that it will be possible to overwrite its content each time a
function that uses it is called. If you want to save the return value of this function,
you should manually save it elsewhere. Most such static returns use GLOBAL

VARIABLES291.

Of course, when you save it elsewhere, you should make sure to actually copy the
value(s) of this variable to another location. If the return value is a struct, you
should make a new struct, then copy over the members of the struct.

291 Chapter 3.3.3 on page 141

262

Functions

One example of such a function is the STANDARD C LIBRARY292 function
LOCALTIME293.
294

Return "codes" (best practices)

There are 2 kinds of behaviors :

Note:
The selection of, and consistent use of this practice helps to avoid simple errors.
Personal taste or organizational dictates may influence the decision, but a general
rule-of-thumb is that you should follow whatever choice has been made in the
CODE BASEa you are currently working in. However, there may be valid reasons
for making a different choice in any particular situation.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE_BASE

Positive means success
This is the "logical" way to think, and as such the one used by almost all
beginners. In C++, this takes the form of a boolean true/false test, where "true"
(also 1 or any non-zero number) means success, and "false" (also 0) means failure.

The major problem of this construct is that all errors return the same value (false),
so you must have some kind of externally visible error code in order to determine
where the error occurred. For example:

bool bOK;
if (my_function1())
{

// block of instruction 1
if (my_function2())
{

// block of instruction 2
if (my_function3())
{

// block of instruction 3
// Everything worked
error_code = NO_ERROR;
bOK = true;

}

292 Chapter 3.7.10 on page 280
293 Chapter 3.7.11 on page 365
294 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

263

http://en.wikipedia.org/wiki/Code_base
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

else
{

//error handler for function 3 errors
error_code = FUNCTION_3_FAILED;
bOK = false;

}
}
else
{

//error handler for function 2 errors
error_code = FUNCTION_2_FAILED;
bOK = false;

}
}
else
{

//error handler for function 1 errors
error_code = FUNCTION_1_FAILED;
bOK = false;

}
return bOK;

As you can see, the else blocks (usually error handling) of my_function1 can be
really far from the test itself; this is the first problem. When your function begins
to grow, it’s often difficult to see the test and the error handling at the same time.

This problem can be compensated by SOURCE CODE EDITOR295 features such as
folding, or by testing for a function returning "false" instead of true.

if (!my_function1()) // or if (my_function1() == false)
{

//error handler for function 1 errors

//...

This can also make the code look more like the "0 means success" paradigm, but
a little less readable.

The second problem of this construct is that it tends to break up logical tests
(my_function2 is one level more indented, my_function3 is 2 levels indented)
which causes legibility problems.

One advantage here is that you follow the STRUCTURED PROGRAMMING296

principle of a function having a single entry and a single exit.

The MICROSOFT FOUNDATION CLASS LIBRARY297 (MFC) is an example of a
standard library that uses this paradigm.

295 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOURCE_CODE_EDITOR
296 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRUCTURED_PROGRAMMING
297 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT_FOUNDATION_CLASS_

LIBRARY

264

http://en.wikipedia.org/wiki/Source_code_editor
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library

Functions

0 means success
This means that if a function returns 0, the function has completed successfully.
Any other value means that an error occurred, and the value returned may be an
indication of what error occurred.
The advantage of this paradigm is that the error handling is closer to the test itself.
For example the previous code becomes:

if (0 != my_function1())
{

//error handler for function 1 errors
return FUNCTION_1_FAILED;

}
// block of instruction 1
if (0 != my_function2())
{

//error handler for function 2 errors
return FUNCTION_2_FAILED;

}
// block of instruction 2
if (0 != my_function3())
{

//error handler for function 3 errors
return FUNCTION_3_FAILED;

}
// block of instruction 3
// Everything worked
return 0; // NO_ERROR

In this example, this code is more readable (this will not always be the case).
However, this function now has multiple exit points, violating a principle of
structured programming.

The C STANDARD LIBRARY298 (libc) is an example of a standard library that
uses this paradigm.

Note:
Some people argue that using functions results in a performance penalty. In this
case just use inline functions and let the compiler do the work. Small functions
mean visibility, easy debugging and easy maintenance.

298 HTTP://EN.WIKIPEDIA.ORG/WIKI/C_STANDARD_LIBRARY

265

http://en.wikipedia.org/wiki/C_Standard_Library

Fundamentals for getting started

3.7.5 Composition

Just as with mathematical functions, C++ functions can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a function: double x = cos (angle + pi/2);

This statement takes the value of pi, divides it by two and adds the result to the
value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to another:
double x = exp (log (10.0));

This statement finds the log base e of 10 and then raises e to that power. The
result gets assigned to x; I hope you know what it is.

3.7.6 Recursion

In programming languages, RECURSION299 was first implemented in LISP300 on
the basis of a mathematical concept that existed earlier on, it is a concept that
allows us to break down a problem into one or more subproblems that are similar
in form to the original problem, in this case, of having a function call itself in
some circumstances. It is generally distinguished from ITERATORS OR LOOPS301.

A simple example of a recursive function is:

void func(){
func();

}

It should be noted that non-terminating recursive functions as shown above are
almost never used in programs (indeed, some definitions of recursion would
exclude such non-terminating definitions). A terminating condition is used to
prevent infinite recursion.

Example

299 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION
300 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3ALISP
301 Chapter 3.6.1 on page 230

266

http://en.wikipedia.org/wiki/Recursion
http://en.wikibooks.org/wiki/Programming%3ALisp

Functions

double power(double x, int n)
{

if(n < 0)
{

std::cout << std::endl
<< "Negative index, program terminated.";

exit(1);
}
if(n)

return x * power(x, n-1);
else

return 1.0;
}

The above function can be called like this:

x = power(x, static_cast<int>(power(2.0, 2)));

Why is recursion useful? Although, theoretically, anything possible by recursion
is also possible by iteration (that is, while), it is sometimes much more
convenient to use recursion. Recursive code happens to be much easier to follow
as in the example below. The problem with recursive code is that it takes too
much memory. Since the function is called many times, without the data from the
calling function removed, memory requirements increase significantly. But often
the simplicity and elegance of recursive code overrules the memory requirements.

The classic example of recursion is the factorial: n! = (n−1)!n, where 0! = 1 by
convention. In recursion, this function can be succinctly defined as

unsigned factorial(unsigned n)
{

if(n != 0)
{

return n * factorial(n-1);
}
else
{

return 1;
}

}

With iteration, the logic is harder to see:

unsigned factorial2(unsigned n)
{

int a = 1;
while(n > 0)
{
a = a*n;

267

Fundamentals for getting started

n = n-1;
}
return a;

}

Although recursion tends to be slightly slower than iteration, it should be used
where using iteration would yield long, difficult-to-understand code. Also, keep
in mind that recursive functions take up additional memory (on the stack) for each
level. Thus they can run out of memory where an iterative approach may just use
constant memory.

Each recursive function needs to have a Base Case. A base case is where the
recursive function stops calling itself and returns a value. The value returned is
(hopefully) the desired value.

For the previous example,

unsigned factorial(unsigned n)
{

if(n != 0)
{

return n * factorial(n-1);
}
else
{

return 1;
}

}

the base case is reached when n = 0. In this example, the base case is everything
contained in the else statement (which happens to return the number 1). The
overall value that is returned is every value from n to 0 multiplied together. So,
suppose we call the function and pass it the value 3. The function then does the
math 3∗2∗1 = 6 and returns 6 as the result of calling factorial(3).

Another classic example of recursion is the sequence of Fibonacci numbers:

0 1 1 2 3 5 8 13 21 34 ...

The zeroth element of the sequence is 0. The next element is 1. Any other number
of this series is the sum of the two elements coming before it. As an exercise,
write a function that returns the nth Fibonacci number using recursion.

268

Functions

3.7.7 main

The function main also happens to be the entry point of any (standard-compliant)
C++ program and must be defined. The compiler arranges for the main function
to be called when the program begins execution. main may call other functions
which may call yet other functions.

Note:
main is special in C++ in that user code is not allowed to call it; in particular, it
cannot be directly or indirectly recursive. This is one of the many small ways in
which C++ differs from C.

The main function returns an integer value. In certain systems, this value is
interpreted as a success/failure code. The return value of zero signifies a
successful completion of the program. Any non-zero value is considered a failure.
Unlike other functions, if control reaches the end of main(), an implicit return
0; for success is automatically added. To make return values from main more
readable, the header file cstdlib defines the constants EXIT_SUCCESS and
EXIT_FAILURE (to indicate successful/unsuccessful completion respectively).

Note:
The ISO C++ Standard (ISO/IEC 14882:1998) specifically requires main to have
a return type of int. But the ISO C Standard (ISO/IEC 9899:1999) actually does
not, though most compilers treat this as a minor warning-level error.
The explicit use of return 0; (or return EXIT_SUCCESS;) to exit the main func-
tion is left to the CODING STYLEa used.

a Chapter 3.1.8 on page 65

The main function can also be declared like this:

int main(int argc, char **argv){
// code

}

which defines the main function as returning an integer value int and taking two
parameters. The first parameter of the main function, argc, is an integer value int
that specifies the number of arguments passed to the program, while the second,
argv, is an array of strings containing the actual arguments. There is almost
always at least one argument passed to a program; the name of the program itself
is the first argument, argv[0]. Other arguments may be passed from the system.

269

Fundamentals for getting started

Example

#include <iostream>

int main(int argc, char **argv){
std::cout << "Number of arguments: " << argc << std::endl;
for(size_t i = 0; i < argc; i++)
std::cout << " Argument " << i << " = ’" << argv[i] << "’" << std::endl;

}

Note:
size_t is the return type of sizeof function. size_t is a typedef for some unsigned
type and is often defined as unsigned int or unsigned long but not always.

If the program above is compiled into the executable arguments and executed
from the command line like this in *nix:

$./arguments I love chocolate cake

Or in Command Prompt in Windows or MS-DOS:

C:\>arguments I love chocolate cake

It will output the following (but note that argument 0 may not be quite the same as
this -- it might include a full path, or it might include the program name only, or it
might include a relative path, or it might even be empty):

Number of arguments: 5
Argument 0 = ’./arguments’
Argument 1 = ’I’
Argument 2 = ’love’
Argument 3 = ’chocolate’
Argument 4 = ’cake’

You can see that the command line arguments of the program are stored into the
argv array, and that argc contains the length of that array. This allows you to
change the behavior of a program based on the command line arguments passed
to it.

270

Functions

Note:
argv is a (pointer to the first element of an) array of strings. As such, it can be
written as char **argv or as char *argv[]. However, char argv[][] is not
allowed. Read up on C++ arrays for the exact reasons for this.
Also, argc and argv are the two most common names for the two arguments given
to the main function. You can think them to stand for "arguments count" and
"arguments variables" respectively. They can, however, be changed if you’d like.
The following code is just as legal:
int main(int foo, char **bar){ // code }

However, any other programmer that sees your code might get mad at you if you
code like that.
From the example above, we can also see that C++ do not really care about what
the variables’ names are (of course, you cannot use reserved words as names) but
their types.

3.7.8 Pointers to functions

The POINTERS302 we have looked at so far have all been data pointers, pointers to
functions (more often called function pointers) are very similar and share the
same characteristics of other pointers but in place of pointing to a variable they
point to functions. Creating an extra level of indirection, as a way to use the
FUNCTIONAL PROGRAMMING303 paradigm in C++, since it facilitates calling
functions which are determined at runtime from the same piece of code. They
allow passing a function around as parameter or return value in another function.

Using function pointers has exactly the same overhead as any other function call
plus the additional pointer indirection and since the function to call is determined
only at runtime, the compiler will typically not inline the function call as it could
do anywhere else. Because of this characteristics, using function pointers may
add up to be significantly slower than using regular function calls, and be avoided
as a way to gain performance.

302 Chapter 3.4.10 on page 201
303 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTIONAL%20PROGRAMMING

271

http://en.wikipedia.org/wiki/Functional%20programming

Fundamentals for getting started

Note:
Function pointers are mostly used in C, C++ also permits another constructs to en-
able FUNCTIONAL PROGRAMMINGa that are called FUNCTORSb (class type func-
tors and template type functors) that have some advantages over function pointers.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTIONAL%20PROGRAMMING
b HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTION%20OBJECT

To declare a pointer to a function naively, the name of the pointer must be
parenthesized, otherwise a function returning a pointer will be declared. You also
have to declare the function’s return type and its parameters. These must be exact!

Consider:

int (*ptof)(int arg);

The function to be referenced must obviously have the same return type and the
same parameter type as that of the pointer to function. The address of the function
can be assigned just by using its name, optionally prefixed with the address-of
operator &. Calling the function can be done by using either ptof(<value>) or
(*ptof)(<value>).

So:

int (*ptof)(int arg);
int func(int arg){

//function body
}
ptof = &func; // get a pointer to func
ptof = func; // same effect as ptof = &func
(*ptof)(5); // calls func
ptof(5); // same thing.

A function returning a float can’t be pointed to by a pointer returning a double.
If two names are identical (such as int and signed, or a typedef name), then
the conversion is allowed. Otherwise, they must be entirely the same. You define
the pointer by grouping the * with the variable name as you would any other
pointer. The problem is that it might get interpreted as a return type instead.

It is often clearer to use a typedef for function pointer types; this also provides a
place to give a meaningful name to the function pointer’s type:

typedef int (*int_to_int_function)(int);
int_to_int_function ptof;

int *func (int); // WRONG: Declares a function taking an int returning

272

http://en.wikipedia.org/wiki/Functional%20programming
http://en.wikipedia.org/wiki/Function%20object

Functions

pointer-to-int.
int (*func) (int); // RIGHT: Defines a pointer to a function taking an int
returning int.

To help reduce confusion, it is popular to typedef either the function type or the
pointer type:

typedef int ifunc (int); // now "ifunc" means "function taking an int
returning int"
typedef int (*pfunc) (int); // now "pfunc" means "pointer to function taking an
int returning int"

If you typedef the function type, you can declare, but not define, functions with
that type. If you typdef the pointer type, you cannot either declare or define
functions with that type. Which to use is a matter of style (although the pointer is
more popular).

To assign a pointer to a function, you simply assign it to the function name. The &
operator is optional (it’s not ambiguous). The compiler will automatically select
an overloaded version of the function appropriate to the pointer, if one exists:

int f (int, int);
int f (int, double);
int g (int, int = 4);
double h (int);
int i (int);

int (*p) (int) = &g; // ERROR: The default parameter needs to be included in the
pointer type.

p = &h; // ERROR: The return type needs to match exactly.
p = &i; // Correct.
p = i; // Also correct.

int (*p2) (int, double);
p2 = f; // Correct: The compiler automatically picks "int f (int,
double)".

Using a pointer to a function is even simpler - you simply call it like you would a
function. You are allowed to dereference it using the * operator, but you don’t
have to:

#include <iostream>

int f (int i) { return 2 * i; }

int main ()
{
int (*g) (int) = f;
std::cout<<"g(4) is "<<g(4)<<std::endl; // Will output "g(4) is 8"
std::cout<<"(*g)(5) is "<<g(5)<<std::endl; // Will output "g(5) is 10"
return 0;
}

273

Fundamentals for getting started

304

3.7.9 Callback

In COMPUTER PROGRAMMING305, a callback is EXECUTABLE CODE306 that is
passed as an ARGUMENT307 to other code. It allows a lower-level
ABSTARACTION LAYER308 to call a FUNCTION309 defined in a higher-level layer.
A callback is often back on the level of the original caller.

Figure 22: A callback is often back on the level of the original caller.

Usually, the higher-level code starts by calling a function within the lower-level
code, passing to it a POINTER310 or HANDLE311 to another function. While the
lower-level function executes, it may call the passed-in function any number of
times to perform some subtask. In another scenario, the lower-level function
registers the passed-in function as a handler that is to be called asynchronously by
the lower-level at a later time in reaction to something.

304 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
305 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAMMING
306 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXECUTABLE%20CODE
307 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARGUMENT%20%28COMPUTER%20SCIENCE%

29
308 HTTP://EN.WIKIPEDIA.ORG/WIKI/ABSTRACTION%20LAYER
309 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE
310 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER
311 HTTP://EN.WIKIPEDIA.ORG/WIKI/SMART%20POINTER

274

http://en.wikibooks.org/wiki/Category%3A
http://en.wikipedia.org/wiki/computer%20programming
http://en.wikipedia.org/wiki/executable%20code
http://en.wikipedia.org/wiki/argument%20%28computer%20science%29
http://en.wikipedia.org/wiki/argument%20%28computer%20science%29
http://en.wikipedia.org/wiki/abstraction%20layer
http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/pointer
http://en.wikipedia.org/wiki/smart%20pointer

Functions

A callback can be used as a simpler alternative to POLYMORPHISM312 and
GENERIC PROGRAMMING313, in that the exact behavior of a function can be
dynamically determined by passing different (yet compatible) function pointers or
handles to the lower-level function. This can be a very powerful technique for
CODE REUSE314. In another common scenario, the callback is first registered and
later called asynchronously.

312 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTER%
20SCIENCE%29

313 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING
314 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20REUSE

275

http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/generic%20programming
http://en.wikipedia.org/wiki/code%20reuse

Fundamentals for getting started

Figure 23: In another common scenario, the callback is first registered and later
called asynchronously.

3.7.10 Overloading

Function overloading is the use of a single name for several different functions in
the same scope. Multiple functions who share the same name must be
differentiated by using another set of parameters for every such function. The
functions can be different in the number of parameters they expect, or their

276

Functions

parameters can differ in type. This way, the compiler can figure out the exact
function to call by looking at the arguments the caller supplied. This is called
overload resolution, and is quite complex.

// Overloading Example

// (1)
double geometric_mean(int, int);

// (2)
double geometric_mean(double, double);

// (3)
double geometric_mean(double, double, double);

// ...

// Will call (1):
geometric_mean(10, 25);
// Will call (2):
geometric_mean(22.1, 421.77);
// Will call (3):
geometric_mean(11.1, 0.4, 2.224);

Under some circumstances, a call can be ambiguous, because two or more
functions match with the supplied arguments equally well.

Example, supposing the declaration of geometric_mean above:

// This is an error, because (1) could be called and the second
// argument casted to an int, and (2) could be called with the first
// argument casted to a double. None of the two functions is
// unambiguously a better match.
geometric_mean(7, 13.21);
// This will call (3) too, despite its last argument being an int,
// Because (3) is the only function which can be called with 3
// arguments
geometric_mean(1.1, 2.2, 3);

Templates and non-templates can be overloaded. A non-template function takes
precedence over a template, if both forms of the function match the supplied
arguments equally well.

Note that you can overload many operators in C++ too.

Overloading resolution

Please beware that overload resolution in C++ is one of the most complicated
parts of the language. This is probably unavoidable in any case with automatic
template instantiation, user defined implicit conversions, built-in implicit

277

Fundamentals for getting started

conversation and more as language features. So do not despair if you do not
understand this at first go. It is really quite natural, once you have the ideas, but
written down it seems extremely complicated.

The easiest way to understand overloading is to imagine that the compiler first
finds every function which might possibly be called, using any legal conversions
and template instantiations. The compiler then selects the best match, if any, from
this set. Specifically, the set is constructed like this:

• All functions with matching name, including function templates, are put into
the set. Return types and visibility are not considered. Templates are added
with as closely matching parameters as possible. Member functions are
considered functions with the first parameter being a pointer-to-class-type.

• Conversion functions are added as so-called surrogate functions, with two
parameters, the first being the class type and the second the return type.

• All functions that do not match the number of parameters, even after
considering defaulted parameters and ellipses, are removed from the set.

• For each function, each argument is considered to see if a legal conversion
sequence exists to convert the caller’s argument to the function’s parameters. If
no such conversion sequence can be found, the function is removed from the
set.

The legal conversions are detailed below, but in short a legal conversion is any
number of built-in (like int to float) conversions combined with at most one user
defined conversion. The last part is critical to understand if you are writing
replacements to built-in types, such as smart pointers. User defined conversions
are described above, but to summarize it is

1. implicit conversion operators like operator short toShort();
2. One argument constructors (If a constructor has all but one parameter

defaulted, it is considered one-argument)

The overloading resolution works by attempting to establish the best matching
function.

Easy conversions are preferred

Looking at one parameter, the preferred conversion is roughly based on scope of
the conversion. Specifically, the conversions are preferred in this order, with
most-preferred highest:

1. No conversion, adding one or more const, adding reference, convert array
to pointer to first member

278

Functions

a) const are preferred for rvalues (roughly constants) while non-const
are preferred for lvalues (roughly assignables)

2. Conversion from short integral types (bool, char, short) to int, and float to
double.

3. Built-in conversions, such as between int and double and pointer type
conversion. Pointer conversion are ranked as

a) Base to derived (pointers) or derived to base (for
pointers-to-members), with most-derived preferred

b) Conversion to void*
c) Conversion to bool

4. User-defined conversions, see above.
5. Match with ellipses. (As an aside, this is rather useful knowledge for

template meta programming)

The best match is now determined according to the following rules:

• A function is only a better match if all parameters match at least as well

In short, the function must be better in every respect --- if one parameter matches
better and another worse, neither function is considered a better match. If no
function in the set is a better match than both, the call is ambiguous (i.e., it fails)
Example:

void foo(void*, bool);
void foo(int*, int);

int main() {
int a;
foo(&a, true); // ambiguous

}

• Non-templates are preferred over templates

If all else is equal between two functions, but one is a template and the other not,
the non-template is preferred. This seldom causes surprises.

• Most-specialized template is preferred

When all else is equal between two template function, but one is more specialized
than the other, the most specialized version is preferred. Example:

279

Fundamentals for getting started

template<typename T> void foo(T); //1
template<typename T> void foo(T*); //2

int main() {
int a;
foo(&a); // Calls 2, since 2 is more specialized.

}

Which template is more specialized is an entire chapter unto itself.

• Return types are ignored

This rule is mentioned above, but it bears repeating: Return types are never part
of overload resolutions, even if the function selected has a return type that will
cause the compilation to fail. Example:

void foo(int);
int foo(float);

int main() {
// This will fail since foo(int) is best match, and void cannot be converted

to int.
return foo(5);

}

• The selected function may not be accessible

If the selected best function is not accessible (e.g., it is a private function and the
call it not from a member or friend of its class), the call fails.
315

3.7.11 Standard C Library

The C standard library is the C language standardized collection of header files
and library routines used to implement common operations, such as input/output
and string handling. It became part of the C++ STANDARD LIBRARY316 as the
Standard C Library in its ANSI C 89 form with some small modifications to
make it work better with the C++ Standard Library but remaining outside of the

315 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
316 Chapter 3.1.2 on page 47

280

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

std namespace. Header files in the C++ Standard Library do not end in ".h".
However, the C++ Standard Library includes 18 header files from the C Standard
Library, with ".h" endings. Their use is deprecated (ISO/IEC 14882:2003(E)
Programming Languages — C++).

For a more in depth look into the C programming language check the C
PROGRAMMING WIKIBOOK317 but be aware of the incompatibilities we have
already covered on the COMPARING C++ WITH C SECTION318 of this book.

All Standard C Library Functions

Functions Descriptions
ABORT319 stops the program
ABS320 absolute value
ACOS321 arc cosine
ASCTIME322 a textual version of the time
ASIN323 arc sine
ASSERT324 stops the program if an expression

isn’t true
ATAN325 arc tangent
ATAN2326 arc tangent, using signs to determine

quadrants
ATEXIT327 sets a function to be called when the

program exits
ATOF328 converts a string to a double
ATOI329 converts a string to an integer
ATOL330 converts a string to a long

317 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING
318 Chapter 2.3.7 on page 25
319 Chapter 3.7.11 on page 372
320 Chapter 3.7.11 on page 347
321 Chapter 3.7.11 on page 347
322 Chapter 3.7.11 on page 362
323 Chapter 3.7.11 on page 348
324 Chapter 3.7.11 on page 373
325 Chapter 3.7.11 on page 348
326 Chapter 3.7.11 on page 349
327 Chapter 3.7.11 on page 373
328 Chapter 3.7.11 on page 320
329 Chapter 3.7.11 on page 320
330 Chapter 3.7.11 on page 321

281

http://en.wikibooks.org/wiki/C%20Programming

Fundamentals for getting started

Functions Descriptions
BSEARCH331 perform a binary search
CALLOC332 allocates and clears a two-

dimensional chunk of memory
CEIL333 the smallest integer not less than a

certain value
CLEARERR334 clears errors
CLOCK335 returns the amount of time that the

program has been running
COS336 cosine
COSH337 hyperbolic cosine
CTIME338 returns a specifically formatted ver-

sion of the time
DIFFTIME339 the difference between two times
DIV340 returns the quotient and remainder

of a division
EXIT341 stop the program
EXP342 returns "e" raised to a given power
FABS343 absolute value for floating-point

numbers
FCLOSE344 close a file
FEOF345 true if at the end-of-file
FERROR346 checks for a file error
FFLUSH347 writes the contents of the output

buffer

331 Chapter 3.7.11 on page 374
332 Chapter 3.7.11 on page 370
333 Chapter 3.7.11 on page 350
334 Chapter 3.7.11 on page 290
335 Chapter 3.7.11 on page 363
336 Chapter 3.7.11 on page 350
337 Chapter 3.7.11 on page 351
338 Chapter 3.7.11 on page 363
339 Chapter 3.7.11 on page 364
340 Chapter 3.7.11 on page 352
341 Chapter 3.7.11 on page 375
342 Chapter 3.7.11 on page 352
343 Chapter 3.7.11 on page 353
344 Chapter 3.7.11 on page 290
345 Chapter 3.7.11 on page 291
346 Chapter 3.7.11 on page 291
347 Chapter 3.7.11 on page 292

282

Functions

Functions Descriptions
FGETC348 get a character from a stream
FGETPOS349 get the file position indicator
FGETS350 get a string of characters from a

stream
FLOOR351 returns the largest integer not greater

than a given value
FMOD352 returns the remainder of a division
FOPEN353 open a file
FPRINTF354 print formatted output to a file
FPUTC355 write a character to a file
FPUTS356 write a string to a file
FREAD357 read from a file
FREE358 returns previously allocated memory

to the operating system
FREOPEN359 open an existing stream with a dif-

ferent name
FREXP360 decomposes a number into scientific

notation
FSCANF361 read formatted input from a file
FSEEK362 move to a specific location in a file
FSETPOS363 move to a specific location in a file
FTELL364 returns the current file position indi-

cator
FWRITE365 write to a file

348 Chapter 3.7.11 on page 293
349 Chapter 3.7.11 on page 293
350 Chapter 3.7.11 on page 294
351 Chapter 3.7.11 on page 353
352 Chapter 3.7.11 on page 354
353 Chapter 3.7.11 on page 295
354 Chapter 3.7.11 on page 296
355 Chapter 3.7.11 on page 297
356 Chapter 3.7.11 on page 298
357 Chapter 3.7.11 on page 298
358 Chapter 3.7.11 on page 370
359 Chapter 3.7.11 on page 299
360 Chapter 3.7.11 on page 355
361 Chapter 3.7.11 on page 300
362 Chapter 3.7.11 on page 300
363 Chapter 3.7.11 on page 301
364 Chapter 3.7.11 on page 302
365 Chapter 3.7.11 on page 302

283

Fundamentals for getting started

Functions Descriptions
GETC366 read a character from a file
GETCHAR367 read a character from STDIN
GETENV368 get environment information about a

variable
GETS369 read a string from STDIN
GMTIME370 returns a pointer to the current

Greenwich Mean Time
ISALNUM371 true if a character is alphanumeric
ISALPHA372 true if a character is alphabetic
ISCNTRL373 true if a character is a control char-

acter
ISDIGIT374 true if a character is a digit
ISGRAPH375 true if a character is a graphical

character
ISLOWER376 true if a character is lowercase
ISPRINT377 true if a character is a printing char-

acter
ISPUNCT378 true if a character is punctuation
ISSPACE379 true if a character is a space charac-

ter
ISUPPER380 true if a character is an uppercase

character
ISXDIGIT381 true if a character is a hexadecimal

character

366 Chapter 3.7.11 on page 303
367 Chapter 3.7.11 on page 304
368 Chapter 3.7.11 on page 375
369 Chapter 3.7.11 on page 304
370 Chapter 3.7.11 on page 365
371 Chapter 3.7.11 on page 322
372 Chapter 3.7.11 on page 323
373 Chapter 3.7.11 on page 323
374 Chapter 3.7.11 on page 324
375 Chapter 3.7.11 on page 325
376 Chapter 3.7.11 on page 325
377 Chapter 3.7.11 on page 326
378 Chapter 3.7.11 on page 326
379 Chapter 3.7.11 on page 327
380 Chapter 3.7.11 on page 328
381 Chapter 3.7.11 on page 328

284

Functions

Functions Descriptions
LABS382 absolute value for long integers
LDEXP383 computes a number in scientific no-

tation
LDIV384 returns the quotient and remainder

of a division, in long integer form
LOCALTIME385 returns a pointer to the current time
LOG386 natural logarithm
LOG10387 natural logarithm, in base 10
LONGJMP388 start execution at a certain point in

the program
MALLOC389 allocates memory
MEMCHR390 searches an array for the first occur-

rence of a character
MEMCMP391 compares two buffers
MEMCPY392 copies one buffer to another
MEMMOVE393 moves one buffer to another
MEMSET394 fills a buffer with a character
MKTIME395 returns the calendar version of a

given time
MODF396 decomposes a number into integer

and fractional parts
PERROR397 displays a string version of the cur-

rent error to STDERR
POW398 returns a given number raised to an-

other number

382 Chapter 3.7.11 on page 355
383 Chapter 3.7.11 on page 356
384 Chapter 3.7.11 on page 356
385 Chapter 3.7.11 on page 365
386 Chapter 3.7.11 on page 357
387 Chapter 3.7.11 on page 357
388 Chapter 3.7.11 on page 376
389 Chapter 3.7.11 on page 371
390 Chapter 3.7.11 on page 329
391 Chapter 3.7.11 on page 329
392 Chapter 3.7.11 on page 330
393 Chapter 3.7.11 on page 331
394 Chapter 3.7.11 on page 331
395 Chapter 3.7.11 on page 366
396 Chapter 3.7.11 on page 358
397 Chapter 3.7.11 on page 305
398 Chapter 3.7.11 on page 358

285

Fundamentals for getting started

Functions Descriptions
PRINTF399 write formatted output to STDOUT
PUTC400 write a character to a stream
PUTCHAR401 write a character to STDOUT
PUTS402 write a string to STDOUT
QSORT403 perform a quicksort
RAISE404 send a signal to the program
RAND405 returns a pseudo-random number
REALLOC406 changes the size of previously allo-

cated memory
REMOVE407 erase a file
RENAME408 rename a file
REWIND409 move the file position indicator to

the beginning of a file
SCANF410 read formatted input from STDIN
SETBUF411 set the buffer for a specific stream
SETJMP412 set execution to start at a certain

point
SETLOCALE413 sets the current locale
SETVBUF414 set the buffer and size for a specific

stream
SIGNAL415 register a function as a signal han-

dler
SIN416 sine

399 Chapter 3.7.11 on page 306
400 Chapter 3.7.11 on page 309
401 Chapter 3.7.11 on page 310
402 Chapter 3.7.11 on page 310
403 Chapter 3.7.11 on page 376
404 Chapter 3.7.11 on page 377
405 Chapter 3.7.11 on page 377
406 Chapter 3.7.11 on page 371
407 Chapter 3.7.11 on page 311
408 Chapter 3.7.11 on page 311
409 Chapter 3.7.11 on page 312
410 Chapter 3.7.11 on page 312
411 Chapter 3.7.11 on page 314
412 Chapter 3.7.11 on page 378
413 Chapter 3.7.11 on page 367
414 Chapter 3.7.11 on page 315
415 Chapter 3.7.11 on page 379
416 Chapter 3.7.11 on page 359

286

Functions

Functions Descriptions
SINH417 hyperbolic sine
SPRINTF418 write formatted output to a buffer
SQRT419 square root
SRAND420 initialize the random number gener-

ator
SSCANF421 read formatted input from a buffer
STRCAT422 concatenates two strings
STRCHR423 finds the first occurrence of a char-

acter in a string
STRCMP424 compares two strings
STRCOLL425 compares two strings in accordance

to the current locale
STRCPY426 copies one string to another
STRCSPN427 searches one string for any charac-

ters in another
STRERROR428 returns a text version of a given error

code
STRFTIME429 returns individual elements of the

date and time
STRLEN430 returns the length of a given string
STRNCAT431 concatenates a certain amount of

characters of two strings
STRNCMP432 compares a certain amount of char-

acters of two strings

417 Chapter 3.7.11 on page 359
418 Chapter 3.7.11 on page 315
419 Chapter 3.7.11 on page 360
420 Chapter 3.7.11 on page 380
421 Chapter 3.7.11 on page 316
422 Chapter 3.7.11 on page 332
423 Chapter 3.7.11 on page 333
424 Chapter 3.7.11 on page 334
425 Chapter 3.7.11 on page 335
426 Chapter 3.7.11 on page 336
427 Chapter 3.7.11 on page 336
428 Chapter 3.7.11 on page 337
429 Chapter 3.7.11 on page 367
430 Chapter 3.7.11 on page 337
431 Chapter 3.7.11 on page 338
432 Chapter 3.7.11 on page 338

287

Fundamentals for getting started

Functions Descriptions
STRNCPY433 copies a certain amount of charac-

ters from one string to another
STRPBRK434 finds the first location of any charac-

ter in one string, in another string
STRRCHR435 finds the last occurrence of a charac-

ter in a string
STRSPN436 returns the length of a substring of

characters of a string
STRSTR437 finds the first occurrence of a sub-

string of characters
STRTOD438 converts a string to a double
STRTOK439 finds the next token in a string
STRTOL440 converts a string to a long
STRTOUL441 converts a string to an unsigned

long
STRXFRM442 converts a substring so that it can be

used by string comparison functions
SYSTEM443 perform a system call
TAN444 tangent
TANH445 hyperbolic tangent
TIME446 returns the current calendar time of

the system
TMPFILE447 return a pointer to a temporary file
TMPNAM448 return a unique filename

433 Chapter 3.7.11 on page 339
434 Chapter 3.7.11 on page 340
435 Chapter 3.7.11 on page 340
436 Chapter 3.7.11 on page 341
437 Chapter 3.7.11 on page 341
438 Chapter 3.7.11 on page 342
439 Chapter 3.7.11 on page 343
440 Chapter 3.7.11 on page 344
441 Chapter 3.7.11 on page 345
442 Chapter 3.7.11 on page 345
443 Chapter 3.7.11 on page 381
444 Chapter 3.7.11 on page 361
445 Chapter 3.7.11 on page 361
446 Chapter 3.7.11 on page 369
447 Chapter 3.7.11 on page 317
448 Chapter 3.7.11 on page 317

288

Functions

Functions Descriptions
TOLOWER449 converts a character to lowercase
TOUPPER450 converts a character to uppercase
UNGETC451 puts a character back into a stream
VA_ARG452 use variable length parameter lists
VPRINTF, VFPRINTF, AND

VSPRINTF453
write formatted output with variable
argument lists

VSCANF, VFSCANF, AND VSS-
CANF454

read formatted input with variable
argument lists

These routines included on the Standard C Library can be sub divided into:

• STANDARD C I/O455

• STANDARD C STRING & CHARACTER456

• STANDARD C MATH457

• STANDARD C TIME & DATE458

• STANDARD C MEMORY459

• OTHER STANDARD C FUNCTIONS460

461

462

449 Chapter 3.7.11 on page 346
450 Chapter 3.7.11 on page 346
451 Chapter 3.7.11 on page 318
452 Chapter 3.7.11 on page 381
453 Chapter 3.7.11 on page 318
454 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%

2FSTANDARD%20C%20LIBRARY%2FFUNCTIONS%2FVSCANF%2C%20VFSCANF%2C%
20AND%20VSSCANF

455 Chapter 3.7.11 on page 289
456 Chapter 3.7.11 on page 319
457 Chapter 3.7.11 on page 346
458 Chapter 3.7.11 on page 362
459 Chapter 3.7.11 on page 369
460 Chapter 3.7.11 on page 372
461 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
462 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

289

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Standard C I/O

The Standard C Library includes routines that are somewhat outdated, but due to
the HISTORY OF THE C++ LANGUAGE463 and its objective to maintain
compatibility these are included in the package.

C I/O calls still appear in old code (not only ANSI C 89 but even old C++ code).
Its use today may depend on a large number of factors, the age of the code base or
the level of complexity of the project or even based on the experience of the
programmers. Why use something you are not familiar with if you are proficient
in C and in some cases C-style I/O routines are superior to their C++ I/O
counterparts, for instance they are more compact and may be are good enough for
the simple projects that don’t make use of classes.

Note:
If you’re learning I/O for the first time you probably should program using the C++
I/O system and not bring legacy I/O systems into the mix. Learn C-style I/O only
if you have to.

clearerr

Syntax

include <cstdio> void clearerr(FILE *stream);

The clearerr function resets the error flags and EOF indicator for the given
stream. If an error occurs, you can use perror() or strerror() to figure out
which error actually occurred, or read the error from the global variable errno.

Related topics

FEOF464 - FERROR465 - PERROR466 - STRERROR467

468

463 Chapter 2.1 on page 7
464 Chapter 3.7.11 on page 291
465 Chapter 3.7.11 on page 291
466 Chapter 3.7.11 on page 305
467 Chapter 3.7.11 on page 337
468 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

290

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

fclose

Syntax

include <cstdio> int fclose(FILE *stream);

The function fclose() closes the given file stream, deallocating any buffers
associated with that stream. fclose() returns 0 upon success, and EOF otherwise.

Related topics

FFLUSH469 - FOPEN470 - FREOPEN471 - SETBUF472

473

feof

Syntax

include <cstdio> int feof(FILE *stream);

The function feof() returns TRUE if the end-of-file was reached, or FALSE
otherwise.

Related topics

CLEARERR474 - FERROR475 - GETC476 - PERROR477 - PUTC478

479

469 Chapter 3.7.11 on page 292
470 Chapter 3.7.11 on page 295
471 Chapter 3.7.11 on page 299
472 Chapter 3.7.11 on page 314
473 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
474 Chapter 3.7.11 on page 290
475 Chapter 3.7.11 on page 291
476 Chapter 3.7.11 on page 303
477 Chapter 3.7.11 on page 305
478 Chapter 3.7.11 on page 309
479 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

291

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

ferror

Syntax

include <cstdio> int ferror(FILE *stream);

The ferror() function looks for errors with stream, returning zero if no errors have
occurred, and non-zero if there is an error. In case of an error, use perror() to
determine which error has occurred.

Related topics

CLEARERR480 - FEOF481 - PERROR482

483

fflush

Syntax

include <cstdio> int fflush(FILE *stream);

If the given file stream is an output stream, then fflush() causes the output buffer
to be written to the file. If the given stream is of the input type, the behavior of
fflush() depends on the library being used (for example, some libraries ignore the
operation, others report an error, and others clear pending input).

fflush() is useful when either debugging (for example, if a program segfaults
before the buffer is sent to the screen), or it can be used to ensure a partial display
of output before a long processing period.

By default, most implementations have stdout transmit the buffer at the end of
each line, while stderr is flushed whenever there is output. This behavior changes
if there is a redirection or pipe, where calling fflush(stdout) can help maintain the
flow of output.

480 Chapter 3.7.11 on page 290
481 Chapter 3.7.11 on page 291
482 Chapter 3.7.11 on page 305
483 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

292

http://en.wikibooks.org/wiki/Category%3A

Functions

printf("Before first call\n");
fflush(stdout);
shady_function();
printf("Before second call\n");
fflush(stdout);
dangerous_dereference();

Related topics

FCLOSE484 - FOPEN485 - FREAD486 - FWRITE487 - GETC488 - PUTC489

490

fgetc

Syntax

include <cstdio> int fgetc(FILE *stream);

The fgetc() function returns the next character from stream, or EOF if the end of
file is reached or if there is an error.

Related topics

FOPEN491 - FPUTC492 - FREAD493 - FWRITE494 - GETC495 - GETCHAR496 -
GETS497 - PUTC498

499

484 Chapter 3.7.11 on page 290
485 Chapter 3.7.11 on page 295
486 Chapter 3.7.11 on page 298
487 Chapter 3.7.11 on page 302
488 Chapter 3.7.11 on page 303
489 Chapter 3.7.11 on page 309
490 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
491 Chapter 3.7.11 on page 295
492 Chapter 3.7.11 on page 297
493 Chapter 3.7.11 on page 298
494 Chapter 3.7.11 on page 302
495 Chapter 3.7.11 on page 303
496 Chapter 3.7.11 on page 304
497 Chapter 3.7.11 on page 304
498 Chapter 3.7.11 on page 309
499 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

293

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

fgetpos

Syntax

include <cstdio> int fgetpos(FILE *stream, fpos_t *position);

The fgetpos() function stores the file position indicator of the given file stream in
the given position variable. The position variable is of type fpos_t (which is
defined in cstdio) and is an object that can hold every possible position in a FILE.
fgetpos() returns zero upon success, and a non-zero value upon failure.

Related topics

FSEEK500 - FSETPOS501 - FTELL502

503

fgets

Syntax

include <cstdio> char *fgets(char *str, int num, FILE *stream);

The function fgets() reads up to num - 1 characters from the given file stream
and dumps them into str. The string that fgets() produces is always
null-terminated. fgets() will stop when it reaches the end of a line, in which
case str will contain that newline character. Otherwise, fgets() will stop when
it reaches num - 1 characters or encounters the EOF character. fgets() returns
str on success, and NULL on an error.

Related topics

500 Chapter 3.7.11 on page 300
501 Chapter 3.7.11 on page 301
502 Chapter 3.7.11 on page 302
503 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

294

http://en.wikibooks.org/wiki/Category%3A

Functions

FPUTS504 - FSCANF505 - GETS506 - SCANF507

508

fopen

Syntax

include <cstdio> FILE *fopen(const char *fname, const char *mode);

The fopen() function opens a file indicated by fname and returns a stream
associated with that file. If there is an error, fopen() returns NULL. mode is used
to determine how the file will be treated (i.e. for input, output, etc.)

The mode contains up to three characters. The first character is either "r", "w", or
"a", which indicates how the file is opened. A file opened for reading starts allows
input from the beginning of the file. For writing, the file is erased. For appending,
the file is kept and writing to the file will start at the end. The second character is
"b", is an optional flag that opens the file as binary - omitting any conversions
from different formats of text. The third character "+" is an optional flag that
allows read and write operations on the file (but the file itself is opened in the
same way.

Mode Meaning Mode Meaning
"r" Open a text file

for reading
"r+" Open a text file

for read/write
"w" Create a text file

for writing
"w+" Create a text file

for read/write
"a" Append to a

text file
"a+" Open a text file

for read/write
"rb" Open a binary

file for reading
"rb+" Open a binary

file for read-
/write

504 Chapter 3.7.11 on page 298
505 Chapter 3.7.11 on page 300
506 Chapter 3.7.11 on page 304
507 Chapter 3.7.11 on page 312
508 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

295

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Mode Meaning Mode Meaning
"wb" Create a binary

file for writing
"wb+" Create a binary

file for read-
/write

"ab" Append to a
binary file

"ab+" Open a binary
file for read-
/write

An example:

int ch;
FILE *input = fopen("stuff", "r");
ch = getc(input);

Related topics

FCLOSE509 - FFLUSH510 - FGETC511 - FPUTC512 - FREAD513 - FREOPEN514 -
FSEEK515 - FWRITE516 - GETC517 - GETCHAR518 - SETBUF519

520

fprintf

Syntax

include <cstdio> int fprintf(FILE *stream, const char *format, ...);

509 Chapter 3.7.11 on page 290
510 Chapter 3.7.11 on page 292
511 Chapter 3.7.11 on page 293
512 Chapter 3.7.11 on page 297
513 Chapter 3.7.11 on page 298
514 Chapter 3.7.11 on page 299
515 Chapter 3.7.11 on page 300
516 Chapter 3.7.11 on page 302
517 Chapter 3.7.11 on page 303
518 Chapter 3.7.11 on page 304
519 Chapter 3.7.11 on page 314
520 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

296

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The fprintf() function sends information (the arguments) according to the
specified format to the file indicated by stream. fprintf() works just like
PRINTF521() as far as the format goes. The return value of fprintf() is the number
of characters outputted, or a negative number if an error occurs. An example:

char name[20] = "Mary";
FILE *out;
out = fopen("output.txt", "w");
if(out != NULL)
fprintf(out, "Hello %s\n", name);

Related topics

FPUTC522 - FPUTS523 - FSCANF524 - PRINTF525 - SPRINTF526

527

fputc

Syntax

include <cstdio> int fputc(int ch, FILE *stream);

The function fputc() writes the given character ch to the given output stream. The
return value is the character, unless there is an error, in which case the return
value is EOF.

Related topics

521 Chapter 3.7.11 on page 306
522 Chapter 3.7.11 on page 297
523 Chapter 3.7.11 on page 298
524 Chapter 3.7.11 on page 300
525 Chapter 3.7.11 on page 306
526 Chapter 3.7.11 on page 315
527 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

297

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FGETC528 - FOPEN529 - FPRINTF530 - FREAD531 - FWRITE532 - GETC533 -
GETCHAR534 - PUTC535

536

fputs

Syntax

include <cstdio> int fputs(const char *str, FILE *stream);

The fputs() function writes an array of characters pointed to by str to the given
output stream. The return value is non-negative on success, and EOF on failure.

Related topics

FGETS537 - FPRINTF538 - FSCANF539 - GETS540 - GETC541 - PUTS542

543

528 Chapter 3.7.11 on page 293
529 Chapter 3.7.11 on page 295
530 Chapter 3.7.11 on page 296
531 Chapter 3.7.11 on page 298
532 Chapter 3.7.11 on page 302
533 Chapter 3.7.11 on page 303
534 Chapter 3.7.11 on page 304
535 Chapter 3.7.11 on page 309
536 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
537 Chapter 3.7.11 on page 294
538 Chapter 3.7.11 on page 296
539 Chapter 3.7.11 on page 300
540 Chapter 3.7.11 on page 304
541 Chapter 3.7.11 on page 303
542 Chapter 3.7.11 on page 310
543 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

298

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

fread

Syntax

include <cstdio> int fread(void *buffer, size_t size, size_t num, FILE *stream);

The function fread() reads num number of objects (where each object is size
bytes) and places them into the array pointed to by buffer. The data comes from
the given input stream. The return value of the function is the number of things
read. You can use FEOF544() or FERROR545() to figure out if an error occurs.

Related topics

FFLUSH546 - FGETC547 - FOPEN548 - FPUTC549 - FSCANF550 - FWRITE551 -
GETC552

553

freopen

Syntax

include <cstdio> FILE *freopen(const char *fname, const char *mode, FILE *stream);

The freopen() function is used to reassign an existing stream to a different file and
mode. After a call to this function, the given file stream will refer to fname with

544 Chapter 3.7.11 on page 291
545 Chapter 3.7.11 on page 291
546 Chapter 3.7.11 on page 292
547 Chapter 3.7.11 on page 293
548 Chapter 3.7.11 on page 295
549 Chapter 3.7.11 on page 297
550 Chapter 3.7.11 on page 300
551 Chapter 3.7.11 on page 302
552 Chapter 3.7.11 on page 303
553 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

299

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

access given by mode. The return value of freopen() is the new stream, or NULL
if there is an error.

Related topics

FCLOSE554 - FOPEN555

556

fscanf

Syntax

include <cstdio> int fscanf(FILE *stream, const char *format, ...);

The function fscanf() reads data from the given file stream in a manner exactly
like scanf(). The return value of fscanf() is the number of variables that are
actually assigned values, including zero if there were no matches. EOF is
returned if there was an error reading before the first match.

Related topics

FGETS557 - FPRINTF558 - FPUTS559 - FREAD560 - FWRITE561 - SCANF562 -
SSCANF563

564

554 Chapter 3.7.11 on page 290
555 Chapter 3.7.11 on page 295
556 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
557 Chapter 3.7.11 on page 294
558 Chapter 3.7.11 on page 296
559 Chapter 3.7.11 on page 298
560 Chapter 3.7.11 on page 298
561 Chapter 3.7.11 on page 302
562 Chapter 3.7.11 on page 312
563 Chapter 3.7.11 on page 316
564 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

300

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

fseek

Syntax

include <cstdio> int fseek(FILE *stream, long offset, int origin);

The function fseek() sets the file position data for the given stream. The origin
value should have one of the following values (defined in cstdio):

Name Explanation
SEEK_SET Seek from the start of the file
SEEK_CUR Seek from the current location
SEEK_END Seek from the end of the file

fseek() returns zero upon success, non-zero on failure. You can use fseek() to
move beyond a file, but not before the beginning. Using fseek() clears the EOF
flag associated with that stream.

Related topics

FGETPOS565 - FOPEN566 - FSETPOS567 - FTELL568 - REWIND569

570

fsetpos

Syntax

include <cstdio> int fsetpos(FILE *stream, const fpos_t *position);

565 Chapter 3.7.11 on page 293
566 Chapter 3.7.11 on page 295
567 Chapter 3.7.11 on page 301
568 Chapter 3.7.11 on page 302
569 Chapter 3.7.11 on page 312
570 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

301

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

The fsetpos() function moves the file position indicator for the given stream to a
location specified by the position object. fpos_t is defined in cstdio. The return
value for fsetpos() is zero upon success, non-zero on failure.

Related topics

FGETPOS571 - FSEEK572 - FTELL573

574

ftell

Syntax

include <cstdio> long ftell(FILE *stream);

The ftell() function returns the current file position for stream, or -1 if an error
occurs.

Related topics

FGETPOS575 - FSEEK576 - FSETPOS577

578

fwrite

Syntax

include <cstdio> int fwrite(const void *buffer, size_t size, size_t count, FILE

*stream);

571 Chapter 3.7.11 on page 293
572 Chapter 3.7.11 on page 300
573 Chapter 3.7.11 on page 302
574 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
575 Chapter 3.7.11 on page 293
576 Chapter 3.7.11 on page 300
577 Chapter 3.7.11 on page 301
578 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

302

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The fwrite() function writes, from the array buffer, count objects of size size to
stream. The return value is the number of objects written.

Related topics

FFLUSH579 - FGETC580 - FOPEN581 - FPUTC582 - FREAD583 - FSCANF584 -
GETC585

586

getc

Syntax

include <cstdio> int getc(FILE *stream);

The getc() function returns the next character from stream, or EOF if the end of
file is reached. getc() is identical to FGETC587(). For example:

int ch;
FILE *input = fopen("stuff", "r");

ch = getc(input);
while(ch != EOF) {
printf("%c", ch);
ch = getc(input);

}

Related topics

579 Chapter 3.7.11 on page 292
580 Chapter 3.7.11 on page 293
581 Chapter 3.7.11 on page 295
582 Chapter 3.7.11 on page 297
583 Chapter 3.7.11 on page 298
584 Chapter 3.7.11 on page 300
585 Chapter 3.7.11 on page 303
586 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
587 Chapter 3.7.11 on page 293

303

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FEOF588 - FFLUSH589 - FGETC590 - FOPEN591 - FPUTC592 - FGETC593 - FREAD594

- FWRITE595 - PUTC596 - UNGETC597

598

getchar

Syntax

include <cstdio> int getchar(void);

The getchar() function returns the next character from stdin, or EOF if the end of
file is reached.

Related topics

FGETC599 - FOPEN600 - FPUTC601 - PUTC602

603

588 Chapter 3.7.11 on page 291
589 Chapter 3.7.11 on page 292
590 Chapter 3.7.11 on page 293
591 Chapter 3.7.11 on page 295
592 Chapter 3.7.11 on page 297
593 Chapter 3.7.11 on page 293
594 Chapter 3.7.11 on page 298
595 Chapter 3.7.11 on page 302
596 Chapter 3.7.11 on page 309
597 Chapter 3.7.11 on page 318
598 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
599 Chapter 3.7.11 on page 293
600 Chapter 3.7.11 on page 295
601 Chapter 3.7.11 on page 297
602 Chapter 3.7.11 on page 309
603 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

304

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

gets

Syntax

include <cstdio> char *gets(char *str);

The gets() function reads characters from stdin and loads them into str, until a
newline or EOF is reached. The newline character is translated into a null
termination. The return value of gets() is the read-in string, or NULL if there is
an error.

Note:
gets() does not perform bounds checking, and thus risks overrunning str. For a
similar (and safer) function that includes bounds checking, see FGETSa().

a Chapter 3.7.11 on page 294

Related topics

FGETC604 - FGETS605 - FPUTS606 - PUTS607

608

perror

Syntax

include <cstdio> void perror(const char *str);

The perror() function writes str, a ":" followed by a space, an
implementation-defined and/or language-dependent error message corresponding
to the global variable errno, and a newline to stderr. For example:

604 Chapter 3.7.11 on page 293
605 Chapter 3.7.11 on page 294
606 Chapter 3.7.11 on page 298
607 Chapter 3.7.11 on page 310
608 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

305

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

char* input_filename = "not_found.txt";
FILE* input = fopen(input_filename, "r");
if(input == NULL) {

char error_msg[255];
sprintf(error_msg, "Error opening file ’%s’", input_filename);
perror(error_msg);
exit(-1);

}

If the file called not_found.txt is not found, this code will produce the following
output:

Error opening file ’not_found.txt’: No such file or directory

If "str" is a null pointer or points to the null byte, only the error message
corresponding to errno and a newline are written to stderr.

Related topics

CLEARERR609 - FEOF610 - FERROR611

612

printf

Syntax

include <cstdio> int printf(const char *format, ...);

The printf() function prints output to stdout, according to format and other
arguments passed to printf(). The string format consists of two types of items -
characters that will be printed to the screen, and format commands that define
how the other arguments to printf() are displayed. Basically, you specify a format
string that has text in it, as well as "special" characters that map to the other
arguments of printf(). For example, this code

char name[20] = "Bob";

609 Chapter 3.7.11 on page 290
610 Chapter 3.7.11 on page 291
611 Chapter 3.7.11 on page 291
612 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

306

http://en.wikibooks.org/wiki/Category%3A

Functions

int age = 21;
printf("Hello %s, you are %d years old\n", name, age);

displays the following output:

Hello Bob, you are 21 years old

The %s means, "insert the first argument, a string, right here." The %d indicates
that the second argument (an integer) should be placed there. There are different
%-codes for different variable types, as well as options to limit the length of the
variables and whatnot.

Control Character Explanation
%c a single character
%d a decimal integer
%i an integer
%e scientific notation, with a lowercase

"e"
%E scientific notation, with a uppercase

"E"
%f a floating-point number
%g use %e or %f, whichever is shorter
%G use %E or %f, whichever is shorter
%o an octal number
%x unsigned hexadecimal, with lower-

case letters
%X unsigned hexadecimal, with upper-

case letters
%u an unsigned integer
%s a string
%x a hexadecimal number
%p a pointer
%n the argument shall be a pointer to

an integer into which is placed the
number of characters written so far

%% a percent sign

A field-length specifier may appear before the final control character to indicate
the width of the field:

• h, when inserted inside %d, causes the argument to be a short int.

307

Fundamentals for getting started

• l, when inserted inside %d, causes the argument to be a long.
• l, when inserted inside %f, causes the argument to be a double.
• L, when inserted inside %d or %f, causes the argument to be a long long or

long double respecively.

An integer placed between a % sign and the format command acts as a minimum
field width specifier, and pads the output with spaces or zeros to make it long
enough. If you want to pad with zeros, place a zero before the minimum field
width specifier:

%012d

You can also include a precision modifier, in the form of a .N where N is some
number, before the format command:

%012.4d

The precision modifier has different meanings depending on the format command
being used:

• With %e, %E, and %f, the precision modifier lets you specify the number of
decimal places desired. For example, %12.6f will display a floating number at
least 12 digits wide, with six decimal places.

• With %g and %G, the precision modifier determines the maximum number of
significant digits displayed.

• With %s, the precision modifier simply acts as a maximum field length, to
complement the minimum field length that precedes the period.

All of printf()’s output is right-justified, unless you place a minus sign right after
the % sign. For example,

%-12.4f

will display a floating point number with a minimum of 12 characters, 4 decimal
places, and left justified. You may modify the %d, %i, %o, %u, and %x type
specifiers with the letter l and the letter h to specify long and short data types (e.g.
%hd means a short integer). The %e, %f, and %g type specifiers can have the
letter l before them to indicate that a double follows. The %g, %f, and %e type
specifiers can be preceded with the character ’#’ to ensure that the decimal point
will be present, even if there are no decimal digits. The use of the ’#’ character
with the %x type specifier indicates that the hexidecimal number should be
printed with the ’0x’ prefix. The use of the ’#’ character with the %o type
specifier indicates that the octal value should be displayed with a 0 prefix.

308

Functions

Inserting a plus sign ’+’ into the type specifier will force positive values to be
preceded by a ’+’ sign. Putting a space character ’ ’ there will force positive
values to be preceded by a single space character.

You can also include constant escape sequences in the output string.

The return value of printf() is the number of characters printed, or a negative
number if an error occurred.

Related topics

FPRINTF613 - PUTS614 - SCANF615 - SPRINTF616

617

putc

Syntax

include <cstdio> int putc(int ch, FILE *stream);

The putc() function writes the character ch to stream. The return value is the
character written, or EOF if there is an error. For example:

int ch;
FILE *input, *output;
input = fopen("tmp.c", "r");
output = fopen("tmpCopy.c", "w");
ch = getc(input);
while(ch != EOF) {
putc(ch, output);
ch = getc(input);

}
fclose(input);
fclose(output);

Generates a copy of the file tmp.c called tmpCopy.c.

Related topics

613 Chapter 3.7.11 on page 296
614 Chapter 3.7.11 on page 310
615 Chapter 3.7.11 on page 312
616 Chapter 3.7.11 on page 315
617 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

309

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

FEOF618 - FFLUSH619 - FGETC620 - FPUTC621 - GETC622 - GETCHAR623 -
PUTCHAR624 - PUTS625

626

putchar

Syntax

include <cstdio> int putchar(int ch);

The putchar() function writes ch to stdout. The code

putchar(ch);

is the same as

putc(ch, stdout);

The return value of putchar() is the written character, or EOF if there is an error.

Related topics

PUTC627

628

618 Chapter 3.7.11 on page 291
619 Chapter 3.7.11 on page 292
620 Chapter 3.7.11 on page 293
621 Chapter 3.7.11 on page 297
622 Chapter 3.7.11 on page 303
623 Chapter 3.7.11 on page 304
624 Chapter 3.7.11 on page 310
625 Chapter 3.7.11 on page 310
626 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
627 Chapter 3.7.11 on page 309
628 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

310

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

puts

Syntax

include <cstdio> int puts(char *str);

The function puts() writes str to stdout. puts() returns non-negative on success, or
EOF on failure.

Related topics

FPUTS629 - GETS630 - PRINTF631 - PUTC632

633

remove

Syntax

include <cstdio> int remove(const char *fname);

The remove() function erases the file specified by fname. The return value of
remove() is zero upon success, and non-zero if there is an error.

Related topics

RENAME634

635

629 Chapter 3.7.11 on page 298
630 Chapter 3.7.11 on page 304
631 Chapter 3.7.11 on page 306
632 Chapter 3.7.11 on page 309
633 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
634 Chapter 3.7.11 on page 311
635 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

311

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

rename

Syntax

include <cstdio> int rename(const char *oldfname, const char *newfname);

The function rename() changes the name of the file oldfname to newfname. The
return value of rename() is zero upon success, non-zero on error.

Related topics

REMOVE636

637

rewind

Syntax

include <cstdio> void rewind(FILE *stream);

The function rewind() moves the file position indicator to the beginning of the
specified stream, also clearing the error and EOF flags associated with that
stream.

Related topics

FSEEK638

639

636 Chapter 3.7.11 on page 311
637 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
638 Chapter 3.7.11 on page 300
639 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

312

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

scanf

Syntax

include <cstdio> int scanf(const char *format, ...);

The scanf() function reads input from stdin, according to the given format, and
stores the data in the other arguments. It works a lot like PRINTF640(). The format
string consists of control characters, whitespace characters, and non-whitespace
characters. The control characters are preceded by a % sign, and are as follows:

Control Character Explanation
%c a single character
%d a decimal integer
%i an integer
%e, %f, %g a floating-point number
%lf a double
%o an octal number
%s a string
%x a hexadecimal number
%p a pointer
%n an integer equal to the number of

characters read so far
%u an unsigned integer
%[] a set of characters
%% a percent sign

scanf() reads the input, matching the characters from format. When a control
character is read, it puts the value in the next variable. Whitespace (tabs, spaces,
etc.) are skipped. Non-whitespace characters are matched to the input, then
discarded. If a number comes between the % sign and the control character, then
only that many characters will be converted into the variable. If scanf()
encounters a set of characters, denoted by the %[] control character, then any
characters found within the brackets are read into the variable. The return value of

640 Chapter 3.7.11 on page 306

313

Fundamentals for getting started

scanf() is the number of variables that were successfully assigned values, or EOF
if there is an error.

This code snippet uses scanf() to read an int, float, and a double from the user.
Note that the variable arguments to scanf() are passed in by address, as denoted
by the ampersand (&) preceding each variable:

int i;
float f;
double d;

printf("Enter an integer: ");
scanf("%d", &i);

printf("Enter a float: ");
scanf("%f", &f);

printf("Enter a double: ");
scanf("%lf", &d);

printf("You entered %d, %f, and %f\n", i, f, d);

Related topics

FGETS641 - FSCANF642 - PRINTF643 - SSCANF644

645

setbuf

Syntax

include <cstdio> void setbuf(FILE *stream, char *buffer);

The setbuf() function sets stream to use buffer, or, if buffer is NULL, turns off
buffering. This function expects that the buffer be BUFSIZ characters long -
since this function does not support specifying the size of the buffer, buffers larger
than BUFSIZ will be partly unused.

641 Chapter 3.7.11 on page 294
642 Chapter 3.7.11 on page 300
643 Chapter 3.7.11 on page 306
644 Chapter 3.7.11 on page 316
645 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

314

http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

FCLOSE646 - FOPEN647 - SETVBUF648

649

setvbuf

Syntax

include <cstdio> int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

The function setvbuf() sets the buffer for stream to be buffer, with a size of size.
mode can be one of:

• _IOFBF, which indicates full buffering
• _IOLBF, which means line buffering
• _IONBF, which means no buffering

Related topics

FFLUSH650 - SETBUF651

652

sprintf

Syntax

include <cstdio> int sprintf(char *buffer, const char *format, ...);

646 Chapter 3.7.11 on page 290
647 Chapter 3.7.11 on page 295
648 Chapter 3.7.11 on page 315
649 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
650 Chapter 3.7.11 on page 292
651 Chapter 3.7.11 on page 314
652 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

315

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The sprintf() function is just like PRINTF653(), except that the output is sent to
buffer. The return value is the number of characters written. For example:

char string[50];
int file_number = 0;

sprintf(string, "file.%d", file_number);
file_number++;
output_file = fopen(string, "w");

Note that sprintf() does the opposite of a function like ATOI654() -- where
ATOI655() converts a string into a number, sprintf() can be used to convert a
number into a string.

For example, the following code uses sprintf() to convert an integer into a string
of characters:

char result[100];
int num = 24;
sprintf(result, "%d", num);

This code is similar, except that it converts a floating-point number into an array
of characters:

char result[100];
float fnum = 3.14159;
sprintf(result, "%f", fnum);

Related topics

FPRINTF656 - PRINTF657

(Standard C String and Character) ATOF658 - ATOI659 - ATOL660

661

653 Chapter 3.7.11 on page 306
654 Chapter 3.7.11 on page 320
655 Chapter 3.7.11 on page 320
656 Chapter 3.7.11 on page 296
657 Chapter 3.7.11 on page 306
658 Chapter 3.7.11 on page 320
659 Chapter 3.7.11 on page 320
660 Chapter 3.7.11 on page 321
661 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

316

http://en.wikibooks.org/wiki/Category%3A

Functions

sscanf

Syntax

include <cstdio> int sscanf(const char *buffer, const char *format, ...);

The function sscanf() is just like SCANF662(), except that the input is read from
buffer.

Related topics

FSCANF663 - SCANF664

665

tmpfile

Syntax

include <cstdio> FILE *tmpfile(void);

The function tmpfile() opens a temporary file with a unique filename and returns a
pointer to that file. If there is an error, null is returned.

Related topics

TMPNAM666

667

662 Chapter 3.7.11 on page 312
663 Chapter 3.7.11 on page 300
664 Chapter 3.7.11 on page 312
665 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
666 Chapter 3.7.11 on page 317
667 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

317

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

tmpnam

Syntax

include <cstdio> char *tmpnam(char *name);

The tmpnam() function creates a unique filename and stores it in name. tmpnam()
can be called up to TMP_MAX times.

Related topics

TMPFILE668

669

ungetc

Syntax

include <cstdio> int ungetc(int ch, FILE *stream);

The function ungetc() puts the character ch back in stream.

Related topics

GETC670

(C++ I/O) PUTBACK671

672

668 Chapter 3.7.11 on page 317
669 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
670 Chapter 3.7.11 on page 303
671 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%

2FIO%2FFUNCTIONS%2FPUTBACK
672 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

318

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FFunctions%2Fputback
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FFunctions%2Fputback
http://en.wikibooks.org/wiki/Category%3A

Functions

vprintf, vfprintf, and vsprintf

Syntax

include <cstdarg> include <cstdio> int vprintf(char *format, va_list

arg_ptr); int vfprintf(FILE *stream, const char *format, va_list arg_-

ptr); int vsprintf(char *buffer, char *format, va_list arg_ptr);

These functions are very much like PRINTF673(), FPRINTF674(), and SPRINTF675().
The difference is that the argument list is a pointer to a list of arguments. va_list
is defined in cstdarg, and is also used by (Other Standard C Functions)
VA_ARG676().

For example:

void error(char *fmt, ...) {
va_list args;
va_start(args, fmt);
fprintf(stderr, "Error: ");
vfprintf(stderr, fmt, args);
fprintf(stderr, "\n");
va_end(args);
exit(1);

}

677

678

Standard C String & Character

The Standard C Library includes also routines that deals with characters and
strings. You must keep in mind that in C, a string of characters is stored in
successive elements of a character array and terminated by the NULL character.

673 Chapter 3.7.11 on page 306
674 Chapter 3.7.11 on page 296
675 Chapter 3.7.11 on page 315
676 Chapter 3.7.11 on page 381
677 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
678 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

319

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

/* "Hello" is stored in a character array */
char note[SIZE];
note[0] = ’H’; note[1] = ’e’; note[2] = ’l’; note[3] = ’l’; note[4] = ’o’;
note[5] = ’\0’;

Even if outdated this C string and character functions still appear in old code and
more so than the previous I/O functions.

atof

Syntax

include <cstdlib> double atof(const char *str);

The function atof() converts str into a double, then returns that value. str must
start with a valid number, but can be terminated with any non-numerical
character, other than "E" or "e". For example,

x = atof("42.0is_the_answer");

results in x being set to 42.0.

Related topics

ATOI679 - ATOL680 - STRTOD681

(Standard C I/O) SPRINTF682

683

atoi

679 Chapter 3.7.11 on page 320
680 Chapter 3.7.11 on page 321
681 Chapter 3.7.11 on page 342
682 Chapter 3.7.11 on page 315
683 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

320

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

Syntax

include <cstdlib> int atoi(const char *str);

The atoi() function converts str into an integer, and returns that integer. str should
start with a whitespace or some sort of number, and atoi() will stop reading from
str as soon as a non-numerical character has been read. For example:

int i;
i = atoi("512");
i = atoi("512.035");
i = atoi(" 512.035");
i = atoi(" 512+34");
i = atoi(" 512 bottles of beer on the wall");

All five of the above assignments to the variable i would result in it being set to
512.

If the conversion cannot be performed, then atoi() will return zero:

int i = atoi(" does not work: 512"); // results in i == 0

Related topics

ATOF684 - ATOL685

(Standard C I/O) SPRINTF686

687

atol

Syntax

include <cstdlib> long atol(const char *str);

684 Chapter 3.7.11 on page 320
685 Chapter 3.7.11 on page 321
686 Chapter 3.7.11 on page 315
687 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

321

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The function atol() converts str into a long, then returns that value. atol() will read
from str until it finds any character that should not be in a long. The resulting
truncated value is then converted and returned. For example,

x = atol("1024.0001");

results in x being set to 1024L.

Related topics

ATOF688 - ATOI689 - STRTOD690

(Standard C I/O) SPRINTF691

692

isalnum

Syntax

include <cctype> int isalnum(int ch);

The function isalnum() returns non-zero if its argument is a numeric digit or a
letter of the alphabet. Otherwise, zero is returned.

char c;
scanf("%c", &c);
if(isalnum(c))

printf("You entered the alphanumeric character %c\n", c);

Related topics

688 Chapter 3.7.11 on page 320
689 Chapter 3.7.11 on page 320
690 Chapter 3.7.11 on page 342
691 Chapter 3.7.11 on page 315
692 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

322

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

ISALPHA693 - ISCNTRL694 - ISDIGIT695 - ISGRAPH696 - ISPRINT697 -
ISPUNCT698 - ISSPACE699 - ISXDIGIT700

701

isalpha

Syntax

include <cctype> int isalpha(int ch);

The function isalpha() returns non-zero if its argument is a letter of the alphabet.
Otherwise, zero is returned.

char c;
scanf("%c", &c);
if(isalpha(c))
printf("You entered a letter of the alphabet\n");

Related topics

ISALNUM702 - ISCNTRL703 - ISDIGIT704 - ISGRAPH705 - ISPRINT706 -
ISPUNCT707 - ISSPACE708 - ISXDIGIT709

710

693 Chapter 3.7.11 on page 323
694 Chapter 3.7.11 on page 323
695 Chapter 3.7.11 on page 324
696 Chapter 3.7.11 on page 325
697 Chapter 3.7.11 on page 326
698 Chapter 3.7.11 on page 326
699 Chapter 3.7.11 on page 327
700 Chapter 3.7.11 on page 328
701 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
702 Chapter 3.7.11 on page 322
703 Chapter 3.7.11 on page 323
704 Chapter 3.7.11 on page 324
705 Chapter 3.7.11 on page 325
706 Chapter 3.7.11 on page 326
707 Chapter 3.7.11 on page 326
708 Chapter 3.7.11 on page 327
709 Chapter 3.7.11 on page 328
710 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

323

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

iscntrl

Syntax

include <cctype> int iscntrl(int ch);

The iscntrl() function returns non-zero if its argument is a control character
(between 0 and 0x1F or equal to 0x7F). Otherwise, zero is returned.

Related topics

ISALNUM711 - ISALPHA712 - ISDIGIT713 - ISGRAPH714 - ISPRINT715 -
ISPUNCT716 - ISSPACE717 - ISXDIGIT718

719

isdigit

Syntax

include <cctype> int isdigit(int ch);

The function isdigit() returns non-zero if its argument is a digit between 0 and 9.
Otherwise, zero is returned.

char c;
scanf("%c", &c);
if(isdigit(c))

printf("You entered the digit %c\n", c);

Related topics

711 Chapter 3.7.11 on page 322
712 Chapter 3.7.11 on page 323
713 Chapter 3.7.11 on page 324
714 Chapter 3.7.11 on page 325
715 Chapter 3.7.11 on page 326
716 Chapter 3.7.11 on page 326
717 Chapter 3.7.11 on page 327
718 Chapter 3.7.11 on page 328
719 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

324

http://en.wikibooks.org/wiki/Category%3A

Functions

ISALNUM720 - ISALPHA721 - ISCNTRL722 - ISGRAPH723 - ISPRINT724 -
ISPUNCT725 - ISSPACE726 - ISXDIGIT727

728

isgraph

Syntax

include <cctype> int isgraph(int ch);

The function isgraph() returns non-zero if its argument is any printable character
other than a space (if you can see the character, then isgraph() will return a
non-zero value). Otherwise, zero is returned.

Related topics

ISALNUM729 - ISALPHA730 - ISCNTRL731 - ISDIGIT732 - ISPRINT733 -
ISPUNCT734 - ISSPACE735 - ISXDIGIT736

737

720 Chapter 3.7.11 on page 322
721 Chapter 3.7.11 on page 323
722 Chapter 3.7.11 on page 323
723 Chapter 3.7.11 on page 325
724 Chapter 3.7.11 on page 326
725 Chapter 3.7.11 on page 326
726 Chapter 3.7.11 on page 327
727 Chapter 3.7.11 on page 328
728 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
729 Chapter 3.7.11 on page 322
730 Chapter 3.7.11 on page 323
731 Chapter 3.7.11 on page 323
732 Chapter 3.7.11 on page 324
733 Chapter 3.7.11 on page 326
734 Chapter 3.7.11 on page 326
735 Chapter 3.7.11 on page 327
736 Chapter 3.7.11 on page 328
737 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

325

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

islower

Syntax

include <cctype> int islower(int ch);

The islower() function returns non-zero if its argument is a lowercase letter.
Otherwise, zero is returned.

Related topics

ISUPPER738

739

isprint

Syntax

include <cctype> int isprint(int ch);

The function isprint() returns non-zero if its argument is a printable character
(including a space). Otherwise, zero is returned.

Related topics

ISALNUM740 - ISALPHA741 - ISCNTRL742 - ISDIGIT743 - ISGRAPH744 -
ISPUNCT745 - ISSPACE746

747

738 Chapter 3.7.11 on page 328
739 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
740 Chapter 3.7.11 on page 322
741 Chapter 3.7.11 on page 323
742 Chapter 3.7.11 on page 323
743 Chapter 3.7.11 on page 324
744 Chapter 3.7.11 on page 325
745 Chapter 3.7.11 on page 326
746 Chapter 3.7.11 on page 327
747 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

326

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

ispunct

Syntax

include <cctype> int ispunct(int ch);

The ispunct() function returns non-zero if its argument is a printing character but
neither alphanumeric nor a space. Otherwise, zero is returned.

Related topics

ISALNUM748 - ISALPHA749 - ISCNTRL750 - ISDIGIT751 - ISGRAPH752 -
ISSPACE753 - ISXDIGIT754

755

isspace

Syntax

include <cctype> int isspace(int ch);

The isspace() function returns non-zero if its argument is some sort of space (i.e.
single space, tab, vertical tab, form feed, carriage return, or newline). Otherwise,
zero is returned.

Related topics

748 Chapter 3.7.11 on page 322
749 Chapter 3.7.11 on page 323
750 Chapter 3.7.11 on page 323
751 Chapter 3.7.11 on page 324
752 Chapter 3.7.11 on page 325
753 Chapter 3.7.11 on page 327
754 Chapter 3.7.11 on page 328
755 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

327

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ISALNUM756 - ISALPHA757 - ISCNTRL758 - ISDIGIT759 - ISGRAPH760 -
ISPRINT761 - ISPUNCT762 - ISXDIGIT763

764

isupper

Syntax

include <cctype> int isupper(int ch);

The isupper() function returns non-zero if its argument is an uppercase letter.
Otherwise, zero is returned.

Related topics

ISLOWER765 - TOLOWER766

767

isxdigit

Syntax

include <cctype> int isxdigit(int ch);

756 Chapter 3.7.11 on page 322
757 Chapter 3.7.11 on page 323
758 Chapter 3.7.11 on page 323
759 Chapter 3.7.11 on page 324
760 Chapter 3.7.11 on page 325
761 Chapter 3.7.11 on page 326
762 Chapter 3.7.11 on page 326
763 Chapter 3.7.11 on page 328
764 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
765 Chapter 3.7.11 on page 325
766 Chapter 3.7.11 on page 346
767 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

328

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The function isxdigit() returns non-zero if its argument is a hexadecimal digit (i.e.
A-F, a-f, or 0-9). Otherwise, zero is returned.

Related topics

ISALNUM768 - ISALPHA769 - ISCNTRL770 - ISDIGIT771 - ISGRAPH772 -
ISPUNCT773 - ISSPACE774

775

memchr

Syntax

include <cstring> void *memchr(const void *buffer, int ch, size_t count);

The memchr() function looks for the first occurrence of ch within count
characters in the array pointed to by buffer. The return value points to the location
of the first occurrence of ch, or NULL if ch isn’t found. For example:

char names[] = "Alan Bob Chris X Dave";
if(memchr(names,’X’,strlen(names)) == NULL)
printf("Didn’t find an X\n");

else
printf("Found an X\n");

Related topics

MEMCMP776 - MEMCPY777 - STRSTR778

779

768 Chapter 3.7.11 on page 322
769 Chapter 3.7.11 on page 323
770 Chapter 3.7.11 on page 323
771 Chapter 3.7.11 on page 324
772 Chapter 3.7.11 on page 325
773 Chapter 3.7.11 on page 326
774 Chapter 3.7.11 on page 327
775 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
776 Chapter 3.7.11 on page 329
777 Chapter 3.7.11 on page 330
778 Chapter 3.7.11 on page 341
779 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

329

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

memcmp

Syntax

include <cstring> int memcmp(const void *buffer1, const void *buffer2, size_t count);

The function memcmp() compares the first count characters of buffer1 and
buffer2. The return values are as follows:

Return value Explanation
less than 0 buffer1 is less than buffer2
equal to 0 buffer1 is equal to buffer2
greater than 0 buffer1 is greater than buffer2

Related topics

MEMCHR780 - MEMCPY781 - MEMSET782 - STRCMP783

784

memcpy

Syntax

include <cstring> void *memcpy(void *to, const void *from, size_t count);

The function memcpy() copies count characters from the array from to the array
to. The return value of memcpy() is to. The behavior of memcpy() is undefined if
to and from overlap.

780 Chapter 3.7.11 on page 329
781 Chapter 3.7.11 on page 330
782 Chapter 3.7.11 on page 331
783 Chapter 3.7.11 on page 334
784 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

330

http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

MEMCHR785 - MEMCMP786 - MEMMOVE787 - MEMSET788 - STRCPY789 -
STRLEN790 - STRNCPY791

792

memmove

Syntax

include <cstring> void *memmove(void *to, const void *from, size_t count);

The memmove() function is identical to MEMCPY793(), except that it works even
if to and from overlap.

Related topics

MEMCPY794 - MEMSET795

796

785 Chapter 3.7.11 on page 329
786 Chapter 3.7.11 on page 329
787 Chapter 3.7.11 on page 331
788 Chapter 3.7.11 on page 331
789 Chapter 3.7.11 on page 336
790 Chapter 3.7.11 on page 337
791 Chapter 3.7.11 on page 339
792 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
793 Chapter 3.7.11 on page 330
794 Chapter 3.7.11 on page 330
795 Chapter 3.7.11 on page 331
796 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

331

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

memset

Syntax

include <cstring> void* memset(void* buffer, int ch, size_t count);

The function memset() copies ch into the first count characters of buffer, and
returns buffer. memset() is useful for intializing a section of memory to some
value. For example, this command:

const int ARRAY_LENGTH;
char the_array[ARRAY_LENGTH];
...
// zero out the contents of the_array
memset(the_array, ’\0’, ARRAY_LENGTH);

...is a very efficient way to set all values of the_array to zero.

The table below compares two different methods for initializing an array of
characters: a for loop versus memset(). As the size of the data being initialized
increases, memset() clearly gets the job done much more quickly:

Input size Initialized with a for
loop

Initialized with mem-
set()

1000 0.016 0.017
10000 0.055 0.013
100000 0.443 0.029
1000000 4.337 0.291

Related topics

MEMCMP797 - MEMCPY798 - MEMMOVE799

800

797 Chapter 3.7.11 on page 329
798 Chapter 3.7.11 on page 330
799 Chapter 3.7.11 on page 331
800 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

332

http://en.wikibooks.org/wiki/Category%3A

Functions

strcat

Syntax

include <cstring> char *strcat(char *str1, const char *str2);

The strcat() function concatenates str2 onto the end of str1, and returns str1. For
example:

printf("Enter your name: ");
scanf("%s", name);
title = strcat(name, " the Great");
printf("Hello, %s\n", title); ;

Note that strcat() does not perform bounds checking, and thus risks overrunning
str1 or str2. For a similar (and safer) function that includes bounds checking, see
STRNCAT801().

Related topics

STRCHR802 - STRCMP803 - STRCPY804 - STRNCAT805

806

strchr

Syntax

include <cstring> char *strchr(const char *str, int ch);

The function strchr() returns a pointer to the first occurrence of ch in str, or
NULL if ch is not found.

801 Chapter 3.7.11 on page 338
802 Chapter 3.7.11 on page 333
803 Chapter 3.7.11 on page 334
804 Chapter 3.7.11 on page 336
805 Chapter 3.7.11 on page 338
806 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

333

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Related topics

STRCAT807 - STRCMP808 - STRCPY809 - STRLEN810 - STRNCAT811 - STRNCMP812

- STRNCPY813 - STRPBRK814 - STRRCHR815 -STRSPN816 - STRSTR817 -
STRTOK818

819

strcmp

Syntax

include <cstring> int strcmp(const char *str1, const char *str2);

The function strcmp() compares str1 and str2, then returns:

Return value Explanation
less than 0 str1 is less than str2
equal to 0 str1 is equal to str2
greater than 0 str1 is greater than str2

For example:

printf("Enter your name: ");
scanf("%s", name);
if(strcmp(name, "Mary") == 0) {

807 Chapter 3.7.11 on page 332
808 Chapter 3.7.11 on page 334
809 Chapter 3.7.11 on page 336
810 Chapter 3.7.11 on page 337
811 Chapter 3.7.11 on page 338
812 Chapter 3.7.11 on page 338
813 Chapter 3.7.11 on page 339
814 Chapter 3.7.11 on page 340
815 Chapter 3.7.11 on page 340
816 Chapter 3.7.11 on page 341
817 Chapter 3.7.11 on page 341
818 Chapter 3.7.11 on page 343
819 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

334

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

printf("Hello, Dr. Mary!\n");
}

Note that if str1 or str2 are missing a null-termination character, then strcmp()
may not produce valid results. For a similar (and safer) function that includes
explicit bounds checking, see strncmp().

Related topics

MEMCMP820 - STRCAT821 - STRCHR822 - STRCOLL823 - STRCPY824 - STRLEN825

- STRNCMP826 - STRXFRM827

828

strcoll

Syntax

include <cstring> int strcoll(const char *str1, const char *str2);

The strcoll() function compares str1 and str2, much like STRCMP829(). However,
strcoll() performs the comparison using the locale specified by the (Standard C
Date & Time) SETLOCALE830() function.

Related topics

STRCMP831 - STRXFRM832

(Standard C Date & Time) SETLOCALE833

820 Chapter 3.7.11 on page 329
821 Chapter 3.7.11 on page 332
822 Chapter 3.7.11 on page 333
823 Chapter 3.7.11 on page 335
824 Chapter 3.7.11 on page 336
825 Chapter 3.7.11 on page 337
826 Chapter 3.7.11 on page 338
827 Chapter 3.7.11 on page 345
828 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
829 Chapter 3.7.11 on page 334
830 Chapter 3.7.11 on page 367
831 Chapter 3.7.11 on page 334
832 Chapter 3.7.11 on page 345
833 Chapter 3.7.11 on page 367

335

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

834

strcpy

Syntax

include <cstring> char *strcpy(char *to, const char *from);

The strcpy() function copies characters in the string fromto the string to,
including the null termination. The return value is to.

Note that strcpy() does not perform bounds checking, and thus risks overrunning
from or to. For a similar (and safer) function that includes bounds checking, see
STRNCPY835().

Related topics

MEMCPY836 - STRCAT837 - STRCHR838 - STRCMP839 - STRNCMP840 -
STRNCPY841

842

strcspn

Syntax

include <cstring> size_t strcspn(const char *str1, const char *str2);

834 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
835 Chapter 3.7.11 on page 339
836 Chapter 3.7.11 on page 330
837 Chapter 3.7.11 on page 332
838 Chapter 3.7.11 on page 333
839 Chapter 3.7.11 on page 334
840 Chapter 3.7.11 on page 338
841 Chapter 3.7.11 on page 339
842 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

336

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The function strcspn() returns the index of the first character in str1 that matches
any of the characters in str2.

Related topics

STRPBRK843 - STRRCHR844 - STRSTR845 - STRTOK846

847

strerror

Syntax

include <cstring> char *strerror(int num);

The function strerror() returns an implementation defined string corresponding to
num. If an error occurred, the error is located within the global variable errno.

Related topics

PERROR848

849

strlen

Syntax

include <cstring> size_t strlen(char *str);

The strlen() function returns the length of str (determined by the number of
characters before null termination).

843 Chapter 3.7.11 on page 340
844 Chapter 3.7.11 on page 340
845 Chapter 3.7.11 on page 341
846 Chapter 3.7.11 on page 343
847 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
848 Chapter 3.7.11 on page 305
849 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

337

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Related topics

MEMCPY850 - STRCHR851 - STRCMP852 - STRNCMP853

854

strncat

Syntax

include <cstring> char *strncat(char *str1, const char *str2, size_t count);

The function strncat() concatenates at most count characters of str2 onto str1,
adding a null termination. The resulting string is returned.

Related topics

STRCAT855 - STRCHR856 - STRNCMP857 - STRNCPY858

859

strncmp

Syntax

include <cstring> int strncmp(const char *str1, const char *str2, size_t count);

850 Chapter 3.7.11 on page 330
851 Chapter 3.7.11 on page 333
852 Chapter 3.7.11 on page 334
853 Chapter 3.7.11 on page 338
854 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
855 Chapter 3.7.11 on page 332
856 Chapter 3.7.11 on page 333
857 Chapter 3.7.11 on page 338
858 Chapter 3.7.11 on page 339
859 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

338

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The strncmp() function compares at most count characters of str1 and str2. The
return value is as follows:

Return value Explanation
less than 0 str1 is less than str2
equal to 0 str1 is equal to str2
greater than 0 str1 is greater than str2

If there are less than count characters in either string, then the comparison will
stop after the first null termination is encountered.

Related topics

STRCHR860 - STRCMP861 - STRCPY862 - STRLEN863 - STRNCAT864 - STRNCPY865

866

strncpy

Syntax

include <cstring> char *strncpy(char *to, const char *from, size_t count);

The strncpy() function copies at most count characters of from to the string to.
Only if from has less than count characters, is the remainder padded with ’\0’
characters. The return value is the resulting string.

Note:
Using strings not padded with the ’\0’ character can create security vulnerabilities.

860 Chapter 3.7.11 on page 333
861 Chapter 3.7.11 on page 334
862 Chapter 3.7.11 on page 336
863 Chapter 3.7.11 on page 337
864 Chapter 3.7.11 on page 338
865 Chapter 3.7.11 on page 339
866 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

339

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Related topics

MEMCPY867 - STRCHR868 - STRCPY869 - STRNCAT870 - STRNCMP871

872

strpbrk

Syntax

include <cstring> char * strpbrk(const char *str, const char *ch);

The function strchr() returns a pointer to the first occurrence of any character
within ch in str, or NULL if no characters were not found.

Related topics

STRCHR873 - STRRCHR874 - STRSTR875

876

strrchr

Syntax

include <cstring> char *strrchr(const char *str, int ch);

867 Chapter 3.7.11 on page 330
868 Chapter 3.7.11 on page 333
869 Chapter 3.7.11 on page 336
870 Chapter 3.7.11 on page 338
871 Chapter 3.7.11 on page 338
872 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
873 Chapter 3.7.11 on page 340
874 Chapter 3.7.11 on page 340
875 Chapter 3.7.11 on page 341
876 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

340

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The function strrchr() returns a pointer to the last occurrence of ch in str, or
NULL if no match is found.

Related topics

STRCHR877 - STRCSPN878 - STRPBRK879 - STRSPN880 - STRSTR881 - STRTOK882

883

strspn

Syntax

include <cstring> size_t strspn(const char *str1, const char *str2);

The strspn() function returns the index of the first character in str1 that doesn’t
match any character in str2.

Related topics

STRCHR884 - STRPBRK885 - STRRCHR886 - STRSTR887 - STRTOK888

889

877 Chapter 3.7.11 on page 333
878 Chapter 3.7.11 on page 336
879 Chapter 3.7.11 on page 340
880 Chapter 3.7.11 on page 341
881 Chapter 3.7.11 on page 341
882 Chapter 3.7.11 on page 343
883 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
884 Chapter 3.7.11 on page 333
885 Chapter 3.7.11 on page 340
886 Chapter 3.7.11 on page 340
887 Chapter 3.7.11 on page 341
888 Chapter 3.7.11 on page 343
889 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

341

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

strstr

Syntax

include <cstring> char *strstr(const char *str1, const char *str2);

The function strstr() returns a pointer to the first occurrence of str2 in str1, or
NULL if no match is found. If the length of str2 is zero, then strstr() will simply
return str1.

For example, the following code checks for the existence of one string within
another string:

char* str1 = "this is a string of characters";
char* str2 = "a string";
char* result = strstr(str1, str2);
if(result == NULL) printf("Could not find ’%s’ in ’%s’\n", str2, str1);
else printf("Found a substring: ’%s’\n", result);

When run, the above code displays this output:

Found a substring: ’a string of characters’

Related topics

MEMCHR890 - STRCHR891 - STRCSPN892 - STRPBRK893 - STRRCHR894 -
STRSPN895 - STRTOK896

897

890 Chapter 3.7.11 on page 329
891 Chapter 3.7.11 on page 333
892 Chapter 3.7.11 on page 336
893 Chapter 3.7.11 on page 340
894 Chapter 3.7.11 on page 340
895 Chapter 3.7.11 on page 341
896 Chapter 3.7.11 on page 343
897 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

342

http://en.wikibooks.org/wiki/Category%3A

Functions

strtod

Syntax

include <cstdlib> double strtod(const char *start, char **end);

The function strtod() returns whatever it encounters first in start as a double. end
is set to point at whatever is left in start after that double. If overflow occurs,
strtod() returns either HUGE_VAL or -HUGE_VAL.

x = atof("42.0is_the_answer");

results in x being set to 42.0.

Related topics

ATOF898

899

strtok

Syntax

include <cstring> char *strtok(char *str1, const char *str2);

The strtok() function returns a pointer to the next "token" in str1, where str2
contains the delimiters that determine the token. strtok() returns NULL if no
token is found. In order to convert a string to tokens, the first call to strtok()
should have str1 point to the string to be tokenized. All calls after this should
have str1 be NULL.

For example:

char str[] = "now # is the time for all # good men to come to the # aid of their

898 Chapter 3.7.11 on page 320
899 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

343

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

country";
char delims[] = "#";
char *result = NULL;
result = strtok(str, delims);
while(result != NULL) {
printf("result is \"%s\"\n", result);
result = strtok(NULL, delims);

}

The above code will display the following output:

result is "now "
result is " is the time for all "
result is " good men to come to the "
result is " aid of their country"

Related topics

STRCHR900 - STRCSPN901 - STRPBRK902 - STRRCHR903 - STRSPN904 -
STRSTR905

906

strtol

Syntax

include <cstdlib> long strtol(const char *start, char **end, int base);

The strtol() function returns whatever it encounters first in start as a long, doing
the conversion to base if necessary. end is set to point to whatever is left in start
after the long. If the result can not be represented by a long, then strtol() returns
either LONG_MAX or LONG_MIN. Zero is returned upon error.

Related topics

900 Chapter 3.7.11 on page 333
901 Chapter 3.7.11 on page 336
902 Chapter 3.7.11 on page 340
903 Chapter 3.7.11 on page 340
904 Chapter 3.7.11 on page 341
905 Chapter 3.7.11 on page 341
906 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

344

http://en.wikibooks.org/wiki/Category%3A

Functions

ATOL907 - STRTOUL908

909

strtoul

Syntax

include <cstdlib> unsigned long strtoul(const char *start, char **end, int base);

The function strtoul() behaves exactly like STRTOL910(), except that it returns an
unsigned long rather than a mere long.

Related topics

STRTOL911

912

strxfrm

Syntax

include <cstring> size_t strxfrm(char *str1, const char *str2, size_t num);

The strxfrm() function manipulates the first num characters of str2 and stores
them in str1. The result is such that if a STRCOLL913() is performed on str1 and
the old str2, you will get the same result as with a STRCMP914().

907 Chapter 3.7.11 on page 321
908 Chapter 3.7.11 on page 345
909 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
910 Chapter 3.7.11 on page 344
911 Chapter 3.7.11 on page 344
912 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
913 Chapter 3.7.11 on page 335
914 Chapter 3.7.11 on page 334

345

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Related topics

STRCMP915 - STRCOLL916

917

tolower

Syntax

include <cctype> int tolower(int ch);

The function tolower() returns the lowercase version of the character ch.

Related topics

ISUPPER918 - TOUPPER919

920

toupper

Syntax

include <cctype> int toupper(int ch);

The toupper() function returns the uppercase version of the character ch.

Related topics

TOLOWER921

922

915 Chapter 3.7.11 on page 334
916 Chapter 3.7.11 on page 335
917 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
918 Chapter 3.7.11 on page 328
919 Chapter 3.7.11 on page 346
920 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
921 Chapter 3.7.11 on page 346
922 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

346

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

Standard C Math

This section will cover the Math elements of the C Standard Library.

abs

Syntax

include <cstdlib> int abs(int num);

The abs() function returns the absolute value of num. For example:

int magic_number = 10;
cout << "Enter a guess: ";
cin >> x;
cout << "Your guess was " << abs(magic_number - x) << " away from the magic
number." << endl;

Related topics

FABS923 - LABS924

925

acos

Syntax

include <cmath> double acos(double arg);

The acos() function returns the arc cosine of arg, which will be in the range [0,
pi]. arg should be between -1 and 1. If arg is outside this range, acos() returns
NAN and raises a floating-point exception.

Related topics

923 Chapter 3.7.11 on page 353
924 Chapter 3.7.11 on page 355
925 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

347

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

ASIN926 - ATAN927 - ATAN2928 - COS929 - COSH930 - SIN931 - SINH932 - TAN933 -
TANH934

935

asin

Syntax

include <cmath> double asin(double arg);

The asin() function returns the arc sine of arg, which will be in the range [-pi/2,
+pi/2]. arg should be between -1 and 1. If arg is outside this range, asin() returns
NAN and raises a floating-point exception.

Related topics

ACOS936 - ATAN937 - ATAN2938 - COS939 - COSH940 - SIN941 - SINH942 - TAN943 -
TANH944

945

926 Chapter 3.7.11 on page 348
927 Chapter 3.7.11 on page 348
928 Chapter 3.7.11 on page 349
929 Chapter 3.7.11 on page 350
930 Chapter 3.7.11 on page 351
931 Chapter 3.7.11 on page 359
932 Chapter 3.7.11 on page 359
933 Chapter 3.7.11 on page 361
934 Chapter 3.7.11 on page 361
935 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
936 Chapter 3.7.11 on page 347
937 Chapter 3.7.11 on page 348
938 Chapter 3.7.11 on page 349
939 Chapter 3.7.11 on page 350
940 Chapter 3.7.11 on page 351
941 Chapter 3.7.11 on page 359
942 Chapter 3.7.11 on page 359
943 Chapter 3.7.11 on page 361
944 Chapter 3.7.11 on page 361
945 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

348

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

atan

Syntax

include <cmath> double atan(double arg);

The function atan() returns the arc tangent of arg, which will be in the range
[-pi/2, +pi/2].

Related topics

ACOS946 - ASIN947 - ATAN2948 - COS949 - COSH950 - SIN951 - SINH952 - TAN953 -
TANH954

955

atan2

Syntax

include <cmath> double atan2(double y, double x);

The atan2() function computes the arc tangent of y/x, using the signs of the
arguments to compute the quadrant of the return value.

Related topics

946 Chapter 3.7.11 on page 347
947 Chapter 3.7.11 on page 348
948 Chapter 3.7.11 on page 349
949 Chapter 3.7.11 on page 350
950 Chapter 3.7.11 on page 351
951 Chapter 3.7.11 on page 359
952 Chapter 3.7.11 on page 359
953 Chapter 3.7.11 on page 361
954 Chapter 3.7.11 on page 361
955 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

349

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

ACOS956 - ASIN957 - ATAN958 - COS959 - COSH960 - SIN961 - SINH962 - TAN963 -
TANH964

965

ceil

Syntax

include <cmath> double ceil(double num);

The ceil() function returns the smallest integer no less than num. For example:

y = 6.04;
x = ceil(y);

would set x to 7.0.

Related topics

FLOOR966 - FMOD967

968

956 Chapter 3.7.11 on page 347
957 Chapter 3.7.11 on page 348
958 Chapter 3.7.11 on page 348
959 Chapter 3.7.11 on page 350
960 Chapter 3.7.11 on page 351
961 Chapter 3.7.11 on page 359
962 Chapter 3.7.11 on page 359
963 Chapter 3.7.11 on page 361
964 Chapter 3.7.11 on page 361
965 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
966 Chapter 3.7.11 on page 353
967 Chapter 3.7.11 on page 354
968 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

350

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Functions

cos

Syntax

include <cmath> float cos(float arg); double cos(double arg); long double cos(long

double arg);

The cos() function returns the cosine of arg, where arg is expressed in radians.
The return value of cos() is in the range [-1,1]. If arg is infinite, cos() will return
NAN and raise a floating-point exception.

Related topics

ACOS969 - ASIN970 - ATAN971 - ATAN2972 - COSH973 - SIN974 - SINH975 - TAN976

- TANH977

978

cosh

Syntax

include <cmath> float cosh(float arg); double cosh(double arg); long double cosh(

long double arg);

The function cosh() returns the hyperbolic cosine of arg.

Related topics

969 Chapter 3.7.11 on page 347
970 Chapter 3.7.11 on page 348
971 Chapter 3.7.11 on page 348
972 Chapter 3.7.11 on page 349
973 Chapter 3.7.11 on page 351
974 Chapter 3.7.11 on page 359
975 Chapter 3.7.11 on page 359
976 Chapter 3.7.11 on page 361
977 Chapter 3.7.11 on page 361
978 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

351

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ACOS979 - ASIN980 - ATAN981 - ATAN2982 - COS983 - SIN984 - SINH985 - TAN986 -
TANH987

988

div

Syntax

include <cstdlib> div_t div(int numerator, int denominator);

The function div() returns the quotient and remainder of the operation numerator /
denominator. The div_t structure is defined in cstdlib, and has at least:

int quot; // The quotient
int rem; // The remainder

For example, the following code displays the quotient and remainder of x/y:

div_t temp;
temp = div(x, y);
printf("%d divided by %d yields %d with a remainder of %d\n",
x, y, temp.quot, temp.rem);

Related topics

LDIV989

990

979 Chapter 3.7.11 on page 347
980 Chapter 3.7.11 on page 348
981 Chapter 3.7.11 on page 348
982 Chapter 3.7.11 on page 349
983 Chapter 3.7.11 on page 350
984 Chapter 3.7.11 on page 359
985 Chapter 3.7.11 on page 359
986 Chapter 3.7.11 on page 361
987 Chapter 3.7.11 on page 361
988 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
989 Chapter 3.7.11 on page 356
990 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

352

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

exp

Syntax

include <cmath> double exp(double arg);

The exp() function returns e (2.7182818) raised to the argth power.

Related topics

LOG991 - POW992 - SQRT993

994

fabs

Syntax

include <cmath> double fabs(double arg);

The function fabs() returns the absolute value of arg.

Related topics

ABS995 - FMOD996 - LABS997

998

991 Chapter 3.7.11 on page 357
992 Chapter 3.7.11 on page 358
993 Chapter 3.7.11 on page 360
994 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
995 Chapter 3.7.11 on page 347
996 Chapter 3.7.11 on page 354
997 Chapter 3.7.11 on page 355
998 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

353

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

floor

Syntax

include <cmath> double floor(double arg);

The function floor() returns the largest integer value not greater than arg.

// Example for positive numbers
y = 6.04;
x = floor(y);

would result in x being set to 6 (double 6.0).

// Example for negative numbers
y = -6.04;
x = floor(y);

would result in x being set to -7 (double -7.0).

Related topics

CEIL999 - FMOD1000

1001

fmod

Syntax

include <cmath> double fmod(double x, double y);

The fmod() function returns the remainder of x/y.

Related topics

999 Chapter 3.7.11 on page 350
1000 Chapter 3.7.11 on page 354
1001 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

354

http://en.wikibooks.org/wiki/Category%3A

Functions

CEIL1002 - FABS1003 - FLOOR1004

1005

frexp

Syntax

include <cmath> double frexp(double num, int* exp);

The function frexp() is used to decompose num into two parts: a mantissa
between 0.5 and 1 (returned by the function) and an exponent returned as exp.
Scientific notation works like this:

num = mantissa * (2 ^ exp)

Related topics

LDEXP1006 - MODF1007

1008

labs

Syntax

include <cstdlib> long labs(long num);

The function labs() returns the absolute value of num.

Related topics

1002 Chapter 3.7.11 on page 350
1003 Chapter 3.7.11 on page 353
1004 Chapter 3.7.11 on page 353
1005 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1006 Chapter 3.7.11 on page 356
1007 Chapter 3.7.11 on page 358
1008 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

355

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ABS1009 - FABS1010

1011

ldexp

Syntax

include <cmath> double ldexp(double num, int exp);

The ldexp() function returns num * (2 ˆ exp). And get this: if an overflow occurs,
HUGE_VAL is returned.

Related topics

FREXP1012 - MODF1013

1014

ldiv

Syntax

include <cstdlib> ldiv_t ldiv(long numerator, long denominator);

Testing: adiv_t, div_t, ldiv_t.

The ldiv() function returns the quotient and remainder of the operation numerator
/ denominator. The ldiv_t structure is defined in cstdlib and has at least:

long quot; // the quotient
long rem; // the remainder

1009 Chapter 3.7.11 on page 347
1010 Chapter 3.7.11 on page 353
1011 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1012 Chapter 3.7.11 on page 355
1013 Chapter 3.7.11 on page 358
1014 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

356

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

DIV1015

1016

log

Syntax

include <cmath> double log(double num);

The function log() returns the natural (base e) logarithm of num. There’s a
domain error if num is negative, a range error if num is zero.

In order to calculate the logarithm of x to an arbitrary base b, you can use:

double answer = log(x) / log(b);

Related topics

EXP1017 - LOG101018 - POW1019 - SQRT1020

1021

log10

Syntax

include <cmath> double log10(double num);

The log10() function returns the base 10 (or common) logarithm for num. There
will be a domain error if num is negative and a range error if num is zero.

1015 Chapter 3.7.11 on page 352
1016 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1017 Chapter 3.7.11 on page 352
1018 Chapter 3.7.11 on page 357
1019 Chapter 3.7.11 on page 358
1020 Chapter 3.7.11 on page 360
1021 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

357

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Related topics

LOG1022

1023

modf

Syntax

include <cmath> double modf(double num, double *i);

The function modf() splits num into its integer and fraction parts. It returns the
fractional part and loads the integer part into i.

Related topics

FREXP1024 - LDEXP1025

1026

pow

Syntax

include <cmath> double pow(double base, double exp);

The pow() function returns base raised to the expth power. There’s a domain error
if base is zero and exp is less than or equal to zero. There’s also a domain error if
base is negative and exp is not an integer. There’s a range error if an overflow
occurs.

1022 Chapter 3.7.11 on page 357
1023 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1024 Chapter 3.7.11 on page 355
1025 Chapter 3.7.11 on page 356
1026 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

358

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

EXP1027 - LOG1028 - SQRT1029

1030

sin

Syntax

include <cmath> double sin(double arg);

The function sin() returns the sine of arg, where arg is given in radians. The
return value of sin() will be in the range [-1,1]. If arg is infinite, sin() will return
NAN and raise a floating-point exception.

Related topics

ACOS1031 - ASIN1032 - ATAN1033 - ATAN21034 - COS1035 - COSH1036 - SINH1037 -
TAN1038 - TANH1039

1040

1027 Chapter 3.7.11 on page 352
1028 Chapter 3.7.11 on page 357
1029 Chapter 3.7.11 on page 360
1030 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1031 Chapter 3.7.11 on page 347
1032 Chapter 3.7.11 on page 348
1033 Chapter 3.7.11 on page 348
1034 Chapter 3.7.11 on page 349
1035 Chapter 3.7.11 on page 350
1036 Chapter 3.7.11 on page 351
1037 Chapter 3.7.11 on page 359
1038 Chapter 3.7.11 on page 361
1039 Chapter 3.7.11 on page 361
1040 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

359

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

sinh

Syntax

include <cmath> double sinh(double arg);

The function sinh() returns the hyperbolic sine of arg.

Related topics

ACOS1041 - ASIN1042 - ATAN1043 - ATAN21044 - COS1045 - COSH1046 - SIN1047 -
TAN1048 - TANH1049

1050

sqrt

Syntax

include <cmath> double sqrt(double num);

The sqrt() function returns the square root of num. If num is negative, a domain
error occurs.

Related topics

EXP1051 - LOG1052 - POW1053

1041 Chapter 3.7.11 on page 347
1042 Chapter 3.7.11 on page 348
1043 Chapter 3.7.11 on page 348
1044 Chapter 3.7.11 on page 349
1045 Chapter 3.7.11 on page 350
1046 Chapter 3.7.11 on page 351
1047 Chapter 3.7.11 on page 359
1048 Chapter 3.7.11 on page 361
1049 Chapter 3.7.11 on page 361
1050 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1051 Chapter 3.7.11 on page 352
1052 Chapter 3.7.11 on page 357
1053 Chapter 3.7.11 on page 358

360

http://en.wikibooks.org/wiki/Category%3A

Functions

1054

tan

Syntax

include <cmath> double tan(double arg);

The tan() function returns the tangent of arg, where arg is given in radians. If arg
is infinite, tan() will return NAN and raise a floating-point exception.

Related topics

ACOS1055 - ASIN1056 - ATAN1057 - ATAN21058 - COS1059 - COSH1060 - SIN1061 -
SINH1062 - TANH1063

1064

tanh

Syntax

include <cmath> double tanh(double arg);

/*example*/
#include <stdio.h>
#include <math.h>
int main (){

double c, p;

1054 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1055 Chapter 3.7.11 on page 347
1056 Chapter 3.7.11 on page 348
1057 Chapter 3.7.11 on page 348
1058 Chapter 3.7.11 on page 349
1059 Chapter 3.7.11 on page 350
1060 Chapter 3.7.11 on page 351
1061 Chapter 3.7.11 on page 359
1062 Chapter 3.7.11 on page 359
1063 Chapter 3.7.11 on page 361
1064 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

361

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

c = log(2.0);
p = tanh (c);
printf ("The hyperbolic tangent of %lf is %lf.\n", c, p);

return 0;
}

The function tanh() returns the hyperbolic tangent of arg.

Related topics

ACOS1065 - ASIN1066 - ATAN1067 - ATAN21068 - COS1069 - COSH1070 - SIN1071 -
SINH1072 - TAN1073

1074

Standard C Time & Date

This section will cover the Time and Date elements of the C Standard Library.

asctime

Syntax

include <ctime> char *asctime(const struct tm *ptr);

The function asctime() converts the time in the struct ’ptr’ to a character string of
the following format:

day month date hours:minutes:seconds year

1065 Chapter 3.7.11 on page 347
1066 Chapter 3.7.11 on page 348
1067 Chapter 3.7.11 on page 348
1068 Chapter 3.7.11 on page 349
1069 Chapter 3.7.11 on page 350
1070 Chapter 3.7.11 on page 351
1071 Chapter 3.7.11 on page 359
1072 Chapter 3.7.11 on page 359
1073 Chapter 3.7.11 on page 361
1074 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

362

http://en.wikibooks.org/wiki/Category%3A

Functions

An example:

Mon Jun 26 12:03:53 2000

Related topics

CLOCK1075 - CTIME1076 - DIFFTIME1077 - GMTIME1078 - LOCALTIME1079 -
MKTIME1080 - TIME1081

1082

clock

Syntax

include <ctime> clock_t clock(void);

The clock() function returns the processor time since the program started, or -1 if
that information is unavailable. To convert the return value to seconds, divide it
by CLOCKS_PER_SEC.

Note:
If your compiler and library is POSIX compliant, then CLOCKS_PER_SEC is
always defined as 1000000.

Related topics

ASCTIME1083 - CTIME1084 - TIME1085

1086

1075 Chapter 3.7.11 on page 363
1076 Chapter 3.7.11 on page 363
1077 Chapter 3.7.11 on page 364
1078 Chapter 3.7.11 on page 365
1079 Chapter 3.7.11 on page 365
1080 Chapter 3.7.11 on page 366
1081 Chapter 3.7.11 on page 369
1082 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1083 Chapter 3.7.11 on page 362
1084 Chapter 3.7.11 on page 363
1085 Chapter 3.7.11 on page 369
1086 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

363

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ctime

Syntax

include <ctime> char *ctime(const time_t *time);

The ctime() function converts the calendar time time to local time of the format:

day month date hours:minutes:seconds year

using ctime() is equivalent to

asctime(localtime(tp));

Related topics

ASCTIME1087 - CLOCK1088 - GMTIME1089 - LOCALTIME1090 - MKTIME1091 -
TIME1092

1093

difftime

Syntax

include <ctime> double difftime(time_t time2, time_t time1);

The function difftime() returns time2 - time1, in seconds.

Related topics

1087 Chapter 3.7.11 on page 362
1088 Chapter 3.7.11 on page 363
1089 Chapter 3.7.11 on page 365
1090 Chapter 3.7.11 on page 365
1091 Chapter 3.7.11 on page 366
1092 Chapter 3.7.11 on page 369
1093 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

364

http://en.wikibooks.org/wiki/Category%3A

Functions

ASCTIME1094 - GMTIME1095 - LOCALTIME1096 - TIME1097

1098

gmtime

Syntax

include <ctime> struct tm *gmtime(const time_t *time);

The gmtime() function returns the given time in Coordinated Universal Time
(usually Greenwich mean time), unless it’s not supported by the system, in which
case NULL is returned. Watch out for the STATIC RETURN1099.

Related topics

ASCTIME1100 - CTIME1101 - DIFFTIME1102 - LOCALTIME1103 - MKTIME1104 -
STRFTIME1105 - TIME1106

1107

1094 Chapter 3.7.11 on page 362
1095 Chapter 3.7.11 on page 365
1096 Chapter 3.7.11 on page 365
1097 Chapter 3.7.11 on page 369
1098 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1099 Chapter 3.7.4 on page 262
1100 Chapter 3.7.11 on page 362
1101 Chapter 3.7.11 on page 363
1102 Chapter 3.7.11 on page 364
1103 Chapter 3.7.11 on page 365
1104 Chapter 3.7.11 on page 366
1105 Chapter 3.7.11 on page 367
1106 Chapter 3.7.11 on page 369
1107 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

365

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

localtime

Syntax

include <ctime> struct tm *localtime(const time_t *time);

The function localtime() converts calendar time time into local time. Watch out
for the STATIC RETURN1108.

Related topics

ASCTIME1109 - CTIME1110 - DIFFTIME1111 - GMTIME1112 - STRFTIME1113 -
TIME1114

1115

mktime

Syntax

include <ctime> time_t mktime(struct tm *time);

The mktime() function converts the local time in time to calendar time, and
returns it. If there is an error, -1 is returned.

Related topics

ASCTIME1116 - CTIME1117 - GMTIME1118 - TIME1119

1108 Chapter 3.7.4 on page 262
1109 Chapter 3.7.11 on page 362
1110 Chapter 3.7.11 on page 363
1111 Chapter 3.7.11 on page 364
1112 Chapter 3.7.11 on page 365
1113 Chapter 3.7.11 on page 367
1114 Chapter 3.7.11 on page 369
1115 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1116 Chapter 3.7.11 on page 362
1117 Chapter 3.7.11 on page 363
1118 Chapter 3.7.11 on page 365
1119 Chapter 3.7.11 on page 369

366

http://en.wikibooks.org/wiki/Category%3A

Functions

1120

setlocale

Syntax

include <clocale> char *setlocale(int category, const char * locale);

The setlocale() function is used to set and retrieve the current locale. If locale is
NULL, the current locale is returned. Otherwise, locale is used to set the locale
for the given category.

category can have the following values:

Value Description
LC_ALL All of the locale
LC_TIME Date and time formatting
LC_NUMERIC Number formatting
LC_COLLATE String collation and regular expres-

sion matching
LC_CTYPE Regular expression matching, con-

version, case-sensitive comparison,
wide character functions, and char-
acter classification.

LC_MONETARY For monetary formatting
LC_MESSAGES For natural language messages

Related topics

(Standard C String & Character) STRCOLL1121

1122

1120 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1121 Chapter 3.7.11 on page 335
1122 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

367

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

strftime

Syntax

include <ctime> size_t strftime(char *str, size_t maxsize, const char *fmt, struct tm

*time);

The function strftime() formats date and time information from time to a format
specified by fmt, then stores the result in str (up to maxsize characters). Certain
codes may be used in fmt to specify different types of time:

Code Meaning
%a abbreviated weekday name (e.g. Fri)
%A full weekday name (e.g. Friday)
%b abbreviated month name (e.g. Oct)
%B full month name (e.g. October)
%c the standard date and time string
%d day of the month, as a number (1-

31)
%H hour, 24 hour format (0-23)
%I hour, 12 hour format (1-12)
%j day of the year, as a number (1-366)
%m month as a number (1-12).
%M minute as a number (0-59)
%p locale’s equivalent of AM or PM
%S second as a number (0-59)
%U week of the year, (0-53), where

week 1 has the first Sunday
%w weekday as a decimal (0-6), where

Sunday is 0
%W week of the year, (0-53), where

week 1 has the first Monday
%x standard date string
%X standard time string
%y year in decimal, without the century

(0-99)
%Y year in decimal, with the century
%Z time zone name
%% a percent sign

368

Functions

Note:
Some versions of Microsoft Visual C++ may use values that range from 0-11 to
describe %m (month as a number).

Related topics

GMTIME1123 - LOCALTIME1124 - TIME1125

1126

time

Syntax

include <ctime> time_t time(time_t *time);

The function time() returns the current time, or -1 if there is an error. If the
argument time is given, then the current time is stored in time.

Related topics

ASCTIME1127 - CLOCK1128 - CTIME1129 - DIFFTIME1130 - GMTIME1131 -
LOCALTIME1132 - MKTIME1133 - STRFTIME1134

(Other Standard C functions) SRAND1135

1136

1123 Chapter 3.7.11 on page 365
1124 Chapter 3.7.11 on page 365
1125 Chapter 3.7.11 on page 369
1126 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1127 Chapter 3.7.11 on page 362
1128 Chapter 3.7.11 on page 363
1129 Chapter 3.7.11 on page 363
1130 Chapter 3.7.11 on page 364
1131 Chapter 3.7.11 on page 365
1132 Chapter 3.7.11 on page 365
1133 Chapter 3.7.11 on page 366
1134 Chapter 3.7.11 on page 367
1135 Chapter 3.7.11 on page 380
1136 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

369

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Standard C Memory Management

This section will cover memory management elements from the Standard C
Library.

Note:
It is recommended to use the new and delete operators instead of these functions,
as they provide additional control over the creation of objects.

calloc

Syntax

include <cstdlib> void *calloc(size_t num, size_t size);

The function calloc() allocates a block of memory that can store num objects of
size size. In addition, the block of memory allocated is set to all zeros.

If the operation fails, calloc() returns NULL.

Related topics

FREE1137 - MALLOC1138 - REALLOC1139

1140

free

Syntax

include <cstdlib> void free(void *p);

1137 Chapter 3.7.11 on page 370
1138 Chapter 3.7.11 on page 371
1139 Chapter 3.7.11 on page 371
1140 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

370

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The function free() releases a previously allocated block from a call to calloc,
malloc, or realloc.

Related topics

CALLOC1141 - MALLOC1142 - REALLOC1143

1144

malloc

Syntax

include <cstdlib> void *malloc(size_t s);

The function malloc() allocates a block of memory of size s. The memory
remains uninitialized.

If the operation fails, malloc() returns NULL.

Related topics

CALLOC1145 - FREE1146 - REALLOC1147

1148

realloc

Syntax

include <cstdlib> void *realloc(void *p, size_t s);

1141 Chapter 3.7.11 on page 370
1142 Chapter 3.7.11 on page 371
1143 Chapter 3.7.11 on page 371
1144 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1145 Chapter 3.7.11 on page 370
1146 Chapter 3.7.11 on page 370
1147 Chapter 3.7.11 on page 371
1148 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

371

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The function realloc() resizes a block created by malloc() or calloc(), and returns
a pointer to the new memory region.

If the resize operation fails, realloc() returns NULL and leaves the old memory
region intact.

Note:
realloc() does not have a corresponding operator in C++ - however, this is not re-
quired since the standard template library already provides the necessary memory
management for most usages.

Related topics

CALLOC1149 - FREE1150 - MALLOC1151

1152

1153

Other Standard C functions

This section will cover several functions that are outside of the previous niches
but are nevertheless part of the C Standard Library.

abort

Syntax

include <cstdlib> void abort(void);

The function abort() terminates the current program. Depending on the
implementation, the return from the function can indicate a canceled (e.g. you
used the signal() function to catch SIGABRT) or failed abort.

1149 Chapter 3.7.11 on page 370
1150 Chapter 3.7.11 on page 370
1151 Chapter 3.7.11 on page 371
1152 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1153 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

372

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

SIGABRT is sent by the process to itself when it calls the abort libc function,
defined in cstdlib. The SIGABRT signal can be caught, but it cannot be blocked;
if the signal handler returns then all open streams are closed and flushed and the
program terminates (dumping core if appropriate). This means that the abort call
never returns. Because of this characteristic, it is often used to signal fatal
conditions in support libraries, situations where the current operation cannot be
completed but the main program can perform cleanup before exiting. It is also
used if an assertion fails.

Related topics

ASSERT1154 - ATEXIT1155 - EXIT1156

1157

assert

Syntax

include <cassert> assert(exp);

The assert() macro is used to test for errors. If exp evaluates to zero, assert()
writes information to stderr and exits the program. If the macro NDEBUG is
defined, the assert() macros will be ignored.

Related topics

ABORT1158

1159

atexit

1154 Chapter 3.7.11 on page 373
1155 Chapter 3.7.11 on page 373
1156 Chapter 3.7.11 on page 375
1157 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1158 Chapter 3.7.11 on page 372
1159 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

373

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Syntax

include <cstdlib> int atexit(void (*func)(void));

The function atexit() causes the function pointed to by func to be called when the
program terminates. You can make multiple calls to atexit() (at least 32,
depending on your compiler) and those functions will be called in reverse order of
their establishment. The return value of atexit() is zero upon success, and
non-zero on failure.

Related topics

ABORT1160 - EXIT1161

1162

bsearch

Syntax

include <cstdlib> void* bsearch(const void *key, const void *base,

size_t num, size_t size, int (*compare)(const void *, const void *));

The function bsearch() performs a search within a sorted array, returning a pointer
to the element in question or NULL.

*key refers to an object that matches an item searched within *base. This array
contains num elements, each of size size.

The compare function accepts two pointers to the object within the array - which
need to first be cast to the object type being examined. The function returns -1 if
the first parameter should be before the second, 1 if the first parameter is after, or
0 if the object matches.

Related topics

1160 Chapter 3.7.11 on page 372
1161 Chapter 3.7.11 on page 375
1162 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

374

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

QSORT1163

1164

exit

Syntax

include <cstdlib> void exit(int exit_code);

The exit() function stops the program. exit_code is passed on to be the return
value of the program, where usually zero indicates success and non-zero indicates
an error.

Related topics

ABORT1165 - ATEXIT1166 - SYSTEM1167

1168

getenv

Syntax

include <cstdlib> char *getenv(const char *name);

The function getenv() returns environmental information associated with name,
and is very implementation dependent. NULL is returned if no information about
name is available.

Related topics

SYSTEM1169

1163 Chapter 3.7.11 on page 376
1164 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1165 Chapter 3.7.11 on page 372
1166 Chapter 3.7.11 on page 373
1167 Chapter 3.7.11 on page 381
1168 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1169 Chapter 3.7.11 on page 381

375

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

1170

longjmp

Syntax

include <csetjmp> void longjmp(jmp_buf env, int val);

The function longjmp() behaves as a cross-function goto statement: it moves the
point of execution to the record found in env, and causes setjmp() to return val.
Using longjmp() may have some side effects with variables in the setjmp() calling
function that were modified after the initial return.

longjmp() does not call destructors of any created objects. As such, it has been
superseded with the C++ exception system, which uses the throw and catch
keywords.

Related topics

SETJMP1171

1172

qsort

Syntax

include <cstdlib> void* qsort(const void *base, size_t num,

size_t size, int (*compare)(const void *, const void *));

The function qsort() performs a QUICK SORT1173 on an array. Note that some
implementations may instead use a more efficient sorting algorithm.

1170 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1171 Chapter 3.7.11 on page 378
1172 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1173 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUICKSORT

376

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/quicksort

Functions

*base refers to the array being sorted. This array contains num elements, each of
size size.

The compare function accepts two pointers to the object within the array - which
need to first be cast to the object type being examined. The function returns -1 if
the first parameter should be before the second, 1 if the first parameter is after, or
0 if the object matches.

Related topics

BSEARCH1174

1175

raise

Syntax

include <csignal> int raise(int)

The raise() function raises a signal specified by its parameter.

If unsuccessful, it returns a non-zero value.

Related topics

SIGNAL1176

1177

rand

Syntax

include <cstdlib> int rand(void);

1174 Chapter 3.7.11 on page 374
1175 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1176 Chapter 3.7.11 on page 379
1177 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

377

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The function RAND1178() returns a pseudo-random integer between zero and
RAND_MAX. An example:

srand(time(NULL));
for(i = 0; i < 10; i++)
printf("Random number #%d: %d\n", i, rand());

The rand() function must be seeded before its first call with the SRAND1179()
function - otherwise it will consistently return the same numbers when the
program is restarted.

Note:
The generation of random numbers is essential to CRYPTOGRAPHYa. Any
STOCHASTIC PROCESSb (generation of random numbers) simulated by a com-
puter, however, is not truly random, but pseudorandom; that is, the randomness
of a computer is not from random radioactive decay of an unstable chemical iso-
tope, but from predefined stochastic process, this is why this function needs to be
seeded.

a HTTP://EN.WIKIBOOKS.ORG/WIKI/CRYPTOGRAPHY
b HTTP://EN.WIKIPEDIA.ORG/WIKI/STOCHASTIC%20PROCESS

Related topics

SRAND1180

1181

setjmp

Syntax

include <csetjmp> int setjmp(jmp_buf env);

The function setjmp() stores the current execution status in env, and returns 0.
The execution state includes basic information about which code is being

1178 Chapter 3.7.11 on page 377
1179 Chapter 3.7.11 on page 380
1180 Chapter 3.7.11 on page 380
1181 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

378

http://en.wikibooks.org/wiki/Cryptography
http://en.wikipedia.org/wiki/stochastic%20process
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

executed in preparation for the longjmp() function call. If and when longjmp is
called, setjmp() will return the parameter provided by longjmp - however, on the
second return, variables that were modified after the initial setjmp() call may have
an undefined value.

The buffer is only valid until the calling function returns, even if it is declared
statically.

Since setjmp() does not understand constructors or destructors, it has been
superseded with the C++ exception system, which uses the throw and catch
keywords.

Note:
setjmp does not appear to be within the std namespace.

Related topics

LONGJMP1182

1183

signal

Syntax

include <csignal> void (*signal(int sig, void (*handler)(int)))(int)

The signal() function takes two parameters - the first is the signal identifier, and
the second is a function pointer to a signal handler that takes one parameter. The
return value of signal is a function pointer to the previous handler (or SIG_ERR if
there was an error changing the signal handler).

By default, most raised signals are handled either by the handlers SIG_DFL
(which is the default signal handler that usually shuts down the program), or
SIG_IGN (which ignores the signal and continues program execution.)

1182 Chapter 3.7.11 on page 376
1183 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

379

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

When you specify a custom handler and the signal is raised, the signal handler
reverts to the default.

While the signal handlers are superseded by throw and catch, some systems may
still require you to use these functions to handle some important events. For
example, the signal SIGTERM on Unix-based systems indicates that the program
should terminate soon.

Note:
List of standard signals in Solaris
SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE,
SIGKILL, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGALRM, SIGTERM,
SIGUSR1, SIGUSR2, SIGCHLD, SIGPWR, SIGWINCH, SIGURG, SIGIO,
SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU, SIGVTALRM, SIG-
PROF, SIGXCPU, SIGXFSZ, SIGWAITING, SIGLWP, SIGFREEZE, SIGTHAW,
SIGCANCEL, SIGLOST

Related topics

RAISE1184

1185

srand

Syntax

include <cstdlib> void srand(unsigned seed);

The function srand() is used to seed the random sequence generated by
RAND1186(). For any given seed, RAND1187() will generate a specific "random"
sequence over and over again.

srand(time(NULL));
for(i = 0; i < 10; i++)
printf("Random number #%d: %d\n", i, rand());

1184 Chapter 3.7.11 on page 377
1185 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1186 Chapter 3.7.11 on page 377
1187 Chapter 3.7.11 on page 377

380

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

Related topics

RAND1188

(Standard C Time & Date functions) TIME1189

1190

system

Syntax

include <cstdlib> int system(const char *command);

The system() function runs the given command by passing it to the default
command interpreter.

The return value is usually zero if the command executed without errors. If
command is NULL, system() will test to see if there is a command interpreter
available. Non-zero will be returned if there is a command interpreter available,
zero if not.

Related topics

EXIT1191 - GETENV1192

1193

1188 Chapter 3.7.11 on page 377
1189 Chapter 3.7.11 on page 369
1190 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1191 Chapter 3.7.11 on page 375
1192 Chapter 3.7.11 on page 375
1193 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

381

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

va_arg

Syntax

include <cstdarg> type va_arg(va_list argptr, type); void va_-

end(va_list argptr); void va_start(va_list argptr, last_parm);

The va_arg() macros are used to pass a variable number of arguments to a
function.

1. First, you must have a call to va_start() passing a valid va_list and the
mandatory first argument of the function. This first argument can be
anything; one way to use it is to have it be an integer describing the number
of parameters being passed.

2. Next, you call va_arg() passing the va_list and the type of the argument to
be returned. The return value of va_arg() is the current parameter.

3. Repeat calls to va_arg() for however many arguments you have.
4. Finally, a call to va_end() passing the va_list is necessary for proper

cleanup.

int sum(int num, ...) {
int answer = 0;
va_list argptr;

va_start(argptr, num);

for(; num > 0; num--) {
answer += va_arg(argptr, int);

}

va_end(argptr);

return(answer);
}

int main(void) {

int answer = sum(4, 4, 3, 2, 1);
printf("The answer is %d\n", answer);

return(0);
}

This code displays 10, which is 4+3+2+1.

382

Functions

Here is another example of variable argument function, which is a simple printing
function:

void my_printf(char *format, ...) {
va_list argptr;

va_start(argptr, format);

while(*format != ’\0’) {
// string
if(*format == ’s’) {
char* s = va_arg(argptr, char *);
printf("Printing a string: %s\n", s);

}
// character
else if(*format == ’c’) {
char c = (char) va_arg(argptr, int);
printf("Printing a character: %c\n", c);
break;

}
// integer
else if(*format == ’d’) {
int d = va_arg(argptr, int);
printf("Printing an integer: %d\n", d);

}

*format++;
}

va_end(argptr);
}

int main(void) {

my_printf("sdc", "This is a string", 29, ’X’);

return(0);
}

This code displays the following output when run:

Printing a string: This is a string
Printing an integer: 29
Printing a character: X

1194

1194 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

383

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

3.8 Debugging

Programming is a complex process, and since it is done by human beings, it often
leads to errors. This makes debugging a fundamental skill of any programmer as
debugging is an intrinsic part of programming.

For historical reasons, programming errors are called bugs (after an actual bug
was found in a computer’s mechanical relay, causing it to malfunction, as
documented by Dr. Grace Hopper) and going through the code, examining it and
looking for something wrong in the implementation (bugs) and correcting them is
called debugging. The only help available to the programmer are the clues
generated by the observable output. Other alternatives are running automated
tools to test or verify the code or analyze the code as it runs, this is the task where
a DEBUGGER1195 can come to your aid.

Debugging can be quite stressful, especially MULTI-THREADED1196 programs
that are extremely hard to debug, but it can also be a quite fun intellectual activity,
kind of like a logic puzzle. Experience in debugging will not only reduce future
errors but generate better hypothesis for what might be going wrong and ways to
improve the design.

In debugging code there are already understood sections and situations that are
prone to errors, for instance issues regarding pointer arithmetics is a well
understood fragility inherited from C and in debugging, as any other
methodology, there are already established techniques, procedures and practices
that can make the detection of bugs easier (i.e.:DELTA DEBUGGING1197).

The field of debugging also covers establishing the security for the code (or the
system it will run under). Of course this will all depend on the design limitations
and requirements for the specific implementation.

3.8.1 Definition of bug

A bug in a program is defined by an unexpected behavior, unintended by the
programmer. It happens when the behavior was not expected or intended in that

1195 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGER
1196 Chapter 6.6.5 on page 632
1197 HTTP://EN.WIKIPEDIA.ORG/WIKI/DELTA%20DEBUGGING

384

http://en.wikipedia.org/wiki/debugger
http://en.wikipedia.org/wiki/Delta%20Debugging

Debugging

program’s code. A bug can also be described as error, flaw, mistake, FAILURE1198,
or FAULT1199.

Most bugs arise from programming mistakes, and a few are caused by
externalities (compiler, hardware or other systems outside of the direct
responsibility of the programmer). A program that contains a large number of
bugs, and/or bugs that seriously interfere with its functionality, is said to be
buggy.

Reports detailing bugs in a program are commonly known as bug reports, fault
reports, problem reports, trouble reports, change requests, and so forth.

There are a few different kinds of bugs that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

Categorizations for bugs regarding their origin:

• Organizational
• Conceptual error. Where the code is syntactically correct, but the

programmer or designer intended it to do something else. These can occur
due to differences between the documentation and the actual product.

• Unpropagated updates; e.g. programmer changes "myAdd" but forgets to
change "mySubtract", which uses the same algorithm. These errors are
mitigated by the DO NOT REPEAT YOURSELF1200 philosophy.

• Comments out of date or incorrect: many programmers assume the comments
accurately describe the code.

• External
• COMPILER BUGS1201 or unexpected results due to lack of a default behavior

on the C++ language specifications.
• Environmental bugs on external dependencies (libraries or other software) or

Operating System bugs/undocumented behaviors.
• Hardware bugs or undocumented behaviors.

• Arithmetic bugs
• DIVISION BY ZERO1202.
• ARITHMETIC OVERFLOW1203 or UNDERFLOW1204.

1198 HTTP://EN.WIKIPEDIA.ORG/WIKI/FAILURE
1199 HTTP://EN.WIKIPEDIA.ORG/WIKI/FAULT%20%28TECHNOLOGY%29
1200 HTTP://EN.WIKIPEDIA.ORG/WIKI/DON%27T%20REPEAT%20YOURSELF
1201 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COMPILER%20BUGS
1202 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20BY%20ZERO%23DIVISION%

20BY%20ZERO%20IN%20COMPUTER%20ARITHMETIC
1203 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC%20OVERFLOW
1204 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC%20UNDERFLOW

385

http://en.wikipedia.org/wiki/failure
http://en.wikipedia.org/wiki/fault%20%28technology%29
http://en.wikipedia.org/wiki/Don%27t%20repeat%20yourself
http://en.wikibooks.org/wiki/%23Compiler%20Bugs
http://en.wikipedia.org/wiki/Divide%20by%20zero%23Division%20by%20zero%20in%20computer%20arithmetic
http://en.wikipedia.org/wiki/Divide%20by%20zero%23Division%20by%20zero%20in%20computer%20arithmetic
http://en.wikipedia.org/wiki/Arithmetic%20overflow
http://en.wikipedia.org/wiki/Arithmetic%20underflow

Fundamentals for getting started

• Loss of ARITHMETIC PRECISION1205 due to ROUNDING1206 or
NUMERICALLY UNSTABLE1207 algorithms.

• Logic bugs
• INFINITE LOOP1208s and infinite RECURSION1209.
• OFF BY ONE ERROR1210, counting one too many or too few when looping.

• Syntax bugs (TYPOS1211)
• Resource bugs

• NULL POINTER1212 dereference.
• Using an UNINITIALIZED VARIABLE1213.
• Using an otherwise valid instruction on the wrong DATA TYPE1214 (see

PACKED DECIMAL1215/BINARY CODED DECIMAL1216).
• ACCESS VIOLATION1217s.
• Resource leaks, where a finite system resource such as MEMORY1218 or FILE

HANDLES1219 are exhausted by repeated allocation without release.
• BUFFER OVERFLOW1220, in which a program tries to store data past the end

of allocated storage. This may or may not lead to an access violation or
STORAGE VIOLATION1221. These bugs can form a SECURITY

VULNERABILITY1222.
• Excessive recursion which though logically valid causes STACK

OVERFLOW1223

• Co-processing bugs

1205 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC%20PRECISION
1206 HTTP://EN.WIKIPEDIA.ORG/WIKI/ROUNDING
1207 HTTP://EN.WIKIPEDIA.ORG/WIKI/NUMERICAL%20STABILITY
1208 HTTP://EN.WIKIPEDIA.ORG/WIKI/INFINITE%20LOOP
1209 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION%20%28COMPUTER%

20SCIENCE%29
1210 HTTP://EN.WIKIPEDIA.ORG/WIKI/OFF%20BY%20ONE%20ERROR
1211 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TYPOS
1212 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER%20%28COMPUTING%29%23THE%

20NULL%20POINTER
1213 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNINITIALIZED%20VARIABLE
1214 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20TYPE
1215 HTTP://EN.WIKIPEDIA.ORG/WIKI/PACKED%20DECIMAL
1216 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINARY%20CODED%20DECIMAL
1217 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACCESS%20VIOLATION
1218 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY%20LEAK
1219 HTTP://EN.WIKIPEDIA.ORG/WIKI/HANDLE%20LEAK
1220 HTTP://EN.WIKIPEDIA.ORG/WIKI/BUFFER%20OVERFLOW
1221 HTTP://EN.WIKIPEDIA.ORG/WIKI/STORAGE%20VIOLATION
1222 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20BUG%23SECURITY_

VULNERABILITIES

1223 HTTP://EN.WIKIPEDIA.ORG/WIKI/STACK%20OVERFLOW

386

http://en.wikipedia.org/wiki/arithmetic%20precision
http://en.wikipedia.org/wiki/rounding
http://en.wikipedia.org/wiki/numerical%20stability
http://en.wikipedia.org/wiki/Infinite%20loop
http://en.wikipedia.org/wiki/Recursion%20%28computer%20science%29
http://en.wikipedia.org/wiki/Recursion%20%28computer%20science%29
http://en.wikipedia.org/wiki/Off%20by%20one%20error
http://en.wikibooks.org/wiki/%23Typos
http://en.wikipedia.org/wiki/Pointer%20%28computing%29%23The%20null%20pointer
http://en.wikipedia.org/wiki/Pointer%20%28computing%29%23The%20null%20pointer
http://en.wikipedia.org/wiki/uninitialized%20variable
http://en.wikipedia.org/wiki/data%20type
http://en.wikipedia.org/wiki/packed%20decimal
http://en.wikipedia.org/wiki/binary%20coded%20decimal
http://en.wikipedia.org/wiki/Access%20violation
http://en.wikipedia.org/wiki/memory%20leak
http://en.wikipedia.org/wiki/handle%20leak
http://en.wikipedia.org/wiki/Buffer%20overflow
http://en.wikipedia.org/wiki/storage%20violation
http://en.wikipedia.org/wiki/Software%20bug%23Security_vulnerabilities
http://en.wikipedia.org/wiki/Software%20bug%23Security_vulnerabilities
http://en.wikipedia.org/wiki/stack%20overflow

Debugging

• DEADLOCK1224.
• RACE CONDITION1225.
• Concurrency errors in CRITICAL SECTION1226s, MUTUAL EXCLUSION1227s

and other features of CONCURRENT PROCESSING1228.
TIME-OF-CHECK-TO-TIME-OF-USE1229 (TOCTOU) is a form of unprotected
critical section.

Common errors

Common programming errors are bugs mostly occur due to lack of experience,
attention or when the programmer delegates too much responsibility to the
compiler, IDE or other development tools.

• Usage of uninitialized variables or pointers.
• Forgetting the differences between the debug and release version of the

compiled code.
• Forgetting the break statement in a switch when fall-through was not meant
• Forgetting to check for null before accessing a member on a pointer.

// unsafe
p->doStuff();

// much better!
if (p)
{

p->doStuff();
}

This will cause access violations (segmentation faults) and cause your program
to halt unexpectedly.

Typos
Typos are a aggregation of simple to commit syntax errors (in very specific

1224 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEADLOCK
1225 HTTP://EN.WIKIPEDIA.ORG/WIKI/RACE%20CONDITION
1226 HTTP://EN.WIKIPEDIA.ORG/WIKI/CRITICAL%20SECTION
1227 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION
1228 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONCURRENT%20PROGRAMMING%

23COORDINATING%20ACCESS%20TO%20RESOURCES
1229 HTTP://EN.WIKIPEDIA.ORG/WIKI/TIME-OF-CHECK-TO-TIME-OF-USE

387

http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Race%20condition
http://en.wikipedia.org/wiki/Critical%20section
http://en.wikipedia.org/wiki/Mutual%20exclusion
http://en.wikipedia.org/wiki/Concurrent%20programming%23Coordinating%20access%20to%20resources
http://en.wikipedia.org/wiki/Concurrent%20programming%23Coordinating%20access%20to%20resources
http://en.wikipedia.org/wiki/Time-of-check-to-time-of-use

Fundamentals for getting started

situations where the C++ language is ambivalent). The term comes from
TYPOGRAPHICAL ERROR1230 as in an error on the typing process.

Forgetting the ; at the end of a line. All time classic !

Use of the wrong operator, such as performing assignment instead of
EQUALITY TEST1231. In simple cases often warned by the compiler.

// Example of an assignment of a number in an if statement when a comparison was
meant.
if (x = 143) // should be: if (x == 143)

Forgetting the brackets in a multi lined loop or if statement.

if (x==3)
cout << x;
flag++;

Understanding the timing

Compile-time errors
The compiler can only translate a program if the program is syntactically correct;
otherwise, the compilation fails and you will not be able to run your program.
Syntax refers to the structure of your program and the rules about that structure.

For example, in English, a sentence must begin with a capital letter and end with a
period. this sentence contains a syntax error. So does this one

For most human readers, a few syntax errors are not a significant problem, which
is why we can read the poetry of E. E. CUMMINGS1232 without spewing error
messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in your
program, the compiler will print an error message and quit, and you will not be
able to run your program.

1230 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPOGRAPHICAL%20ERROR
1231 HTTP://EN.WIKIPEDIA.ORG/WIKI/%3D%3D%23EQUALITY
1232 HTTP://EN.WIKIPEDIA.ORG/WIKI/E._E._CUMMINGS

388

http://en.wikipedia.org/wiki/Typographical%20error
http://en.wikipedia.org/wiki/%3D%3D%23Equality
http://en.wikipedia.org/wiki/E._E._Cummings

Debugging

To make matters worse, there are more syntax rules in C++ than there are in
English, and the error messages you get from the compiler are often not very
helpful. During the first few weeks of your programming career, you will
probably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

Linker errors
Most linker errors are generated when using improper settings on your
compiler/IDE, most recent compilers will report some sort of information about
the errors and if you keep in mind the linker function you will be able to easily
address them. Most other sort of errors are due to improper use of the language or
setup of the project files, that can lead to code collisions due to redefinitions or
missing information.

Run-time errors
The run-time error, so-called because the error does not appear until you run the
program.

Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical error in
your program, it will compile and run successfully, in the sense that the computer
will not generate any error messages, but it will not do the right thing. It will do
something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying logical
errors can be tricky, since it requires you to work backwards by looking at the
output of the program and trying to figure out what it is doing.

Compiler Bugs

As we have seen earlier, bugs are common to every programming task. Creating a
compiler is no different, in fact creating a C++ compiler is an extremely complex
programming task, more so since the language even if stable is always evolving
and not only on the standard.

The liberty C++ permits enables programmers to push the envelop on what it is
possible and expected and to an increase on the level of code complexity due to

389

Fundamentals for getting started

abstractions. This has lead to compilers to attempt to automating several low level
actions to ease the burden to the programmer, like code optimization, higher level
of interaction and control over the compiler components and the inclusion of very
low level configuration possibilities. All these features increase the number of
ways a compiler can end up generating incorrect (or sometimes technically
correct but unexpected) results. The programmer should always keep in mind that
compiler bugs are possible but extremely rare.

One of the most common bugs attributed to the compiler result from a badly
configured optimization option (or an inability to understand them). If you
suspect a compiler error turn optimizations off fist.

3.8.2 Experimental debugging

One of the most important skills you should acquire from working with this book
is debugging. Although it can be frustrating, debugging is one of the most
intellectually rich, challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues
and you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what is
going wrong, you modify your program and try again. If your hypothesis was
correct, then you can predict the result of the modification, and you take a step
closer to a working program. If your hypothesis was wrong, you have to come up
with a new one. As SHERLOCK HOLMES1233 pointed out, "When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth." (from A. CONAN DOYLE’S1234 The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program that
does something, and make small modifications, debugging them as you go, so that
you always have a working program.

For example, LINUX1235 is an operating system that contains thousands of lines
of code, but it started out as a simple program LINUS TORVALDS1236 used to
explore the Intel 80386 chip. According to Larry Greenfield, "One of Linus’s

1233 HTTP://EN.WIKIPEDIA.ORG/WIKI/SHERLOCK_HOLMES
1234 HTTP://EN.WIKIPEDIA.ORG/WIKI/A._CONAN_DOYLE
1235 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINUX
1236 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINUS_BENEDICT_TORVALDS

390

http://en.wikipedia.org/wiki/Sherlock_Holmes
http://en.wikipedia.org/wiki/A._Conan_Doyle
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linus_Benedict_Torvalds

Debugging

earlier projects was a program that would switch between printing AAAA and
BBBB. This later evolved to Linux" (from
[ftp://sunsite.unc.edu//pub/Linux/docs/LDP/users-guide/!INDEX.html The Linux
Users’ Guide Beta Version 1], Page 10).

Endurance/Stress test

This sort of test is done to detect not only bugs but to mark opportunities for
optimization. An endurance test is performed by analyzing multiple times the
same actions as to gather statistical significant data. Note that this type of test is
restricted to the selected set of actions and the projected variations, during the
test, in regards to input processing.

Some automation is possible in this type of test, even dealing with simulating
interaction with the users interface.

A stress test is a subtle variation of the endurance, the purpose is to determine
and even establish the limits of the program as it processes inputs. Again the
gathered metrics will only have significance in regards to the actions performed.

This tests and any variations will therefore depend on how they are designed and
are extremely goal oriented, in the sense that they will only provide correct
answerer to correctly asked questions. Reliance on results will have to be
conservative, as the tester must acknowledge that some events may be absent
from the scrutiny. This characteristic makes them more useful for optimization,
since bottleneck in resource usage will provide a better starting point for analysis
than for instance a crash or a deadlock.

3.8.3 Tracing

The technique of TRACING1237 evolved directly from the hardware to the
SOFTWARE ENGINEERING1238 field. In field of hardware it consists on sampling
the signals of an given circuit to verify the consistency of the hardware
implemented logic/algorithm, as such earlier programmers adopted the term and
function to trace the execution of the software with one particularly distinction,
tracing should not be performed or enabled in public release versions.

1237 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRACING
1238 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20ENGINEERING

391

http://en.wikipedia.org/wiki/Tracing
http://en.wikipedia.org/wiki/software%20engineering

Fundamentals for getting started

There are several ways to execute the tracing, by simply include into the code
report faculties that would produce the output of its state at run time (similarly to
the errors and warnings the compiler and linker generates), one can even use the
compiler and linker to report special messages. Another way is to interact directly
to a debugger in a specified debug mode the debugger to interact with the running
code. One can even integrate full fledged LOGGING1239 systems that can record
that same information in volume, and in an organized fashion, it all depends on
the levels of complexity and detail required for the pertinent functionality one
requires.

Event logging versus tracing

Logging can be an objective of a final product, but rarely covering the direct
internal functioning of the main program, providing debug information useful for
diagnostics and AUDITING1240. The debug information is typically only of interest
to the programmers for debugging purposes, and additionally, depending on the
type and detail of information contained in a trace log, by experienced SYSTEM

ADMINISTRATOR1241s or TECHNICAL SUPPORT1242 personnel to diagnose
common problems with software. Tracing is a CROSS-CUTTING CONCERN1243.

3.8.4 Debugger

Normally, there is no way to see the source code of a program while the program
is running. This inability to "see under the covers" while the program is executing
is a real handicap when you are debugging a program. The most primitive way of
looking under the covers is to insert (depending on your programming language)
print or display, or exhibit, or echo statements into your code, to display
information about what is happening. But finding the location of a problem this
way can be a slow, painful process. This is where a debugger comes in.

If you want to use a debugger and have never used one before, then you have two
tasks ahead of you. Your first task is to learn basic debugger concepts and
vocabulary. The second is to learn how to use the particular debugger that is
available to you. The documentation for your debugger will help you with the

1239 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20LOGGING
1240 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUDITING
1241 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYSTEM%20ADMINISTRATOR
1242 HTTP://EN.WIKIPEDIA.ORG/WIKI/TECHNICAL%20SUPPORT
1243 HTTP://EN.WIKIPEDIA.ORG/WIKI/CROSS-CUTTING%20CONCERN

392

http://en.wikipedia.org/wiki/Data%20logging
http://en.wikipedia.org/wiki/auditing
http://en.wikipedia.org/wiki/system%20administrator
http://en.wikipedia.org/wiki/technical%20support
http://en.wikipedia.org/wiki/cross-cutting%20concern

Debugging

second task, but it may not help with the first. In this section we will help you
with the first task by providing an introduction to basic debugger concepts and
terminology in regard to the language at hand. Once you become familiar with
these basics, then your debugger’s documentation/use should make more sense to
you. Most software debugging is a slow manual process that does not scale well.

A debugger is a piece of software that enables you to run your program in
debugging mode rather than in normal mode. Running a program in debugging
mode allows you to look under the covers while your program is running.
Specifically, a debugger enables you:

1. to see the source code of each statement in your program as that statement
executes.

2. to suspend or pause execution of the program at places of your choosing.
3. while the program is paused, to issue various commands in order to

examine and change the internal state of the program.
4. to resume (or continue) execution.

It is worth noting that there is a generally accepted set of debugger terms and
concepts. Most debuggers are evolutionary descendants of a Unix console
debugger for C named dbx, so they share concepts and terminology derived from
dbx. Many visual debuggers are simply graphic wrappers around a console
debugger, so visual debuggers share the same heritage, and the same set of
concepts and terms. Programmers keep running into the same types of bugs that
others have encountered (even across different languages by reusing code); one
common example is buffer overruns.

Debuggers come in two flavors: console-mode (or simply console) debuggers and
visual or graphical debuggers.

Console debuggers are often a part of the language itself, or included in the
language’s standard libraries. The user interface to a console debugger is the
keyboard and a console-mode window (Microsoft Windows users know this as a
"DOS console"). When a program is executing under a console debugger, the
lines of source code stream past the console window as they are executed. A
typical debugger has many ways to specify the exact places in the program where
you want execution to pause. When the debugger pauses, it displays a special
debugger prompt that indicates that the debugger is waiting for keyboard input.
The user types in commands that tell the debugger what to do next. Typical
commands would be to display the value of certain program variables, or to
continue execution of the program.

Visual debuggers are typically available as one component of a multi-featured
IDE (integrated development environment). A powerful and easy-to-use visual

393

Fundamentals for getting started

debugger is an important selling-point for an IDE. The user interface of a visual
debugger typically looks like the interface of a graphical text editor. The source
code is displayed on the screen, in much the same way that it is displayed when
you are editing it. The debugger has its own toolbar or menu with specialized
debugger features. And it may have a special debugger margin an area to the left
of the source code, used for displaying symbols for breakpoints, the current-line
pointer, and so on. As the debugger runs, some kind of visual pointer (perhaps a
yellow arrow) will move down this debugger margin, indicating which statement
has just finished executing, or which statement is about to be executed. Features
of the debugger can be invoked by mouse-clicks on areas of the source code, the
debugger margin, or the debugger menus.

How do you start the debugger?

How you start the debugger (or put your program into debugging mode) depends
on your programming language and on the kind of debugger that you are using. If
you are using a console debugger, then depending on the facilities offered by your
particular debugger you may have a choice of several different ways to start the
debugger. One way may be to add an argument (e.g. -d) to the command line that
starts the program running. If you do this, then the program will be in debugging
mode from the moment it starts running. A second way may be to start the
debugger, passing it the name of your program as an argument. For example, if
your debugger’s name is pdb and your program’s name is myProgram, then you
might start executing your program by entering pdb myProgram at the command
prompt. A third way may be to insert statements into the source code of your
program statements that put your program into debugging mode. If you do this,
when you start your program running, it will execute normally until it reaches the
debugging statements. When those statements execute, they put your program
into debugging mode, and from that point on you will be in debugging mode.

If you are working with an IDE that provides a visual debugger, then there is
usually a "debug" button or menu item on your toolbar. Clicking it will start your
program running in debug mode. As the debugger runs, some kind of visual
pointer will move down the debugger margin, indicating what statement is
executing.

Tracing your program

To explore the features offered by debuggers, let us begin by imagining that you
have a simple debugger to work with. This debugger is very primitive, with an

394

Debugging

extremely limited feature set. But as a purely hypothetical debugger, it has one
major advantage over all real debuggers: simply wishing for a new feature causes
that feature magically to be added to the debugger’s feature set!

At the outset, your debugger has very few capabilities. Once you start the
debugger, it will show you the code for one statement in your program, execute
the statement, and then pause. When the debugger is paused, you can tell it to do
only two things:

1. the command print <aVariableName> will print the value of a variable, and
2. the command step will execute the next statement and then pause again.

If the debugger is a console debugger, you must type these commands at the
debugger prompt. If the debugger is a visual debugger, you can just click a Next
button, or type a variable name into a special Show Variable window. And that is
all the capabilities that the debugger has.

Although such a simple debugger is moderately useful, it is also very clumsy.
Using it, you very quickly find yourself wishing for more control over where the
debugger pauses, and for a larger set of commands that you can execute when the
debugger is paused.

Controlling where the debugger pauses

What you desire most is for the debugger not to pause after every statement. Most
programs do a lot of setup work before they get to the area where the real
problems lie, and you are tired of having to step through each of those setup
statements one statement at a time to get to the real trouble zone. In short, you
wish you could set breakpoints. A breakpoint is an object that you can attach to a
line of code. The debugger runs without pausing until it encounters a line with a
breakpoint attached to it. The breakpoint tells the debugger to pause, so the
debugger pauses.

With breakpoint functionality added to the debugger (wishing for it has made it
appear!), you can now set a breakpoint at the beginning of the section of the code
where the problem lies, then start up the debugger. It will run the program until it
reaches the breakpoint. Then it will pause, and you can start examining the
situation with your print command.

But when you’re finished using the print command, you are back to where you
were before single-stepping through the remainder of the program with the step
command. You begin to wish for an alternative to the step command for a run to
next breakpoint command. With such a command, you can set multiple

395

Fundamentals for getting started

breakpoints in the program. Then, when you are paused at a breakpoint, you have
the option of single-stepping through the code with the step command, or running
to the next breakpoint with the run to next breakpoint command.

With our hypothetical debugger, wishing makes it so! Now you have on-the-fly
control over where the program will pause next. You’re starting to get some real
control over the debugging process!

The introduction of the run to next breakpoint command starts you thinking.
What other useful alternatives to the step command can you think of?

Often you find yourself paused at a place in the code where you know that the
next 15 statements contain no problems. Rather than stepping through them
one-by-one, you wish you could to tell the debugger something like step 15 and it
would execute the next 15 statements before pausing.

When you are working your way through a program, you often come to a
statement that makes a call to a subroutine. In such cases, the step command is in
effect a step into command. That is, it drops down into the subroutine, and allows
you to trace the execution of the statements inside the subroutine, one by one.

However, in many cases you know that there is no problem in the subroutine. In
such cases, you want to tell the debugger to step over the subroutine call that is, to
run the subroutine without pausing at any of the statements inside the subroutine.
The step over command is a sort of step (but do not show me any of the messy
details) command. (In some debuggers, the step over command is called next.)

When you use step or step into to drop down into a subroutine, it sometimes
happens that you get to a point where there is nothing more in the subroutine that
is of interest. You wish to be able to tell the debugger to step out or run until
subroutine end, which would cause it to run without pause until it encountered a
return statement (or an implicit return of control to its caller) and then to pause.

And you realize that the step over and step into commands might be useful with
loops as well as with subroutines. When you encounter a looping construct (a
for statement or a do while statement, for instance) it would be handy to be able
to choose to step into or to step over the execution of the loop.

Almost always there comes a time when there is nothing more to be learned by
stepping through the code. You wish for a command to tell the debugger to
continue or simply run to the end of the program.

Even with all of these commands, if you are using a console debugger you find
that you are still using the step command quite a bit, and you are getting tired of
typing the word step. You wish that if you wanted to repeat a command, you

396

Debugging

could just hit the ENTER key at the debugger prompt, and the debugger would
repeat the last command that you entered at the debugger prompt. Lo, wishing
makes it so!

This is such a productivity feature, that you start thinking about other features that
a console debugger might provide to improve its ease-of-use. You notice that you
often need to print multiple variables, and you often want to print the same set of
variables over and over again. You wish that you had some way to create a macro
or alias for a set of commands. You might like, for example, to define a macro
with an alias of foo the macro would consist of a set of debugger print statements.
Once foo is defined, then entering foo at the debugger prompt runs the statements
in the macro, just as if you had entered them at the debugger prompt.

Persistence

Eventually the end of the workday arrives. Your debugging work is not yet
finished. You log off of your computer and go home for some well-earned rest.
The next morning, you arrive at work bright-eyed and bushy-tailed and ready to
continue debugging. You boot your computer, fire up the debugger, and find that
all of the aliases, breakpoints, and watchpoints that you defined the previous day
are gone! And now you have a really big wish for the debugger. You want it to
have some persistence. You want it to be able to remember this stuff, so you do
not have to re-create it every time you start a new debugger session.

You can define aliases at the debugger prompt, which is great for aliases that you
need to invent for special occasions. But often, there is a set of aliases that you
need in every debugging session. That is, you’d like to be able to save alias
definitions, and automatically re-create the aliases when you start any debugging
session.

Most debuggers allow you to create a file that contains alias definitions. That file
is given a special name. When the debugger starts, it looks for the file with that
special name, and automatically loads those alias definitions.

Examining the call stack

When you are stepping through a program, one of the questions that you may
have is "How did I get to this point in the code?" The answer to this question lies
in the call stack (also known as the execution stack) of the current statement. The
call stack is a list of the functions that were entered to get you to your current
statement. For example, if the main program module is MAIN, and MAIN calls

397

Fundamentals for getting started

function A, and function A calls function B, and function B calls function C, and
function C contains statement S, then the execution stack to statement S is:

MAIN
A
B
C
statement S

In many interpreted languages, if your program crashes, the interpreter will print
the call stack for you as a stack trace.

Conditional Breakpoints

Some debuggers allow you to attach a set of conditions to breakpoints. You may
be able to specify that the debugger should pause at the breakpoint only if a
certain condition is met (for example VariableX > 100) or if the value of a certain
variable has changed since the last time the breakpoint was encountered. You may
be able, for example, to set the breakpoint to break when a certain counter reaches
a value of (say) 100. This would allow a loop to run 100 times before breaking.

A breakpoint that has conditions attached to it is called a conditional breakpoint.
A breakpoint that has no conditions attached to it is called an unconditional or
simple breakpoint. In some debuggers, all breakpoints have conditions attached to
them, and "unconditional" breakpoints are simply breakpoints with a condition
of true.

Watchpoints

Some debuggers support a kind of breakpoint called a watch or a watchpoint. A
watchpoint is a conditional breakpoint that is not associated with any particular
line, but with a variable. A watchpoint is useful when you would like to pause
whenever a certain variable’s value changes. Searching through your code,
looking for every line that changes the variable’s value, and setting breakpoints on
those lines, would be both laborious and error-prone. Watchpoints allow you to
avoid all of that by associating a breakpoint with a variable rather than a point in
the source code. Once a watchpoint has been defined, then it "watches" its
variable. Whenever the value of the variable changes, the code pauses and you
will probably get a message telling you why execution has paused. Then you can
look at where you are in the code and what the value of the variable is.

398

Chapter Summary

Setting Breakpoints in a Visual Debugger

How you create (or "set" or "insert") a breakpoint will depend on your particular
debugger, and especially on whether it is a visual debugger or a console-mode
debugger. In this section we discuss how you typically set breakpoints in a visual
debugger, and in the next section we will discuss how it is done in a
console-mode debugger.

Visual debuggers typically let you scroll through the code until you find a point
where you want to set a breakpoint. You place the cursor on the line of where you
want to insert the breakpoint and then press a special hotkey or click a menu item
or icon on the debugger toolbar. If an icon is available, it may be something that
suggests the act of watching for instance it may look like a pair of glasses or
binoculars. At that point, a special dialog may pop up allowing you to specify
whether the breakpoint is conditional or unconditional, and (if it is conditional)
allowing you to specify the conditions associated with the breakpoint.

Once the breakpoint has been placed, many visual debuggers place a red dot or a
red octagon (similar to a American/European traffic "STOP" SIGN1244) in the
margin to indicate there is a breakpoint at that point in the code.

3.8.5 Other runtime analyzers

3.9 Chapter Summary

1. THE CODE1245 - includes list of recognized keywords1246.
a) FILE ORGANIZATION1247

b) STATEMENTS1248

c) CODING STYLE CONVENTIONS1249

d) DOCUMENTATION1250

e) SCOPE AND NAMESPACES1251

2. COMPILER1252

1244 HTTP://EN.WIKIPEDIA.ORG/WIKI/STOP_SIGN
1245 Chapter 3 on page 43
1246 Chapter 3.1.3 on page 49
1247 Chapter 3.1.5 on page 51
1248 Chapter 3.1.6 on page 60
1249 Chapter 3.1.7 on page 63
1250 Chapter 3.1.8 on page 77
1251 Chapter 3.1.9 on page 82
1252 Chapter 3.1.10 on page 91

399

http://en.wikipedia.org/wiki/Stop_sign

Fundamentals for getting started

a) PREPROCESSOR1253 - includes the STANDARD HEADERS1254.
b) LINKER1255

3. VARIABLES AND STORAGE1256 - locality, scope and visibility, including
SOURCE EXAMPLES1257.

a) TYPE1258

4. OPERATORS1259 - precedence order and composition, , assignment,
sizeof, new, delete, [] (arrays1260), * (pointers1261) and & (references).

a) LOGICAL OPERATORS1262 - the && (and), || (or), and ! (not).
b) CONDITIONAL OPERATOR1263 - the ?:

5. TYPE CASTING1264 - Automatic, explicit and advanced type casts.
6. FLOW OF CONTROL1265 - Conditionals (if, if-else, switch), loop iterations

(while, do-while, for) and goto.
7. FUNCTIONS1266 - Introduction (including main), argument passing,

returning values, recursive functions, pointers to functions and function
overloading.

a) STANDARD C LIBRARY1267 - I/O1268, STRING AND

CHARACTER1269, MATH1270, TIME AND DATE1271, MEMORY1272 and
OTHER STANDARD C FUNCTIONS1273

8. DEBUGGING1274 - Finding, fixing, preventing bugs and using debugging
tools.

1253 Chapter 3.2.2 on page 101
1254 Chapter 3.2.3 on page 104
1255 Chapter 3.2.3 on page 121
1256 Chapter 3.2.4 on page 125
1257 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%

2FVARIABLES%2FEXAMPLES
1258 Chapter 3.3.3 on page 142
1259 Chapter 3.3.4 on page 177
1260 Chapter 3.4.10 on page 194
1261 Chapter 3.4.10 on page 201
1262 Chapter 3.4.12 on page 216
1263 Chapter 3.4.13 on page 219
1264 Chapter 3.4.14 on page 220
1265 Chapter 3.5.2 on page 229
1266 Chapter 3.6.3 on page 245
1267 Chapter 3.7.10 on page 280
1268 Chapter 3.7.11 on page 289
1269 Chapter 3.7.11 on page 319
1270 Chapter 3.7.11 on page 346
1271 Chapter 3.7.11 on page 362
1272 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%

2FSTANDARD%20C%20LIBRARY%2FMEMORY%20
1273 Chapter 3.7.11 on page 372
1274 Chapter 3.7.11 on page 383

400

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FVariables%2FExamples
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FVariables%2FExamples
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMemory%20
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMemory%20

Chapter Summary

21275

21276

1275 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1276 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

401

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

402

4 Object Oriented Programming

4.1 Structures

A simple implementation of the object paradigm from (OOP) that holds
collections of data records (also known as compound values or set). A struct is
like a class except for the default access (class has default access of private,
struct has default access of public). C++ also guarantees that a struct that only
contains C types is equivalent to the same C struct thus allowing access to legacy
C functions, it can (but may not) also have constructors (and must have them, if a
templated class is used inside a struct), as with Classes the compiler
implicitly-declares a destructor if the struct doesn’t have a user-declared
destructor. Structures will also allow OPERATOR OVERLOADING1.
A struct is defined by:

struct myStructType /*: inheritances */ {
public:
// public members
protected:
// protected members
private:
// private members

} myStructName;

Because it is not supported in C, it is uncommon to have structs in C++ using
inheritances even though they are supported just like in classes. The more
distinctive aspect is that structs can have two identities one is in reference to the
type and another to the specific object. The public access label can sometimes be
ignored since the default state of struct for member functions and fields is public.

An object of type myStructType (case-sensitive) is declared using:

myStructType obj1;

1 Chapter 4.6 on page 456

403

Object Oriented Programming

Note:
From a technical viewpoint, a struct and a class are practically the same thing.
A struct can be used anywhere a class can be and vice-versa, the only technical
difference is that class members default to private and struct members default to
public. Structs can be made to behave like classes simply by putting in the keyword
private at the beginning of the struct. Other than that it is mostly a difference in
convention.

Why should you Use Structs, Not Classes?

Older programmer languages used a similar type called Record (i.e.: COBOL,
FORTRAN) this was implemented in C as the struct keyword. And so C++ uses
structs to comply with this C’s heritage (the code and the programmers). Structs
are simpler to be managed by the programmer and the compiler. One should use a
struct for POD (PLAINOLDDATA2) types that have no methods and whose data
members are all public. struct may be used more efficiently in situations that
default to public inheritance (which is the most common kind) and where public
access (which is what you want if you list the public interface first) is the intended
effect. Using a class, you typically have to insert the keyword public in two
places, for no real advantage. In the end it’s just a matter of convention, which
programmers should be able to get used to.

Point objects

As a simple example of a compound structure, consider the concept of a
mathematical point. At one level, a point is two numbers (coordinates) that we
treat collectively as a single object. In mathematical notation, points are often
written in parentheses, with a comma separating the coordinates. For example, (0,
0) indicates the origin, and (x, y) indicates the point x units to the right and y units
up from the origin.

The natural way to represent a point is using two doubles. The structure or
struct is one of the solutions to group these two values into a compound object.

// A struct definition:
struct Point {
double x, y; };

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/WIKI%3APLAINOLDDATA

404

http://en.wikibooks.org/wiki/wiki%3APlainOldData

Structures

This definition indicates that this structure contains two members, named x and y.
These members are also called instance variables, for reasons I will explain a little
later.

It is a common error to leave off the semi-colon at the end of a structure
definition. It might seem odd to put a semi-colon after a squiggly-brace, but
you’ll get used to it. This syntax is in place to allow the programmer the facility
to create an instance[s] of the struct when it is defined.

Once you have defined the new structure, you can create variables with that type:

struct Point blank;
blank.x = 3.0;
blank.y = 4.0;

The first line is a conventional variable declaration: blank has type Point. The
next two lines initialize the instance variables of the structure. The "dot notation"
used here is similar to the syntax for invoking a function on an object, as in
fruit.length(). Of course, one difference is that function names are always
followed by an argument list, even if it is empty.

As usual, the name of the variable blank appears outside the box and its value
appears inside the box. In this case, that value is a compound object with two
named instance variables.

Accessing instance variables

You can read the values of an instance variable using the same syntax we used to
write them:

int x = blank.x;

The expression blank.x means "go to the object named blank and get the value
of the member named x." In this case we assign that value to a local variable
named x. Notice that there is no conflict between the local variable named x and
the instance variable named x. The purpose of dot notation is to identify which
variable you are referring to unambiguously.

You can use dot notation as part of any expression, so the following are legal.

cout << blank.x << ", " << blank.y << endl;
double distance = sqrt(blank.x * blank.x + blank.y * blank.y);

The first line outputs 3, 4; the second line calculates the value 5.

405

Object Oriented Programming

Operations on structures

Most of the operators we have been using on other types, like mathematical
operators (+, %, etc.) and comparison operators (==, >, etc.), do not work on
structures. Actually, it is possible to define the meaning of these operators for the
new type, but we won’t do that in this book.

On the other hand, the assignment operator does work for structures. It can be
used in two ways: to initialize the instance variables of a structure or to copy the
instance variables from one structure to another. An initialization looks like this:

Point blank = { 3.0, 4.0 };

The values in curly brackets get assigned to the instance variables of the structure
one by one, in order. So in this case, x gets the first value and y gets the second.

Unfortunately, this syntax can be used only in an initialization, not in an
assignment statement. Therefore, the following is illegal.

Point blank;
blank = { 3.0, 4.0 }; // WRONG !!

You might wonder why this perfectly reasonable statement should be illegal, and
there is no good answer. (Note, however, that a similar syntax is legal in C since
1999, and is under consideration for possible inclusion in C++ in the future.)

On the other hand, it is legal to assign one structure to another. For example:

Point p1 = { 3.0, 4.0 };
Point p2 = p1;
cout << p2.x << ", " << p2.y << endl;

The output of this program is 3, 4.

Structures as return types

You can write functions that return structures. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates of the
center of the Rectangle:

Point findCenter (Rectangle& box)
{
double x = box.corner.x + box.width/2;
double y = box.corner.y + box.height/2;
Point result = {x, y};

406

Structures

return result;
}

To call this function, we have to pass a box as an argument (notice that it is being
passed by reference), and assign the return value to a Point variable:

Rectangle box = { {0.0, 0.0}, 100, 200 };
Point center = findCenter (box);
printPoint (center);

The output of this program is (50, 100).

Passing other types by reference

It’s not just structures that can be passed by reference. All the other types we’ve
seen can, too. For example, to swap two integers, we could write something like:

void swap (int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}

We would call this function in the usual way:

int i = 7;
int j = 9;
swap (i, j);
cout << i << j << endl;

The output of this program is 97. Draw a stack diagram for this program to
convince yourself this is true. If the parameters x and y were declared as regular
parameters (without the &s), swap would not work. It would modify x and y and
have no effect on i and j.

When people start passing things like integers by reference, they often try to use
an expression as a reference argument. For example:

int i = 7;
int j = 9;
swap (i, j+1); // WRONG!!

This is not legal because the expression j+1 is not a variable — it does not
occupy a location that the reference can refer to. It is a little tricky to figure out
exactly what kinds of expressions can be passed by reference. For now, a good
rule of thumb is that reference arguments have to be variables.

407

Object Oriented Programming

Pointers and structures

Structures can also be pointed by pointers and store pointers. The rules are the
same as for any fundamental data type. The pointer must be declared as a pointer
to the structure.

4.1.1 Nesting structures

Structures can also be nested so that a valid element of a structure can also be
another structure.

//of course you have to define the Point struct first!

struct Rectangle {
Point upper_left;
Point upper_right;
Point lower_left;
Point lower_right;

};

4.1.2 this

The this keyword is an implicitly created pointer that is only accessible within
nonstatic member functions of a struct (or a union or class) and points to the
object for which the member function is called. This pointer is not available in
static member functions. This will be restated again on when introducing unions a
more in depth analysis is provided in the SECTION ABOUT CLASSES3.

4.2 union

The union keyword is used to define a union type.

Syntax

union union-name {
public-members-list;

3 Chapter 4.3.4 on page 423

408

union

private:
private-members-list;
} object-list;

Union is similar to struct (more that class), unions differ in the aspect that the
fields of a union share the same position in memory and are by default public
rather than private. The size of the union is the size of its largest field (or larger
if alignment so requires, for example on a SPARC machine a union contains a
double and a char [17] so its size is likely to be 24 because it needs 64-bit
alignment). Unions cannot have a destructor.

What is the point of this? Unions provide multiple ways of viewing the same
memory location, allowing for more efficient use of memory. Most of the uses of
unions are covered by object-oriented features of C++, so it is more common in
C. However, sometimes it is convenient to avoid the formalities of object-oriented
programming when performance is important or when one knows that the item in
question will not be extended.

union Data {
int i;
char c;

};

4.2.1 Writing to Different Bytes

Unions are very useful for low-level programming tasks that involve writing to
the same memory area but at different portions of the allocated memory space, for
instance:

union item {
// The item is 16-bits
short theItem;
// In little-endian lo accesses the low 8-bits -
// hi, the upper 8-bits
struct { char lo; char hi; } portions;

};

Note:
A name for the struct declared in item can be omitted because it is not used. All
that needs to be explicitly named is the parts that we intend to access, namely the
instance itself, portions.

item tItem;

409

Object Oriented Programming

tItem.theItem = 0xBEAD;
tItem.portions.lo = 0xEF; // The item now equals 0xBEEF

Using this union we can modify the low-order or high-order bytes of theItem
without disturbing any other bytes.

4.2.2 Example in Practice: SDL Events

One real-life example of unions is the event system of SDL, a graphics library in
C. In graphical programming, an event is an action triggered by the user, such as a
mouse move or keyboard press. One of the SDL’s responsibilities is to handle
events and provide a mechanism for the programmer to listen for and react to
them.

Note:
The following section deals with a library in C rather than C++, so some features,
such as methods of objects, are not used here. However C++ is more-or-less a
superset of C, so you can understand the code with the knowledge you have gained
so far.

// primary event structure in SDL

typedef union {
Uint8 type;
SDL_ActiveEvent active;
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
SDL_MouseButtonEvent button;
SDL_JoyAxisEvent jaxis;
SDL_JoyBallEvent jball;
SDL_JoyHatEvent jhat;
SDL_JoyButtonEvent jbutton;
SDL_ResizeEvent resize;
SDL_ExposeEvent expose;
SDL_QuitEvent quit;
SDL_UserEvent user;
SDL_SysWMEvent syswm;

} SDL_Event;

Each of the types other than Uint8 (an 8-bit unsigned integer) is a struct with
details for that particular event.

// SDL_MouseButtonEvent

typedef struct{
Uint8 type;
Uint8 button;

410

union

Uint8 state;
Uint16 x, y;

} SDL_MouseButtonEvent;

When the programmer receives an event from SDL, he first checks the type value.
This tells him what kind of an event it is. Based on this value, he either ignores
the event or gets more information by getting the appropriate part of the union.

For example, if the programmer received an event in SDL_Event ev, he could
react to mouse clicks with the following code.

if (ev.type == SDL_MOUSEBUTTONUP && ev.button.button == SDL_BUTTON_RIGHT) {
cout << "You have right-clicked at coordinates (" << ev.button.x << ", "

<< ev.button.y << ")." << endl;
}

Note:
As each of the SDL_SomethingEvent structs contain a Uint8 type entry, it is safe
to access both Uint8 type and the corresponding sub-struct together.

While identical functionality can be provided with a struct rather than a union, the
union is far more space efficient; the struct would use memory for each of the
different event types, whereas the union only uses memory for one. As only one
entry has meaning per instance, it is reasonable to use a union in this case.

This scheme could also be constructed with polymorphism and inheritance
features of object-oriented C++, however the setup would be involved and less
efficient than this one. Use of unions loses type safety, however it gains in
performance.

4.2.3 this

The this keyword is a implicitly created pointer that is only accessible within
nonstatic member functions of a union (or a struct or class) and points to the
object for which the member function is called. The this pointer is not available in
static member functions. This will be restated again on when introducing unions a
more in depth analysis is provided in the SECTION ABOUT CLASSES4.
5

4 Chapter 4.3.4 on page 423
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

411

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

4.3 Classes

Classes are used to create user defined types. An instance of a class is called an
object and programs can contain any number of classes. As with other types,
object types are case-sensitive.

Classes provide encapsulation as defined in the Object Oriented Programming
(OOP) paradigm. A class can have both data members and functions members
associated with it. Unlike the built-in types, the class can contain several variables
and functions, those are called members.

Classes also provide flexibility in the "DIVIDE AND CONQUER6" scheme in
program writing. In other words, one programmer can write a class and guarantee
an interface. Another programmer can write the main program with that expected
interface. The two pieces are put together and compiled for usage.

Note:
From a technical viewpoint, a struct and a class are practically the same thing.
A struct can be used anywhere a class can be and vice-versa, the only technical
difference is that class members default to private and struct members default to
public. Structs can be made to behave like classes simply by putting in the keyword
private at the beginning of the struct. Other than that it is mostly a difference in
convention.
The C++ standard does not have a definition for method. When discussing with
users of other languages, the use of the word method to represent a member func-
tion can at times become confusing or raise problems to interpretation, like refer-
ring to a static member function as a static method. It is even common for some
C++ programmers to use the term method to refer specifically to a virtual member
functions in an informal context.

4.3.1 Declaration

A class is defined by:

class MyClass
{
/* public, protected and private
variables, constants, and functions */

};

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND%20CONQUER

412

http://en.wikipedia.org/wiki/divide%20and%20conquer

Classes

An object of type MyClass (case-sensitive) is declared using:

MyClass object;

• by default, all class members are initially private.
• keywords public and protected allow access to class members.
• classes contain not only data members, but also functions to manipulate that

data.
• a class is used as the basic building block of OOP (this is a distinction of

convention, not of language-enforced semantics).

A class can be created

• before main() is called.
• when a function is called in which the object is declared.
• when the "new" operator is used.

Class Names

• Name the class after what it is. If you can’t determine a name, then you have
not designed the system well enough.

• Compound names of over three words are a clue your design may be confusing
various entities in your system. Revisit your design. Try a CRC card session to
see if your objects have more responsibilities than they should.

• Avoid the temptation of naming a class something similar to the class it is
derived from. A class should stand on its own. Declaring an object with a class
type doesn’t depend on where that class is derived from.

• Suffixes or prefixes are sometimes helpful. For example, if your system uses
agents then naming something DownloadAgent conveys real information.

Data Abstraction

A fundamental concept of Object Oriented (OO) recommends an object should
not expose any of its implementation details. This way, you can change the
implementation without changing the code that uses the object. The class, by
design, allows its programmer to hide (and also prevents changes as to) how the
class is implemented. This powerful tool allows the programmer to build in a
’preventive’ measure. Variables within the class often have a very significant role
in what the class does, therefore variables can be secured within the private
section of the class.

413

Object Oriented Programming

4.3.2 Access labels

The access labels Public, Protected and Private are used within classes to set
access permissions for the members in that section of the class. All class
members are initially private by default. The labels can be in any order. These
labels can be used multiple times in a class declaration for cases where it is
logical to have multiple groups of these types. An access label will remain active
until another access label is used to change the permissions.

We have already mentioned that a class can have member functions "inside" it; we
will see more about them later. Those member functions can access and modify
all the data and member function that are inside the class. Therefore, permission
labels are to restrict access to member function that reside outside the class and
for other classes.

For example, a class "Bottle" could have a private variable fill, indicating a liquid
level 0-3 dl. fill cannot be modified directly (compiler error), but instead Bottle
provides the member function sip() to reduce the liquid level by 1. Mywaterbottle
could be an instance of that class, an object.

/* Bottle - Class and Object Example */
#include <iostream>
#include <iomanip>

using namespace std;

class Bottle
{
private: // variables are modified by member functions of class
int iFill; // dl of liquid

public:
Bottle() // Default Constructor
: iFill(3) // They start with 3 dl of liquid
{
// More constructor code would go here if needed.

}

bool sip() // return true if liquid was available
{

if (iFill > 0)
{
--iFill;
return true;

}
else
{
return false;

}

414

Classes

}

int level() const // return level of liquid dl
{

return iFill;
}

}; // Class declaration has a trailing semicolon

int main()
{
// terosbottle object is an instance of class Bottle
Bottle terosbottle;
cout << "In the beginning, mybottle has "

<< terosbottle.level()
<< " dl of liquid"
<< endl;

while (terosbottle.sip())
{

cout << "Mybottle has "
<< terosbottle.level()
<< " dl of liquid"
<< endl;

}

return 0;
}

These keywords, private, public, and protected, affect the permissions of the
members -- whether functions or variables.

public

This label indicates any members within the ’public’ section can accessed freely
anywhere a declared object is in scope.

Note:
Avoid declaring public data members, since doing so would contribute to create
unforeseen disasters.

private

Members defined as private are only accessible within the class defining them, or
friend classes. Usually the domain of member variables and helper functions. It’s
often useful to begin putting functions here and then moving them to the higher
access levels as needed so to reduce complexity.

415

Object Oriented Programming

Note:
It’s often overlooked that different instances of the same class may access each
others’ private or protected variables. A common case for this is in copy construc-
tors.

(This is an example where the default copy constructor will do the same thing.)

class Foo
{
public:
Foo(const Foo &f)
{
m_iValue = f.m_iValue; // perfectly legal

}

private:
int m_iValue;

};

protected

The protected label has a special meaning to inheritance, protected members are
accessible in the class that defines them and in classes that inherit from that base
class, or friends of it. In the section on inheritance we will see more about it.

Note:
Other instances of the same class can access a protected field - provided the two
classes are of the same type. However, an instance of a child class cannot access a
protected field or method of an instance of a parent class.

4.3.3 Inheritance (Derivation)

As we have seen early as we introduced PROGRAMMING PARADIGMS7,
INHERITANCE8 is a property that describes a relationship between two (or more)
types, or classes, of objects in OOP and C++ classes share this property. This in it
self in not an abstraction but a characteristic of OOP.

7 Chapter 2.2.3 on page 16
8 Chapter 2.3.4 on page 20

416

Classes

Derivation is the action of creating a new class using the inheritance property of
the C++ programming language. It is possible to derive one class from another or
even several (MULTIPLE INHERITANCE9), like a tree we can call base class to
the root and child class to any leaf; in any other case the parent/child relation will
exist for each class derived from another.

Base Class

A base class is a class that is created with the intention of deriving other classes
from it.

Child Class

A child class is a class that was derived from another, that will now be the parent
class to it.

Parent Class

A parent class is the closest class that we derived from to create the one we are
referencing as the child class.

As an example, suppose you are creating a game, something using different cars,
and you need specific type of car for the policemen and another type for the
player(s). Both car types share similar properties. The major difference (on this
example case) would be that the policemen type would have sirens on top of their
cars and the players’ cars will not.

One way of getting the cars for the policemen and the player ready is to create
separate classes for policemen’s car and for the player’s car like this:

class PlayerCar {
private:
int color;

public:
void driveAtFullSpeed(int mph){
// code for moving the car ahead

}

};

9 Chapter 4.3.3 on page 421

417

Object Oriented Programming

class PoliceCar {
private:
int color;
bool sirenOn; // identifies whether the siren is on or not
bool inAction; // identifies whether the police is in action (following the

player) or not

public:
bool isInAction(){
return this->inAction;

}

void driveAtFullSpeed(int mph){
// code for moving the car ahead

}

};

and then creating separate objects for the two cars like this:

PlayerCar player1;
PoliceCar policemen1;

So, except for one thing that you can easily notice: there are certain parts of code
that are very similar (if not exactly the same) in the above two classes. In essence,
you have to type in the same code at two different locations! And when you
update your code to include methods (functions) for handBrake() and
pressHorn(), you’ll have to do that in both the classes above.

Therefore, to escape this frustrating (and confusing) task of writing the same code
at multiple locations in a single project, you use Inheritance.

Now that you know what kind of problems Inheritance solves in C++, let’s
examine how to implement Inheritance in our programs. As its name suggests,
Inheritance lets us create new classes which automatically have all the code from
existing classes. It means that if there is a class called MyClass, a new class with
the name MyNewClass can be created which will have all the code present inside
the MyClass class. The following code segment shows it all:

class MyClass {
protected:

int age;
public:

void sayAge(){
this->age = 20;
cout << age;

}
};

class MyNewClass : public MyClass {

418

Classes

};

int main() {

MyNewClass *a = new MyNewClass();
a->sayAge();

return 0;

}

As you can see, using the colon ’:’ we can inherit a new class out of an existing
one. It’s that simple! All the code inside the MyClass class is now available to the
MyNewClass class. And if you are intelligent enough, you can already see the
advantages it provides. If you are like me (i.e. not too intelligent), you can see the
following code segment to know what I mean:

class Car {
protected:

int color;
int currentSpeed;
int maxSpeed;

public:
void applyHandBrake(){

this->currentSpeed = 0;
}
void pressHorn(){

cout << "Teeeeeeeeeeeeent"; // funny noise for a horn
}
void driveAtFullSpeed(int mph){

// code for moving the car ahead;
}

};

class PlayerCar : public Car {

};

class PoliceCar : public Car {
private:

bool sirenOn; // identifies whether the siren is on or not
bool inAction; // identifies whether the police is in action (following

the player) or not
public:

bool isInAction(){
return this->inAction;

}
};

In the code above, the two newly created classes PlayerCar and PoliceCar have
been inherited from the Car class. Therefore, all the methods and properties
(variables) from the Car class are available to the newly created classes for the
player’s car and the policemen’s car. Technically speaking, in C++, the Car class

419

Object Oriented Programming

in this case is our "Base Class" since this is the class which the other two classes
are based on (or inherit from).

Just one more thing to note here is the keyword protected instead of the usual
private keyword. That’s no big deal: We use protected when we want to make
sure that the variables we define in our base class should be available in the
classes that inherit from that base class. If you use private in the class definition
of the Car class, you will not be able to inherit those variables inside your
inherited classes.

There are three types of class inheritance: public, private and protected. We use
the keyword public to implement public inheritance. The classes who inherit with
the keyword public from a base class, inherit all the public members as public
members, the protected data is inherited as protected data and the private data is
inherited but it cannot be accessed directly by the class.

The following example shows the class Circle that inherits "publicly" from the
base class Form:

class Form {
private:
double area;

public:
int color;

double getArea(){
return this->area;

}

void setArea(double area){
this->area=area;

}

};

class Circle: public Form {
public:

double getRatio() {
double a;
a= getArea();
return sqrt(a/2*3.14);

}

void setRatio(double diameter) {
setArea(pow(diameter * 0.5, 2) * (3.14));

}

bool isDark() {
return color>10;

}

420

Classes

};

The new class Circle inherits the attribute area from the base class Form (the
attribute area is implicitly an attribute of the class Circle), but it cannot access it
directly. It does so through the functions getArea and setArea (that are public in
the base class and remain public in the derived class). The color attribute,
however, is inherited as a public attribute, and the class can access it directly.

The following table indicates how the attributes are inherited in the three different
types of inheritance:

private protected public
private inheri-
tance

The member is
inaccessible.

The member is
private.

The member is
private.

protected inher-
itance

The member is
inaccessible.

The member is
protected.

The member is
protected.

public inheri-
tance

The member is
inaccessible.

The member is
protected.

The member is
public.

As the table above shows, protected members are inherited as protected methods
in public inheritance. Therefore, we should use the protected label whenever we
want to declare a method inaccessible outside the class and not to lose access to it
in derived classes. However, losing accessibility can be useful sometimes,
because we are encapsulating details in the base class.

Let’s imagine that we have a class with a very complex method "m" that invokes
many auxiliary methods declared as private in the class. If we derive a class from
it, we should not bother about those methods because they are inaccessible in the
derived class. If a different programmer is in charge of the design of the derived
class, allowing access to those methods could be the cause of errors and
confusion. So, it is a good idea to avoid the protected label whenever we can have
a design with the same result with the private label.

Multiple inheritance

MULTIPLE INHERITANCE10 allows the construction of classes that inherit from
more than one type or class. This contrasts with single inheritance, where a class
will only inherit from one type or class.

10 Chapter 2.3.4 on page 21

421

Object Oriented Programming

Multiple inheritance can cause some confusing situations, and is much more
complex than single inheritance, so there is some debate over whether or not its
benefits outweigh its risks. Multiple inheritance has been a touchy issue for many
years, with opponents pointing to its increased complexity and ambiguity in
situations such as the "DIAMOND PROBLEM11". Most modern OOP languages do
not allow multiple inheritance.

The declared order of derivation is relevant for determining the order of default
initialization by constructors and destructors cleanup.

class One
{
// class internals

}

class Two
{
// class internals

}

class MultipleInheritance : public One, public Two
{
// class internals

}

Note:
Remember that when creating classes that will be derived from, the destructor may
require further considerations.

12

4.3.4 Data members

Data members are declared in the same way as a global or function variable, but
as part of the class definition. Their purpose is to store information for that class
and may include members of any type, even other user-defined types. They are
usually hidden from outside use, depending on the coding style adopted, external
use is normally done through SPECIAL MEMBER FUNCTIONS13.

11 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIAMOND%20PROBLEM
12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
13 Chapter 4.3.1 on page 412

422

http://en.wikipedia.org/wiki/diamond%20problem
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

Note:
Explicit initializers are not allowed inside the class definition, except if they are
const static int or enumeration types, these may have an explicit initializer.

this pointer

The this keyword acts as a pointer to the class being referenced. The this pointer
acts like any other pointer, although you can’t change the pointer itself. Read the
section concerning POINTERS AND REFERENCES14 to understand more about
general pointers.

The this pointer is only accessible within nonstatic member functions of a class,
union or struct, and is not available in static member functions. It is not
necessary to write code for the this pointer as the compiler does this implicitly.
When using a debugger, you can see the this pointer in some variable list when
the program steps into nonstatic class functions.

In the following example, the compiler inserts an implicit parameter this in the
nonstatic member function int getData(). Additionally, the code initiating the call
passes an implicit parameter (provided by the compiler).

class Foo
{
private:

int iX;
public:

Foo(){ iX = 5; };

int getData()
{

return this->iX; // this is provided by the compiler at compile time
}

};

int main()
{

Foo Example;
int iTemp;

iTemp = Example.getData(&Example); // compiler adds the &Example reference
at compile time

return 0;
}

14 Chapter 3.4.1 on page 178

423

Object Oriented Programming

There are certain times when a programmer should know about and use the this
pointer. The this pointer should be used when overloading the assignment
operator to prevent a catastrophe. For example, add in an assignment operator to
the code above.

class Foo
{
private:

int iX;
public:

Foo() { iX = 5; };

int getData()
{

return iX;
}

Foo& operator=(const Foo &RHS);
};

Foo& Foo::operator=(const Foo &RHS)
{

if(this != &RHS)
{ // the if this test prevents an object from copying to itself (ie. RHS =

RHS;)
this->iX = RHS.iX; // this is suitable for this class, but can be

more complex when
// copying an object in a different much larger

class
}

return (*this); // returning an object allows chaining, like a = b
= c; statements

}

However little you may know about this, it is important in implementing any
class.
15

static data member

The use of the static specifier in a data member, will cause that member to be
shared by all instances of the owner class and derived classes. To use static data
members you must declare the data member as static and initialize it outside of
the class declaration, at file scope.

15 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

424

http://en.wikibooks.org/wiki/Category%3A

Classes

When used in a class data member, all instantiations of that class share one copy
of the variable.

class Foo {
public:
Foo() {
++iNumFoos;
cout << "We have now created " << iNumFoos << " instances of the Foo

class\n";
}

private:
static int iNumFoos;

};

int Foo::iNumFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo f2;
Foo f3;

}

In the example above, the static class variable numFoos is shared between all
three instances of the Foo class (f1, f2 and f3) and keeps a count of the number of
times that the Foo class has been instantiated.

4.3.5 Member Functions

Member functions can (and should) be used to interact with data contained within
user defined types. User defined types provide flexibility in the "DIVIDE AND

CONQUER16" scheme in program writing. In other words, one programmer can
write a user defined type and guarantee an interface. Another programmer can
write the main program with that expected interface. The two pieces are put
together and compiled for usage. User defined types provide encapsulation
defined in the Object Oriented Programming (OOP) paradigm.

Within classes, to protect the data members, the programmer can define functions
to perform the operations on those data members. Member functions and
functions are names used interchangeably in reference to classes. Function
prototypes are declared within the class definition. These prototypes can take the
form of non-class functions as well as class suitable prototypes. Functions can be
declared and defined within the class definition. However, most functions can
have very large definitions and make the class very unreadable. Therefore it is
possible to define the function outside of the class definition using the scope

16 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND%20CONQUER

425

http://en.wikipedia.org/wiki/divide%20and%20conquer

Object Oriented Programming

resolution operator "::". This scope resolution operator allows a programmer to
define the functions somewhere else. This can allow the programmer to provide a
header file .h defining the class and a .obj file built from the compiled .cpp file
which contains the function definitions. This can hide the implementation and
prevent tampering. The user would have to define every function again to change
the implementation. Functions within classes can access and modify (unless the
function is constant) data members without declaring them, because the data
members are already declared in the class.

Simple example:

file: Foo.h

// the header file named the same as the class helps locate classes within a
project
// one class per header file makes it easier to keep the
// header file readable (some classes can become large)
// each programmer should determine what style works for them or what programming
standards their
// teacher/professor/employer has

#ifndef FOO_H
#define FOO_H

class Foo{
public:

Foo(); // function called the default constructor
Foo(int a, int b); // function called the overloaded constructor
int Manipulate(int g, int h);

private:
int x;
int y;

};

#endif

file: Foo.cpp

#include "Foo.h"

/* these constructors should really show use of initialization lists
Foo::Foo() : x(5), y(10)
{
}
Foo:Foo(int a, int b) : x(a), y(b)
{
}

*/
Foo::Foo(){
x = 5;
y = 10;

}
Foo::Foo(int a, int b){

426

Classes

x = a;
y = b;

}

int Foo::Manipulate(int g, int h){
x = h + g*x;
y = g + h*y;

}

Overloading

Member functions can be overloaded. This means that multiple member functions
can exist with the same name on the same scope, but must have different
signatures. A member function’s signature is comprised of the member function’s
name and the type and order of the member function’s parameters.

Due to name hiding, if a member in the derived class shares the same name with
members of the base class, they will be hidden to the compiler. To make those
members visible, one can use declarations to introduce them from base class
scopes.

Constructors and other class member functions, except the Destructor, can be
overloaded.

Constructors

A constructor is a special member function which is called whenever a new
instance of a class is created. The compiler calls the constructor after the new
object has been allocated in memory, and converts that "raw" memory into a
proper, typed object. The constructor is declared much like a normal member
function but it will share the name of the class and it has no return value.

Constructors are responsible for almost all of the run-time setup necessary for the
class operation. Its main purpose becomes in general defining the data members
upon object instantiation (when an object is declared), they can also have
arguments, if the programmer so chooses. If a constructor has arguments, then
they should also be added to the declaration of any other object of that class when
using the new operator. Constructors can also be overloaded.

Foo myTest; // essentially what happens is: Foo myTest = Foo();
Foo myTest(3, 54); // accessing the overloaded constructor
Foo myTest = Foo(20, 45); // although a new object is created, there are some
extra function calls involved

// with more complex classes, an assignment operator

427

Object Oriented Programming

should
// be defined to ensure a proper copy (includes

’’deep copy’’)
// myTest would be constructed with the default

constructor, and then the
// assignment operator copies the unnamed Foo(20, 45

) object to myTest

using new with a constructor

Foo* myTest = new Foo(); // this defines a pointer to a dynamically
allocated object

Foo* myTest = new Foo(40, 34); // constructed with Foo(40, 34)
// be sure to use delete to avoid memory leaks

Note:
While there is no risk in using new to create an object, it is often best to avoid
using memory allocation functions within objects’ constructors. Specifically,
using new to create an array of objects, each of which also uses new to allocate
memory during its construction, often results in runtime errors. If a class or
structure contains members which must be pointed at dynamically created objects,
it is best to sequentially initialize these arrays of the parent object, rather than
leaving the task to their constructors.

This is especially important when writing code with exceptions (in EXCEPTION

HANDLINGa), if an exception is thrown before a constructor is completed, the
associated destructor will not be called for that object.

a Chapter 5.4 on page 535

A constructor can’t delegate to another. It is also considered desirable to reduce
the use of default arguments, if a maintainer has to write and maintain multiple
constructors it can result in code duplication, which reduces maintainability
because of the potential for introducing inconsistencies and even lead to code
bloat.

Default Constructors

A default constructor is one which can be called with no arguments. Most
commonly, a default constructor is declared without any parameters, but it is also
possible for a constructor with parameters to be a default constructor if all of
those parameters are given default values.

428

Classes

In order to create an array of objects of a class type, the class must have an
accessible default constructor; C++ has no syntax to specify constructor
arguments for array elements.

Overloaded Constructors
When an object of a class is instantiated, the class writer can provide various
constructors each with a different purpose. A large class would have many data
members, some of which may or may not be defined when an object is
instantiated. Anyway, each project will vary, so a programmer should investigate
various possibilities when providing constructors.

These are all constructors for a class myFoo.

myFoo(); // default constructor, the user has no control over initial values
// overloaded constructors

myFoo(int a, int b=0); // allows construction with a certain ’a’ value, but
accepts ’b’ as 0

// or allows the user to provide both ’a’ and ’b’ values
// or

myFoo(int a, int b); // overloaded constructor, the user must specify both
values

class myFoo {
private:
int Useful1;
int Useful2;

public:
myFoo(){ // default constructor

Useful1 = 5;
Useful2 = 10;

};

myFoo(int a, int b = 0) { // two possible cases when invoked
Useful1 = a;
Useful2 = b;

};

};

myFoo Find; // default constructor, private member values Useful1 = 5,
Useful2 = 10

myFoo Find(8); // overloaded constructor case 1, private member values
Useful1 = 8, Useful2 = 0

myFoo Find(8, 256); // overloaded constructor case 2, private member values
Useful1 = 8, Useful2 = 256

429

Object Oriented Programming

Constructor initialization lists
Constructor initialization lists (or member initialization list) are the only way to

initialize data members and base classes with a non-default constructor.
Constructors for the members are included between the argument list and the
body of the constructor (separated from the argument list by a colon). Using the
initialization lists is not only better in terms of efficiency but also the simplest
way to guarantee that all initialization of data members are done before entering
the body of constructors.

// Using the initialization list for _myComplexMember
MyClass::MyClass(int mySimpleMember, MyComplexClass myComplexMember)
: _myComplexMember(myComplexMember) // only 1 call, to the copy constructor
{
_mySimpleMember=mySimpleMember; // uses 2 calls, one for the constructor of the
mySimpleMember class

// and a second for the assignment operator of
the MyComplexClass class

}

This is more efficient than assigning value to the complex data member inside the
body of the constructor because in that case the variable is initialized with its
corresponding constructor.

Note that the arguments provided to the constructors of the members do not need
to be arguments to the constructor of the class; they can also be constants.
Therefore you can create a default constructor for a class containing a member
with no default constructor.
Example:

MyClass::MyClass() : _myComplexMember(0) { }

It is useful to initialize your members in the constructor using this initialization
lists. This makes it obvious for the reader that the constructor does not execute
logic. The order the initialization is done should be the same as you defined your
base-classes and members. Otherwise you can get warnings at compile-time.
Once you start initializing your members make sure to keep all in the
constructor(s) to avoid confusion and possible 0xbaadfood.

It is safe to use constructor parameters that are named like members.

Example:

class MyClass : public MyBaseClassA, public MyBaseClassB {
private:
int c;
void *pointerMember;

public:

430

Classes

MyClass(int,int,int);
};
/*...*/
MyClass::MyClass(int a, int b, int c):
MyBaseClassA(a)

,MyBaseClassB(b)
,c(c)
,pointerMember(NULL)
,referenceMember()
{
//logic

}

Note that this technique was also possible for normal functions but it is now
obsoleted and is classified as an error in such case.

Note:
It is a common misunderstanding that initialization of data members can be done
within the body of constructors. All such kind of so-called "initialization" are actu-
ally assignments. The C++ standard defines that all initialization of data members
are done before entering the body of constructors. This is the reason why certain
types (const types and references) cannot be assigned to and must be initialized in
the constructor initialization list.
One should also keep in mind that class members are initialized in the order they
are declared, not the order they appear in the initializer list. One way of avoiding
CHICKEN AND EGG PARADOXESa is to always add the members to the initializer
list in the same order they’re declared.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/CHICKEN%20OR%20THE%20EGG

Destructors

Destructors like the Constructors are declared as any normal member functions
but will share the same name as the Class, what distinguishes them is that the
Destructor’s name is preceded with a "˜", it can not have arguments and can’t be
overloaded.

Destructors are called whenever an Object of the Class is destroyed. Destructors
are crucial in avoiding resource leaks (by deallocating memory), and in
implementing the RAII idiom. Resources which are allocated in a Constructor of
a Class are usually released in the Destructor of that Class as to return the system
to some known or stable state after the Class ceases to exist.

431

http://en.wikipedia.org/wiki/Chicken%20or%20the%20egg

Object Oriented Programming

The Destructor is invoked when Objects are destroyed, after the function they
were declared in returns, when the delete operator is used or when the program is
over. If an object of a derived type is destructed, first the Destructor of the most
derived object is executed. Then member objects and base class subjects are
destructed recursively, in the reverse order their corresponding Constructors
completed. As with structs the compiler implicitly-declares a Destructor as a
inline public member of its class if the class doesn’t have a user-declared
Destructor.

The DYNAMIC TYPE17 of the object will change from the most derived type as
Destructors run, symmetrically to how it changes as Constructors execute. This
affects the functions called by virtual calls during construction and destruction,
and leads to the common (and reasonable) advice to avoid calling virtual functions
of an object either directly or indirectly from its Constructors or Destructors.

inline

Sharing most of the concepts we have seen before on the introduction to INLINE

FUNCTIONS18, when dealing with member function those concepts are extended,
with a few additional considerations.

If the member functions definition is included inside the declaration of the class,
that function is by default made implicitly inline. Compiler options may override
this behavior.

Calls to virtual functions cannot be inlined if the object’s type is not known at
compile-time, because we don’t know which function to inline.

static

The static keyword can be used in four different ways:

• TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A

FUNCTION19.
• TO SPECIFY INTERNAL LINKAGE20.

17 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20TYPE
18 Chapter 3.7 on page 245
19 Chapter 3.3.4 on page 170
20 Chapter 3.2.4 on page 123

432

http://en.wikipedia.org/wiki/dynamic%20type

Classes

• TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER

FUNCTIONS21.
• TO CREATE A SINGLE COPY OF A DATA MEMBER22.

static member function
Member functions or variables declared static are shared between all instances of
an object type. Meaning that only one copy of the member function or variable
does exists for any object type.

member functions callable without an object

When used in a class function member, the function does not take an instantiation
as an implicit this parameter, instead behaving like a free function. This means
that static class functions can be called without creating instances of the class:

class Foo {
public:
Foo() {
++numFoos;
cout << "We have now created " << numFoos << " instances of the Foo class\n";

}
static int getNumFoos() {
return numFoos;

}
private:
static int numFoos;

};

int Foo::numFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo f2;
Foo f3;
cout << "So far, we’ve made " << Foo::getNumFoos() << " instances of the Foo
class\n";

}

Named constructors
Named constructors are a good example of using static member functions.
Named constructors is the name given to functions used to create an object of a
class without (directly) using its constructors. This might be used for the
following:

21 Chapter 4.3.5 on page 433
22 Chapter 4.3.4 on page 424

433

Object Oriented Programming

1. To circumvent the restriction that constructors can be overloaded only if
their signatures differ.

2. Making the class non-inheritable by making the constructors private.
3. Preventing stack allocation by making constructors private

Declare a static member function that uses a private constructor to create the
object and return it. (It could also return a pointer or a reference but this
complication seems useless, and turns this into the FACTORY PATTERN23 rather
than a conventional named constructor.)

Here’s an example for a class that stores a temperature that can be specified in any
of the different temperature scales.

class Temperature
{

public:
static Temperature Fahrenheit (double f);
static Temperature Celsius (double c);
static Temperature Kelvin (double k);

private:
Temperature (double temp);
double _temp;

};

Temperature::Temperature (double temp):_temp (temp) {}

Temperature Temperature::Fahrenheit (double f)
{

return Temperature ((f + 459.67) / 1.8);
}

Temperature Temperature::Celsius (double c)
{

return Temperature (c + 273.15);
}

Temperature Temperature::Kelvin (double k)
{

return Temperature (k);
}

const

This type of member function cannot modify the member variables of a class. It’s
a hint both to the programmer and the compiler that a given member function
doesn’t change the internal state of a class; however, any variables declared as
mutable can still be modified.

23 Chapter 6.2 on page 559

434

Classes

Take for example:

class Foo
{
public:
int value() const
{
return m_value;

}

void setValue(int i)
{
m_value = i;

}

private:
int m_value;

};

Here value() clearly does not change m_value and as such can and should be
const. However setValue() does modify m_value and as such cannot be const.

Another subtlety often missed is a const member function cannot call a
non-const member function (and the compiler will complain if you try). The
const member function cannot change member variables and a non-const
member functions can change member variables. Since we assume non-const
member functions do change member variables, const member functions are
assumed to never change member variables and can’t call functions that do
change member variables.

The following code example explains what const can do depending on where it
is placed.

class Foo
{
public:

/*
* Modifies m_widget and the user

* may modify the returned widget.

*/
Widget *widget();

/*
* Does not modify m_widget but the

* user may modify the returned widget.

*/
Widget *widget() const;

/*
* Modifies m_widget, but the user

* may not modify the returned widget.

435

Object Oriented Programming

*/
const Widget *cWidget();

/*
* Does not modify m_widget and the user

* may not modify the returned widget.

*/
const Widget *cWidget() const;

private:
Widget *m_widget;

};

Accessors and Modifiers (Setter/Getter)

What is an accessor?

An accessor is a member function that does not modify the state of an object.
The accessor functions should be declared as CONST24.

Getter is another common definition of an accessor due to the naming (
GetSize()) of that type of member functions.

What is a modifier?

A modifier, also called a modifying function, is a member function that changes
the value of at least one data member. In other words, an operation that modifies
the state of an object. Modifiers are also known as ‘mutators’.

Setter is another common definition of a modifier due to the naming (SetSize(
int a_Size)) of that type of member functions.

Note:
These are commonly used reference labels (not defined on the standard language).

Dynamic polymorphism (Overrides)

So far, we have learned that we can add new data and functions to a class through
inheritance. But what about if we want our derived class to inherit a method from

24 Chapter 4.3.5 on page 427

436

Classes

the base class, but to have a different implementation for it? That is when we are
talking about polymorphism, a fundamental concept in OOP programming.

As seen previously in the PROGRAMMING PARADIGMS SECTION25,
POLYMORPHISM26 is subdivided in two concepts static polymorphism and
dynamic polymorphism. This section concentrates on dynamic polymorphism,
which applies in C++ when a derived class overrides a function declared in a base
class.

We implement this concept redefining the method in the derived class. However,
we need to have some considerations when we do this, so now we must introduce
the concepts of dynamic binding, static binding and virtual methods.

Suppose that we have two classes, A and B. B derives from A and redefines the
implementation of a method c() that resides in class A. Now suppose that we
have an object b of class B. How should the instruction b.c() be interpreted?

If b is declared in the stack (not declared as a pointer or a reference) the compiler
applies static binding, this means it interprets (at compile time) that we refer to
the implementation of c() that resides in B.

However, if we declare b as a pointer or a reference of class A, the compiler could
not know which method to call at compile time, because b can be of type A or B. If
this is resolved at run time, the method that resides in B will be called. This is
called dynamic binding. If this is resolved at compile time, the method that
resides in A will be called. This is again, static binding.

Virtual member functions
The virtual member functions is relatively simple, but often misunderstood.
The concept is an essential part of designing a class hierarchy in regards to
sub-classing classes as it determines the behavior of overridden methods in
certain contexts.

Virtual member functions are class member functions, that can be overridden in
any class derived from the one where they were declared. The member function
body is then replaced with a new set of implementation in the derived class.

25 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%
2FPROGRAMMING%20PARADIGMS

26 Chapter 2.3.4 on page 21

437

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Paradigms
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Paradigms

Object Oriented Programming

Note:
When overriding virtual functions you can alter the private, protected or public
state access state of the member function of the derived class.

By placing the keyword virtual before a method declaration we are indicating
that when the compiler has to decide between applying static binding or dynamic
binding it will apply dynamic binding. Otherwise, static binding will be applied.

Note:
While it is not required to use the virtual keyword in our subclass definitions (since
if the base class function is virtual all subclass overrides of it will also be virtual) it
is good style to do so when producing code for future reutilization (for use outside
of the same project).

Again, this should be clearer with an example:

class Foo
{
public:
void f()
{
std::cout << "Foo::f()" << std::endl;

}
virtual void g()
{
std::cout << "Foo::g()" << std::endl;

}
};

class Bar : public Foo
{
public:

void f()
{
std::cout << "Bar::f()" << std::endl;

}
virtual void g()
{
std::cout << "Bar::g()" << std::endl;

}
};

int main()
{
Foo foo;
Bar bar;

Foo *baz = &bar;
Bar *quux = &bar;

438

Classes

foo.f(); // "Foo::f()"
foo.g(); // "Foo::g()"

bar.f(); // "Bar::f()"
bar.g(); // "Bar::g()"

// So far everything we would expect...

baz->f(); // "Foo::f()"
baz->g(); // "Bar::g()"

quux->f(); // "Bar::f()"
quux->g(); // "Bar::g()"

return 0;
}

Our first calls to f() and g() on the two objects are straightforward. However
things get interesting with our baz pointer which is a pointer to the Foo type.

f() is not virtual and as such a call to f() will always invoke the
implementation associated with the pointer type -- in this case the implementation
from Foo.

Note:
Remember that OVERLOADINGa and OVERRIDINGb are distinct concepts.

a Chapter 4.3.5 on page 427
b Chapter 4.3.5 on page 436

Virtual function calls are computationally more expensive than regular function
calls. Virtual functions use pointer indirection, invocation and will require a few
extra instructions than normal member functions. They also require that the
constructor of any class/structure containing virtual functions to initialize a table
of pointers to its virtual member functions.

All this characteristics will signify a trade-off between performance and design.
One should avoid preemptively declaring functions virtual without an existing
structural need. Keep in mind that virtual functions that are only resolved at
run-time cannot be inlined.

Note:
Some of the needs for using virtual functions can be addressed by using a class
template. This will be covered when we introduce TEMPLATESa.

a Chapter 5 on page 501

439

Object Oriented Programming

Pure virtual member function
There is one additional interesting possibility. Sometimes we don’t want to

provide an implementation of our function at all, but want to require people
sub-classing our class to provide an implementation on their own. This is the case
for pure virtuals.

To indicate a pure virtual function instead of an implementation we simply add
an "= 0" after the function declaration.

Again -- an example:

class Widget
{
public:

virtual void paint() = 0;
};

class Button : public Widget
{
public:

void paint() // is virtual because it is an override
{

// do some stuff to draw a button
}

};

Because paint() is a pure virtual function in the Widget class we are
required to provide an implementation in all concrete subclasses. If we don’t the
compiler will give us an error at build time.

This is helpful for providing interfaces -- things that we expect from all of the
objects based on a certain hierarchy, but when we want to ignore the
implementation details.

So why is this useful?

Let’s take our example from above where we had a pure virtual for painting.
There are a lot of cases where we want to be able to do things with widgets
without worrying about what kind of widget it is. Painting is an easy example.

Imagine that we have something in our application that repaints widgets when
they become active. It would just work with pointers to widgets -- i.e. Widget
*activeWidget() const might be a possible function signature. So we might
do something like:

Widget *w = window->activeWidget();
w->paint();

440

Classes

We want to actually call the appropriate paint member function for the "real"
widget type -- not Widget::paint() (which is a "pure" virtual and will cause
the program to crash if called using virtual dispatch). By using a virtual
function we insure that the member function implementation for our subclass --
Button::paint() in this case -- will be called.

Covariant return types
Covariant return types is the ability for a virtual function in a derived class to
return a pointer or reference to an instance of itself if the version of the method in
the base class does so. e.g.

class base
{
public:
virtual base* create() const;

};

class derived : public base
{
public:
virtual derived* create() const;

};

This allows casting to be avoided.

Note:
Some older compilers do not have support for covariant return types. Workarounds
exist for such compilers.

virtual Constructors
There is a hierarchy of classes with base class Foo. Given an object bar
belonging in the hierarchy, it is desired to be able to do the following:

1. Create an object baz of the same class as bar (say, class Bar) initialized
using the default constructor of the class. The syntax normally used is:

Bar* baz = bar.create();
2. Create an object baz of the same class as bar which is a copy of bar. The

syntax normally used is:

Bar* baz = bar.clone();

441

Object Oriented Programming

In the class Foo, the methods Foo::create() and Foo::clone() are declared as
follows:

class Foo
{

// ...

public:
// Virtual default constructor
virtual Foo* create() const;

// Virtual copy constructor
virtual Foo* clone() const;

};

If Foo is to be used as an abstract class, the functions may be made pure virtual:

class Foo
{

// ...

public:
virtual Foo* create() const = 0;
virtual Foo* clone() const = 0;

};

In order to support the creation of a default-initialized object, and the creation of a
copy object, each class Bar in the hierarchy must have public default and copy
constructors. The virtual constructors of Bar are defined as follows:

class Bar : ... // Bar is a descendant of Foo
{

// ...

public:
// Non-virtual default constructor
Bar ();
// Non-virtual copy constructor
Bar (const Bar&);

// Virtual default constructor, inline implementation
Bar* create() const { return new Foo (); }
// Virtual copy constructor, inline implementation
Bar* clone() const { return new Foo (*this); }

};

The above code uses COVARIANT RETURN TYPES27. If your compiler doesn’t
support Bar* Bar::create(), use Foo* Bar::create() instead, and similarly
for clone().

27 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COVARIANT%20RETURN%20TYPES

442

http://en.wikibooks.org/wiki/%23Covariant%20return%20types

Classes

While using these virtual constructors, you must manually deallocate the object
created by calling delete baz;. This hassle could be avoided if a smart pointer
(e.g. std::auto_ptr<Foo>) is used in the return type instead of the plain old
Foo*.

Remember that whether or not Foo uses dynamically allocated memory, you must
define the destructor virtual ˜Foo () and make it virtual to take care of
deallocation of objects using pointers to an ancestral type.

virtual Destructor
It is of special importance to remember to define a virtual destructor even if
empty in any base class, since failing to do so will create problems with the
default compiler generated destructor that will not be virtual.

A virtual destructor is not overridden when redefined in a derived class, the
definitions to each destructor are cumulative and they start from the last derivate
class toward the first base class.

Pure virtual Destructor
Every abstract class should contain the declaration of a pure virtual destructor.

Pure virtual destructors are a special case of pure virtual functions (meant to be
overridden in a derived class). They must always be defined and that definition
should always be empty.

class Interface {
public:
virtual ~Interface() = 0; //declaration of a pure virtual destructor

};

Interface::~Interface(){} //pure virtual destructor definition (should always be
empty)

28 29

Law of three

The "law of three" is not really a law, but rather a guideline: if a class needs an
explicitly declared copy constructor, copy assignment operator, or destructor, then
it usually needs all three.

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

443

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

There are exceptions to this rule (or, to look at it another way, refinements). For
example, sometimes a destructor is explicitly declared just in order to make it
virtual; in that case there’s not necessarily a need to declare or implement the
copy constructor and copy assignment operator.

Most classes should not declare any of the "big three" operations; classes that
manage resources generally need all three.

4.3.6 Subsumption property

Subsumption is a property that all objects that reside in a class hierarchy must
fulfill: an object of the base class can be substituted by an object that derives from
it (directly or indirectly). All mammals are animals (they derive from them), and
all cats are mammals. Therefore, because of the subsumption property we can
"treat" any mammal as an animal and any cat as a mammal. This implies
abstraction, because when we are "treating" a mammal as an animal, the only we
should know about it is that it lives, it grows, etc, but nothing related to mammals.

This property is applied in C++, whenever we are using pointers or references to
objects that reside in a class hierarchy. In other words, a pointer of class animal
can point to an object of class animal, mammal or cat.

Let’s continue with our example:

//needs to be corrected
enum AnimalType {

Herbivore,
Carnivore,
Omnivore,

};

class Animal {
public:

AnimalType Type;
bool bIsAlive;
int iNumberOfChildren;

};

class Mammal : public Animal{
public:

int iNumberOfTeats;
};

class Cat : public Mammal{
public:

bool bLikesFish; // probably true
};

444

Classes

int main() {
Animal* pA1 = new Animal;
Animal* pA2 = new Mammal;
Animal* pA3 = new Cat;
Mammal* pM = new Cat;

pA2->bIsAlive = True; // Correct
pA2->Type = Herbivore; // Correct
pM->iNumberOfTeats = 2; // Correct

pA2->iNumberOfTeats = 6; // Incorrect
pA3->bLikesFish = True; // Incorrect

Cat* pC = (Cat*)pA3; // Downcast, correct (but very poor practice, see
later)

pC->bLikesFish = False; // Correct (although it is a very awkward cat)
}

In the last lines of the example there is cast of a pointer to Animal, to a pointer to
Cat. This is called "Downcast". Downcasts are useful and should be used, but
first we must ensure that the object we are casting is really of the type we are
casting to it. Downcasting a base class to an unrelated class is an error. To resolve
this issue, the casting operators dynamic_cast, or static_cast<> should be
used. These correctly cast an object from one class to another, and will throw an
exception if the class types are not related. eg. If you try:

Cat* pC = new Cat;

motorbike* pM = dynamic_cast<motorbike*>(pC);

Then, the app will throw an exception, as a cat is not a motorbike. Static_cast is
very similar, only it will perform the type checking at compile time. If you have
an object where you are not sure of its type then you should use dynamic_cast,
and be prepared to handle errors when casting. If you are downcasting objects
where you know the types, then you should use static_cast. Do not use
old-style C casts as these will simply give you an access violation if the types cast
are unrelated.

4.3.7 Local classes

A local class is any class that is defined inside a specific statement block, in a
LOCAL SCOPE30, for instance inside a function. This is done like defining any
other class, but local classes can not however access non-static local variables or

30 Chapter 3.1.9 on page 82

445

Object Oriented Programming

be used to define STATIC DATA MEMBERS31. These type of classes are useful
especially in template functions, as we will see later.

void MyFunction()
{

class LocalClass
{
// ... members definitions ...
};

// ... any code that needs the class ...

}

4.3.8 User defined automatic type conversion

We already covered AUTOMATIC TYPE CONVERSIONS32 (implicit conversion)
and mentioned that some can be user-defined.

A user-defined conversion from a class to another class can be done by providing
a constructor in the target class that takes the source class as an argument,
Target(const Source& a_Class) or by providing the target class with a
conversion operator, as operator Source().

4.3.9 Ensuring objects of a class are never copied

This is required e.g. to prevent memory-related problems that would result in case
the default copy-constructor or the default assignment operator is unintentionally
applied to a class C which uses dynamically allocated memory, where a
copy-constructor and an assignment operator are probably an overkill as they
won’t be used frequently.

Some style guidelines suggest making all classes non-copyable by default, and
only enabling copying if it makes sense. Other (bad) guidelines say that you
should always explicitly write the copy constructor and copy assignment
operators; that’s actually a bad idea, as it adds to the maintenance effort, adds to
the work to read a class, is more likely to introduce errors than using the
implicitly declared ones, and doesn’t make sense for most object types. A
sensible guideline is to think about whether copying makes sense for a type; if it
does, then first prefer to arrange that the compiler-generated copy operations will

31 Chapter 4.3.4 on page 424
32 Chapter 3.5.1 on page 221

446

Classes

do the right thing (e.g., by holding all resources via resource management classes
rather than via raw pointers or handles), and if that’s not reasonable then obey the
LAW OF THREE33. If copying doesn’t make sense, you can disallow it in either of
two idiomatic ways as shown below.

Just declare the copy-constructor and assignment operator, and make them
private. Do not define them. As they are not protected or public, they are
inaccessible outside the class. Using them within the class would give a linker
error since they are not defined.

class C
{
...

private:
// Not defined anywhere
C (const C&);
C& operator= (const C&);

};

Remember that if the class uses dynamically allocated memory for data members,
you must define the memory release procedures in destructor ˜C () to release the
allocated memory.

A class which only declares these two functions can be used as a private base
class, so that all classes which privately inherits such a class will disallow
copying.

Note:
A part of the BOOSTa library, the utility class boost:noncopyable performs a
similar function, easier to use but with added costs due to the required derivation.

a Chapter 6.4.3 on page 610

4.3.10 Container class

A class that is used to hold objects in memory or external storage is often called a
container class. A container class acts as a generic holder and has a predefined
behavior and a well-known interface. It is also a supporting class whose purpose
is to hide the topology used for maintaining the list of objects in memory. When it
contains a group of mixed objects, the container is called a heterogeneous

33 Chapter 4.3.5 on page 427

447

Object Oriented Programming

container; when the container is holding a group of objects that are all the same,
the container is called a homogeneous container.

4.3.11 Interface class

4.3.12 Singleton class

A SINGLETON34 class is a class that can only be instantiated once (similar to the
use of static variables or functions). It is one of the possible implementations of a
CREATIONAL PATTERN35, which is fully covered in the DESIGN PATTERNS

SECTION36 of the book.
37

4.3.13 Abstract Classes

An abstract class is, conceptually, a class that cannot be instantiated and is usually
implemented as a class that has one or more pure virtual (abstract) functions.

A pure virtual function is one which must be overridden by any concrete (i.e.,
non-abstract) derived class. This is indicated in the declaration with the syntax" =
0" in the member function’s declaration.

Example

class AbstractClass {
public:
virtual void AbstractMemberFunction() = 0; //pure virtual function makes this
class Abstract class
virtual void NonAbstractMemberFunction1(); //virtual function

void NonAbstractMemberFunction2();
};

In general an abstract class is used to define an implementation and is intended to
be inherited from by concrete classes. It’s a way of forcing a contract between the
class designer and the users of that class. If we wish to create a concrete class (a

34 Chapter 6.3 on page 560
35 Chapter 6.3 on page 560
36 Chapter 6.2 on page 559
37 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

448

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

class that can be instantiated) from an abstract class we must declare and define a
matching member function for each abstract member function of the base class.
Otherwise we will create a new abstract class (this could be useful sometimes).

Sometimes we use the phrase "pure abstract class," meaning a class that
exclusively has pure virtual functions (and no data). The concept of interface is
mapped to pure abstract classes in C++, as there is no construction "interface" in
C++ the same way that there is in Java.

Example

class Vehicle {
public:

explicit
Vehicle(int topSpeed)
: m_topSpeed(topSpeed)
{}
int TopSpeed() const {

return m_topSpeed;
}

virtual void Save(std::ostream&) const = 0;

private:
int m_topSpeed;

};

class WheeledLandVehicle : public Vehicle {
public:

WheeledLandVehicle(int topSpeed, int numberOfWheels)
: Vehicle(topSpeed), m_numberOfWheels(numberOfWheels)
{}
int NumberOfWheels() const {
return m_numberOfWheels;

}

void Save(std::ostream&) const; // is implicitly virtual

private:
int m_numberOfWheels;

};

class TrackedLandVehicle : public Vehicle {
public:

int TrackedLandVehicle (int topSpeed, int numberOfTracks)
: Vehicle(topSpeed), m_numberOfTracks (numberOfTracks)
{}
int NumberOfTracks() const {

return m_numberOfTracks;
}
void Save(std::ostream&) const; // is implicitly virtual

449

Object Oriented Programming

private:
int m_numberOfTracks;

};

In this example the Vehicle is an abstract base class as it has an abstract member
function. It is not a pure abstract class as it also has data and concrete member
functions. The class WheeledLandVehicle is derived from the base class. It also
holds data which is common to all wheeled land vehicles, namely the number of
wheels. The class TrackedLandVehicle is another variation of the Vehicle class.

This is something of a contrived example but it does show how that you can share
implementation details among a hierarchy of classes. Each class further refines a
concept. This is not always the best way to implement an interface but in some
cases it works very well. As a guideline, for ease of maintenance and
understanding you should try to limit the inheritance to no more than 3 levels.
Often the best set of classes to use is a pure virtual abstract base class to define a
common interface. Then use an abstract class to further refine an implementation
for a set of concrete classes and lastly define the set of concrete classes.

An abstract class is a class that is designed to be specifically used as a base class.
An abstract class contains at least one pure virtual function. You declare a pure
virtual function by using a pure specifier (= 0) in the declaration of a virtual
member function in the class declaration.

The following is an example of an abstract class:

class AB {
public:
virtual void f() = 0;

};

Function AB::f is a pure virtual function. A function declaration cannot have both
a pure specifier and a definition.

Abstract class cannot be used as a parameter type, a function return type, or the
type of an explicit conversion, and not to declare an object of an abstract class. It
can be used to declare pointers and references to an abstract class.

450

Classes

Pure Abstract Classes

An abstract class is one in which there is a declaration but no definition for a
member function. The way this concept is expressed in C++ is to have the
member function declaration assigned to zero.

Example

class PureAbstractClass
{
public:
virtual void AbstractMemberFunction() = 0;

};

A pure Abstract class has only abstract member functions and no data or concrete
member functions. In general, a pure abstract class is used to define an interface
and is intended to be inherited by concrete classes. It’s a way of forcing a contract
between the class designer and the users of that class. The users of this class must
declare a matching member function for the class to compile.

Example of usage for a pure Abstract Class

class DrawableObject
{
public:
virtual void Draw(GraphicalDrawingBoard&) const = 0; //draw to

GraphicalDrawingBoard
};

class Triangle : public DrawableObject
{
public:
void Draw(GraphicalDrawingBoard&) const; //draw a triangle

};

class Rectangle : public DrawableObject
{
public:
void Draw(GraphicalDrawingBoard&) const; //draw a rectangle

};

class Circle : public DrawableObject
{
public:
void Draw(GraphicalDrawingBoard&) const; //draw a circle

};

typedef std::list<DrawableObject*> DrawableList_t;

451

Object Oriented Programming

DrawableList_t drawableList;
GraphicalDrawingBoard gdrawb;

drawableList.pushback(new Triangle());
drawableList.pushback(new Rectangle());
drawableList.pushback(new Circle());

for(DrawableList_t::const_iterator iter = drawableList.begin(),
endIter = drawableList.end();
iter != endIter;
++iter)

{
DrawableObject *object = *iter;
object->Draw(gdrawb);

}

Note that this is a bit of a contrived example and that the drawable objects are not
fully defined (no constructors or data) but it should give you the general idea of
the power of defining an interface. Once the objects are constructed, the code that
calls the interface does not know any of the implementation details of the called
objects, only that of the interface. The object GraphicalDrawingBoard is a
placeholder meant to represent the thing onto which the object will be drawn, i.e.
the video memory, drawing buffer, printer.

Note that there is a great temptation to add concrete member functions and data to
pure abstract base classes. This must be resisted, in general it is a sign that the
interface is not well factored. Data and concrete member functions tend to imply
a particular implementation and as such can inherit from the interface but should
not be that interface. Instead if there is some commonality between concrete
classes, creation of abstract class which inherits its interface from the pure
abstract class and defines the common data and member functions of the concrete
classes works well. Some care should be taken to decide whether inheritance or
aggregation should be used. Too many layers of inheritance can make the
maintenance and usage of a class difficult. Generally, the maximum accepted
layers of inheritance is about 3, above that and refactoring of the classes is
generally called for. A general test is the "is a" vs "has a", as in a Square is a
Rectangle, but a Square has a set of sides.
38

4.3.14 What is a "nice" class?

A "nice" class takes into consideration the use of the following functions:

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

452

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

1. The copy constructor.

2. The assignment operator.

3. The equality operator.

4. The inequality operator.

Class Declaration

class Nice
{
public:

Nice(const Nice &Copy);
Nice &operator= (const Nice &Copy);
bool operator== (const Nice ¶m) const;
bool operator!= (const Nice ¶m) const;

};

Description

A "nice" class could also be called a container safe class. Many containers such
as those in the STANDARD TEMPLATE LIBRARY39 (STL), that we’ll see later, use
copy construction and the assignment operator when interacting with the objects
of your class. The assignment operator and copy constructor only need to be
declared and defined if the default behavior, which is a member-wise (not binary)
copy, is undesirable or insufficient to properly copy/construct your object.

A general rule of thumb is that if the default, member-wise copy operations do
not work for your objects then you should define a suitable copy constructor and
assignment operator. They are both needed if either is defined.

39 Chapter 5.1.5 on page 517

453

Object Oriented Programming

4.4 Copy Constructor

The purpose of the copy constructor is to allow the programmer to perform the
same instructions as the assignment operator with the special case of knowing
that the caller is initializing/constructing rather than an copying.

It is also good practice to use the explicit keyword when using a copy constructor
to prevent unintended implicit type conversion.

Example

class Nice
{
public:
explicit Nice(int _a) : a(_a)
{
return;

}
private:
int a;

};

class NotNice
{
public:
NotNice(int _a) : a(_a)
{
return;

}
private:
int a;

};

int main()
{
Nice proper = Nice(10); //this is ok
Nice notproper = 10; //this will result in an error
NotNice eg = 10; //this WILL compile, you may not have intended this conversion
return 0;

}

4.5 Equality Operator

The equality operator says, "Is this object equal to that object?". What constitutes
equal is up to the programmer. This is a requirement if you ever want to use the
equality operator with objects of your class.

454

Inequality Operator

However, in most applications (e.g. mathematics), it is usually the case that
coding the inequality is easier than coding the equality. In which case the
following code can be written for the equality.

inline bool Nice::operator== (const Nice& param) const
{

return !(*this != param);
}

4.6 Inequality Operator

The inequality operator says, "Is this object not equal to that object?". What
constitutes not equal is up to the programmer. This is a requirement if you ever
want to use the inequality operator with objects of your class.

However, in some applications, coding the equality is easier than coding the
inequality. In which case the following code can be written for the inequality.

inline bool Nice::operator!= (const Nice& param) const
{

return !(*this == param);
}

If the statement about the (in)equality operators having different efficiency
(whatever kind) seems complete nonsense to you, consider that typically, all
object attributes must match for two objects to be considered equal.
Typically, only one object attribute must differ for two objects to be considered
unequal. For equality and inequality operators, that doesn’t mean one is faster
than the other.

Note, however, that using both the above equality and inequality functions as
defined will result in an infinite recursive loop and care must be taken to use only
one or the other. Also, there are some situations where neither applies and
therefore neither of the above can be used.

Given two objects A and B (with class attributes x and y), an equality operator
could be written as

if (A.x != B.x) return false;
if (A.y != B.y) return false;
return true;

while an inequality operator could be written as

455

Object Oriented Programming

if (A.x != B.x) return true;
if (A.y != B.y) return true;
return false;

So yes, the equality operator can certainly be written ...!(a!=b)..., but it isn’t any
faster. In fact, there’s the additional overhead of a method call and a negation
operation.

So the question becomes, is a little execution overhead worth the smaller code
and improved maintainability? There is no simple answer to this it all depend on
how the programmer is using them. If your class is composed of, say, an array of
1 billion elements, the overhead is negligible.
40

4.7 Operator overloading

Operator overloading (less commonly known as AD-HOC41 POLYMORPHISM42)
is a specific case of POLYMORPHISM43 (part of the OO nature of the language) in
which some or all operators like +, = or == are treated as polymorphic functions
and as such have different behaviors depending on the types of its arguments.
Operator overloading is usually only SYNTACTIC SUGAR44. It can easily be
emulated using function calls.

Consider this operation:

add (a, multiply (b,c))

Using operator overloading permits a more concise way of writing it, like this:

a + b × c

(Assuming the × operator has higher PRECEDENCE45 than +.)

Operator overloading can provide more than an aesthetic benefit, since the
language allows operators to be invoked implicitly in some circumstances.

40 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
41 HTTP://EN.WIKIPEDIA.ORG/WIKI/AD-HOC
42 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE%20POLYMORPHISM
43 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTER%

20SCIENCE%29
44 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNTACTIC%20SUGAR
45 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRECEDENCE

456

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/ad-hoc
http://en.wikipedia.org/wiki/type%20polymorphism
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/syntactic%20sugar
http://en.wikipedia.org/wiki/precedence

Operator overloading

Problems, and critics, to the use of operator overloading arise because it allows
programmers to give operators completely free functionality, without an
imposition of coherency that permits to consistently satisfy user/reader
expectations, usage of the << operator is an example of this problem.

// The expression
a << 1;

Will return twice the value of a if a is an integer variable, but if a is an output
stream instead this will write "1" to it. Because operator overloading allows the
programmer to change the usual semantics of an operator, it is usually considered
good practice to use operator overloading with care.

To overload an operator is to provide it with a new meaning for user-defined
types. This is done in the same fashion as defining a function. The basic syntax
follows (where @ represents a valid operator):

return_type operator@(argument_list)
{

// ... definition
}

Not all operators may be overloaded, new operators cannot be created, and the
precedence, associativity or arity of operators cannot be changed (for example !
cannot be overloaded as a binary operator). Most operators may be overloaded as
either a member function or non-member function, some, however, must be
defined as member functions. Operators should only be overloaded where their
use would be natural and unambiguous, and they should perform as expected. For
example, overloading + to add two complex numbers is a good use, whereas
overloading * to push an object onto a vector would not be considered good style.

Note:
Operator overloading should only be utilized when the meaning of the overloaded
operator’s operation is unambiguous and practical for the underlying type and
where it would offer a significant notational brevity over appropriately named func-
tion calls.

A simple Message Header

// sample of Operator Overloading

#include <string>

457

Object Oriented Programming

class PlMessageHeader
{

std::string m_ThreadSender;
std::string m_ThreadReceiver;

//return true if the messages are equal, false otherwise
inline bool operator == (const PlMessageHeader &b) const
{

return ((b.m_ThreadSender==m_ThreadSender) &&
(b.m_ThreadReceiver==m_ThreadReceiver));

}

//return true if the message is for name
inline bool isFor (const std::string &name) const
{

return (m_ThreadReceiver==name);
}

//return true if the message is for name
inline bool isFor (const char *name) const
{

return (m_ThreadReceiver==name);// since name type is std::string, it
becomes unsafe if name == NULL

}
};

Note:
The use of the inline keyword in the example above is technically redundant, as
functions defined within a class definition like this are implicitly inline.

4.7.1 Operators as member functions

Aside from the operators which must be members, operators may be overloaded
as member or non-member functions. The choice of whether or not to overload as
a member is up to the programmer. Operators are generally overloaded as
members when they:

1. change the left-hand operand, or
2. require direct access to the non-public parts of an object.

When an operator is defined as a member, the number of explicit parameters is
reduced by one, as the calling object is implicitly supplied as an operand. Thus,
binary operators take one explicit parameter and unary operators none. In the case
of binary operators, the left hand operand is the calling object, and no type

458

Operator overloading

COERCION46 will be done upon it. This is in contrast to non-member operators,
where the left hand operand may be coerced.

// binary operator as member function Vector2D Vector2D::operator+(const
Vector2D right)const {...}

// binary operator as non-member function Vector2D operator+(const
Vector2D left, const Vector2D right) {...}

// binary operator as non-member function with 2 arguments friend
Vector2D operator+(const Vector2D left, const Vector2D right) {...}

// unary operator as member function Vector2D Vector2D::operator-()const
{...}

// unary operator as non-member function Vector2D operator-(const Vector2D
vec) {...}

4.7.2 Overloadable operators

Arithmetic operators

• + (addition)
• - (subtraction)
• * (multiplication)
• / (division)
• % (modulus)

As binary operators, these involve two arguments which do not have to be the
same type. These operators may be defined as member or non-member functions.
An example illustrating overloading for the addition of a 2D mathematical vector
type follows.

Vector2D Vector2D::operator+(const Vector2D& right)
{

Vector2D result;
result.set_x(x() + right.x());
result.set_y(y() + right.y());
return result;

}

It is good style to only overload these operators to perform their customary
arithmetic operation. Because operator has been overloaded as member function,
it can access to private fields.

46 Chapter 3.3 on page 125

459

Object Oriented Programming

Bitwise operators

• ˆ (XOR)
• | (OR)
• & (AND)
• ˜ (complement)
• << (shift left, insertion to stream)
• >> (shift right, extraction from stream)

All of the bitwise operators are binary, excepting complement, which is unary. It
should be noted that these operators have a lower precedence than the arithmetic
operators, so if ˆ were to be overloaded for exponentiation, x ˆ y + z may not work
as intended. Of special mention are the shift operators, << and >>. These have
been overloaded in the standard library for interaction with streams. When
overloading these operators to work with streams the rules below should be
followed:

1. overload << and >> as friends (so that it can access the private variables
with the stream be passed in by references

2. (input/output modifies the stream, and copying is not allowed)
3. the operator should return a reference to the stream it receives (to allow

chaining, cout << 3 << 4 << 5)

An example using a 2D vector

friend ostream& operator<<(ostream& out, const Vector2D& vec) // output
{

out << "(" << vec.x() << ", " << vec.y() << ")";
return out;

}

friend istream& operator>>(istream& in, Vector2D& vec) // input
{

double x, y;
in >> x >> y;
vec.set_x(x);
vec.set_y(y);
return in;

}

Assignment operator
The assignment operator, =, must be a member function, and is given default

behavior for user-defined classes by the compiler, performing an assignment of

460

Operator overloading

every member using its assignment operator. This behavior is generally
acceptable for simple classes which only contain variables. However, where a
class contains references or pointers to outside resources, the assignment operator
should be overloaded (as general rule, whenever a destructor and copy constructor
are needed so is the assignment operator), otherwise, for example, two strings
would share the same buffer and changing one would change the other.

In this case, an assignment operator should perform two duties:

1. clean up the old contents of the object
2. copy the resources of the other object

For classes which contain raw pointers, before doing the assignment, the
assignment operator should check for self-assignment, which generally will not
work (as when the old contents of the object are erased, they cannot be copied to
refill the object). Self assignment is generally a sign of a coding error, and thus
for classes without raw pointers, this check is often omitted, as while the action is
wasteful of cpu cycles, it has no other effect on the code.

Example

class BuggyRawPointer { // example of super-common mistake
T *m_ptr;
public:
BuggyRawPointer(T *ptr) : m_ptr(ptr) {}
BuggyRawPointer& operator=(BuggyRawPointer const &rhs) {

delete m_ptr; // free resource; // Problem here!
m_ptr = 0;
m_ptr = rhs.m_ptr;
return *this;

};
};

BuggyRawPointer x(new T);
x = x; // We might expect this to keep x the same. This sets x.m_ptr == 0. Oops!

// The above problem can be fixed like so:
class WithRawPointer2 {

T *m_ptr;
public:
WithRawPointer2(T *ptr) : m_ptr(ptr) {}
WithRawPointer2& operator=(WithRawPointer2 const &rhs) {

if (this != &rhs) {
delete m_ptr; // free resource;
m_ptr = 0;
m_ptr = rhs.m_ptr;

}
return *this;

};
};

461

Object Oriented Programming

WithRawPointer2 x2(new T);
x2 = x2; // x2.m_ptr unchanged.

Another common use of overloading the assignment operator is to declare the
overload in the private part of the class and not define it. Thus any code which
attempts to do an assignment will fail on two accounts, first by referencing a
private member function and second fail to link by not having a valid definition.
This is done for classes where copying is to be prevented, and generally done with
the addition of a privately declared copy constructor

Example

class DoNotCopyOrAssign {
public:

DoNotCopyOrAssign() {};
private:

DoNotCopyOrAssign(DoNotCopyOrAssign const&);
DoNotCopyOrAssign &operator=(DoNotCopyOrAssign const &);

};

class MyClass : public DoNotCopyOrAssign {
public:

MyClass();
};

MyClass x, y;
x = y; // Fails to compile due to private assignment operator;
MyClass z(x); // Fails to compile due to private copy constructor.

Relational operators

• == (equality)
• != (inequality)
• > (greater-than)
• < (less-than)
• >= (greater-than-or-equal-to)
• <= (less-than-or-equal-to)

All relational operators are binary, and should return either true or false.
Generally, all six operators can be based off a comparison function, or each other,
although this is never done automatically (e.g. overloading > will not
automatically overload < to give the opposite). There are, however, some
templates defined in the header <utility>; if this header is included, then it suffices

462

Operator overloading

to just overload operator== and operator<, and the other operators will be
provided by the STL.

Logical operators

• ! (NOT)
• && (AND)
• || (OR)

The ! operator is unary, && and || are binary. It should be noted that in normal
use, && and || have "short-circuit" behavior, where the right operand may not be
evaluated, depending on the left operand. When overloaded, these operators get
function call precedence, and this short circuit behavior is lost. It is best to leave
these operators alone.

Example

bool Function1();
bool Function2();

Function1() && Function2();

If the result of Function1() is false, then Function2() is not called.

MyBool Function3();
MyBool Function4();

bool operator&&(MyBool const &, MyBool const &);

Function3() && Function4()

Both Function3() and Function4() will be called no matter what the result of the
call is to Function3() This is a waste of CPU processing, and worse, it could have
surprising unintended consequences compared to the expected "short-circuit"
behavior of the default operators. Consider:

extern MyObject * ObjectPointer;
bool Function1() { return ObjectPointer != null; }
bool Function2() { return ObjectPointer->MyMethod(); }
MyBool Function3() { return ObjectPointer != null; }
MyBool Function4() { return ObjectPointer->MyMethod(); }

bool operator&&(MyBool const &, MyBool const &);

Function1() && Function2(); // Does not execute Function2() when pointer is null
Function3() && Function4(); // Executes Function4() when pointer is null

463

Object Oriented Programming

Compound assignment operators

• += (addition-assignment)
• -= (subtraction-assignment)
• *= (multiplication-assignment)
• /= (division-assignment)
• %= (modulus-assignment)
• &= (AND-assignment)
• |= (OR-assignment)
• ˆ= (XOR-assignment)
• >>= (shift-right-assignment)
• <<= (shift-left-assignment)

Compound assignment operators should be overloaded as member functions, as
they change the left-hand operand. Like all other operators (except basic
assignment), compound assignment operators must be explicitly defined, they
will not be automatically (e.g. overloading = and + will not automatically
overload +=). A compound assignment operator should work as expected: A @=
B should be equivalent to A = A @ B. An example of += for a two-dimensional
mathematical vector type follows.

Vector2D& Vector2D::operator+=(const Vector2D& right)
{

this->x += right.x;
this->y += right.y;
return *this;

}

Increment and decrement operators

• ++ (increment)
• -- (decrement)

Increment and decrement have two forms, prefix (++i) and postfix (i++). To
differentiate, the postfix version takes a dummy integer. Increment and decrement
operators are most often member functions, as they generally need access to the
private member data in the class. The prefix version in general should return a
reference to the changed object. The postfix version should just return a copy of
the original value. In a perfect world, A += 1, A = A + 1, A++, ++A should all
leave A with the same value.

Example

464

Operator overloading

SomeValue SomeValue::operator++() // prefix { ++data; return *this; }

SomeValue SomeValue::operator++(int unused) // postfix { SomeValue result =
*this; ++data; return result; }

Often one operator is defined in terms of the other for ease in maintenance,
especially if the function call is complex.

SomeValue SomeValue::operator++(int unused) // postfix
{

SomeValue result = *this;
++(*this); // call SomeValue::operator++()
return result;

}

Subscript operator
The subscript operator, [], is a binary operator which must be a member
function (hence it takes only one explicit parameter, the index). The subscript
operator is not limited to taking an integral index. For instance, the index for the
subscript operator for the std::map template is the same as the type of the key, so
it may be a string etc. The subscript operator is generally overloaded twice; as a
non-constant function (for when elements are altered), and as a constant function
(for when elements are only accessed).

Function call operator
The function call operator, (), is generally overloaded to create objects which
behave like functions, or for classes that have a primary operation. The function
call operator must be a member function, but has no other restrictions - it may be
overloaded with any number of parameters of any type, and may return any type.
A class may also have several definitions for the function call operator.

Address of, Reference, and Pointer operators
These three operators, operator&(), operator*() and operator->() can be
overloaded. In general these operators are only overloaded for smart pointers, or
classes which attempt to mimic the behavior of a raw pointer. The pointer
operator, operator->() has the additional requirement that the result of the call to
that operator, must return a pointer, or a class with an overloaded operator->(). In
general A == *&A should be true.

465

Object Oriented Programming

Example

class T {
public:

const memberFunction() const;
};

// forward declaration
class DullSmartReference;

class DullSmartPointer {
private:

T *m_ptr;
public:

DullSmartPointer(T *rhs) : m_ptr(rhs) {};
DullSmartReference operator*() const {

return DullSmartReference(*m_ptr);
}
T *operator->() const {

return m_ptr;
}

};

class DullSmartReference {
private:

T *m_ptr;
public:

DullSmartReference (T &rhs) : m_ptr(&rhs) {}
DullSmartPointer operator&() const {

return DullSmartPointer(m_ptr);
}
// conversion operator
operator T() { return *m_ptr; }

};

DullSmartPointer dsp(new T);
dsp->memberFunction(); // calls T::memberFunction

T t;
DullSmartReference dsr(t);
dsp = &dsr;
t = dsr; // calls the conversion operator

These are extremely simplified examples designed to show how the operators can
be overloaded and not the full details of a SmartPointer or SmartReference class.
In general you won’t want to overload all three of these operators in the same
class.

Comma operator
The comma operator,() , can be overloaded. The language comma operator has

466

Operator overloading

left to right precedence, the operator,() has function call precedence, so be aware
that overloading the comma operator has many pitfalls.

Example

MyClass operator,(MyClass const &, MyClass const &);

MyClass Function1();
MyClass Function2();

MyClass x = Function1(), Function2();

For non overloaded comma operator, the order of execution will be Function1(),
Function2(); With the overloaded comma operator, the compiler can call either
Function1(), or Function2() first.

Member access operators
The two member access operators, operator->() and operator->*() can be
overloaded. The most common use of overloading these operators is with defining
expression template classes, which is not a common programming technique.
Clearly by overloading these operators you can create some very unmaintainable
code so overload these operators only with great care.

When the -> operator is applied to a pointer value of type (T *), the language
dereferences the pointer and applies the . member access operator (so x->m is
equivalent to (*x).m). However, when the -> operator is applied to a class
instance, it is called as a unary postfix operator; it is expected to return a value to
which the -> operator can again be applied. Typically, this will be a value of type
(T *), as in the example under ADDRESS OF, REFERENCE, AND POINTER

OPERATORS47 above, but can also be a class instance with operator->() defined;
the language will call operator->() as many times as necessary until it arrives at a
value of type (T *).

Memory management operators

• new (allocate memory for object)
• new[] (allocate memory for array)

47 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23ADDRESS%20OF.2C%20REFERENCE.
2C%20AND%20POINTER%20OPERATORS

467

http://en.wikibooks.org/wiki/%23Address%20of.2C%20Reference.2C%20and%20Pointer%20operators
http://en.wikibooks.org/wiki/%23Address%20of.2C%20Reference.2C%20and%20Pointer%20operators

Object Oriented Programming

• delete (deallocate memory for object)
• delete[] (deallocate memory for array)

The memory management operators can be overloaded to customize allocation
and deallocation (e.g. to insert pertinent memory headers). They should behave as
expected, new should return a pointer to a newly allocated object on the heap,
delete should deallocate memory, ignoring a NULL argument. To overload new,
several rules must be followed:

• new must be a member function
• the return type must be void*
• the first explicit parameter must be a size_t value

To overload delete there are also conditions:

• delete must be a member function (and cannot be virtual)
• the return type must be void
• there are only two forms available for the parameter list, and only one of the

forms may appear in a class:
• void*
• void*, size_t

Conversion operators
Conversion operators enable objects of a class to be either implicitly (coercion)

or explicitly (casting) converted to another type. Conversion operators must be
member functions, and should not change the object which is being converted, so
should be flagged as constant functions. The basic syntax of a conversion
operator declaration, and declaration for an int-conversion operator follows.

operator ’’type’’() const; // const is not necessary, but is good style
operator int() const;

Notice that the function is declared without a return-type, which can easily be
inferred from the type of conversion. Including the return type in the function
header for a conversion operator is a syntax error.

double operator double() const; // error - return type included

4.7.3 Operators which cannot be overloaded

• ?: (conditional)
• . (member selection)
• .* (member selection with pointer-to-member)
• :: (scope resolution)

468

I/O

• sizeof (object size information)
• typeid (object type information)

To understand the reasons why the language doesn’t permit these operators to be
overloaded, read "Why can’t I overload dot, ::, sizeof, etc.?" at the Bjarne
Stroustrup’s C++ Style and Technique FAQ (
HTTP://WWW.RESEARCH.ATT.COM/˜BS/BS_FAQ2.HTML#OVERLOAD-DOT48).
49

4.8 I/O

Also commonly referenced as the C++ I/O of the C++ STANDARD LIBRARY50,
since the library also includes the C Standard library and its I/O implementation,
as seen before in the STANDARD C I/O SECTION51.

Input and output are essential for any computer software, as these are the only
means by which the program can communicate with the user. The simplest form
of input/output is pure textual, i.e. the application displays in console form, using
simple ASCII characters to prompt the user for inputs, which are supplied using
the keyboard.

There are many ways for a program to gain input and output, including

• File i/o, that is, reading and writing to files
• Console i/o, reading and writing to a console window, such as a terminal in

UNIX-based operating systems or a DOS prompt in Windows.
• Network i/o, reading and writing from a network device
• String i/o, reading and writing treating a string as if it were the input or output

device

While these may seem unrelated, they work very similarly. In fact, operating
systems that follow the POSIX specification deal with files, devices, network
sockets, consoles, and many other things all with one type of handle, a file
descriptor. However, low-level interfaces provided by the operating system tend
to be difficult to use, so C++, like other languages, provide an abstraction to make
programming easier. This abstraction is the stream.

48 HTTP://WWW.RESEARCH.ATT.COM/~{}BS/BS_FAQ2.HTML#OVERLOAD-DOT
49 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
50 Chapter 3.1.2 on page 47
51 Chapter 3.7.11 on page 290

469

http://www.research.att.com/~{}bs/bs_faq2.html#overload-dot
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

4.8.1 Character encoding

American Standard Code for Information Interchange (ASCII) 95 chart

ASCII52 is a CHARACTER-ENCODING SCHEME53 based on the ORDERING54 of
the ENGLISH ALPHABET55. The 95 ASCII graphic characters numbered from
0x20 to 0x7E (32 to 126 decimal), also known as the printable characters,
represent letters, digits, PUNCTUATION MARKS56, and a few miscellaneous
symbols. The first 32 ASCII characters, from 0x00 to 0x20, are known as control
characters. The SPACE CHARACTER57, that denotes the space between words, as
produced by the space-bar of a keyboard, represented by code 0x20
(HEXADECIMAL58), is considered a non-printing graphic (or an invisible graphic)
rather than a control character.

Binary OCT59 DEC60 HEX61 GLYPH62

010 0000 040 32 20 SPACE63

010 0001 041 33 21 !64

010 0010 042 34 22 "65

010 0011 043 35 23 #66

010 0100 044 36 24 $67

010 0101 045 37 25 %68

010 0110 046 38 26 &69

010 0111 047 39 27 ’70

010 1000 050 40 28 (71

010 1001 051 41 29)72

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASCII
53 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARACTER%20ENCODING
54 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORDER%20%28MATHEMATICS%29
55 HTTP://EN.WIKIPEDIA.ORG/WIKI/ENGLISH%20ALPHABET
56 HTTP://EN.WIKIPEDIA.ORG/WIKI/PUNCTUATION%20MARKS
57 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPACE%20%28PUNCTUATION%29
58 HTTP://EN.WIKIPEDIA.ORG/WIKI/HEXADECIMAL
63 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPACE%20%28PUNCTUATION%29
64 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXCLAMATION%20MARK
65 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUOTATION%20MARK
66 HTTP://EN.WIKIPEDIA.ORG/WIKI/NUMBER%20SIGN
67 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOLLAR%20SIGN
68 HTTP://EN.WIKIPEDIA.ORG/WIKI/PERCENT%20SIGN
69 HTTP://EN.WIKIPEDIA.ORG/WIKI/AMPERSAND
70 HTTP://EN.WIKIPEDIA.ORG/WIKI/APOSTROPHE
71 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
72 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET

470

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/character%20encoding
http://en.wikipedia.org/wiki/Order%20%28mathematics%29
http://en.wikipedia.org/wiki/English%20alphabet
http://en.wikipedia.org/wiki/punctuation%20marks
http://en.wikipedia.org/wiki/Space%20%28punctuation%29
http://en.wikipedia.org/wiki/hexadecimal
http://en.wikipedia.org/wiki/Space%20%28punctuation%29
http://en.wikipedia.org/wiki/Exclamation%20mark
http://en.wikipedia.org/wiki/Quotation%20mark
http://en.wikipedia.org/wiki/Number%20sign
http://en.wikipedia.org/wiki/Dollar%20sign
http://en.wikipedia.org/wiki/Percent%20sign
http://en.wikipedia.org/wiki/Ampersand
http://en.wikipedia.org/wiki/apostrophe
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Bracket

I/O

Binary OCT59 DEC60 HEX61 GLYPH62

010 1010 052 42 2A *73

010 1011 053 43 2B +74

010 1100 054 44 2C ,75

010 1101 055 45 2D -76

010 1110 056 46 2E .77

010 1111 057 47 2F /78

011 0000 060 48 30 079

011 0001 061 49 31 180

011 0010 062 50 32 281

011 0011 063 51 33 382

011 0100 064 52 34 483

011 0101 065 53 35 584

011 0110 066 54 36 685

011 0111 067 55 37 786

011 1000 070 56 38 887

011 1001 071 57 39 988

011 1010 072 58 3A :89

011 1011 073 59 3B ;90

011 1100 074 60 3C <91

011 1101 075 61 3D =92

011 1110 076 62 3E >93

73 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASTERISK
74 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLUS%20SIGN
75 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMA%20%28PUNCTUATION%29
76 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPHEN-MINUS
77 HTTP://EN.WIKIPEDIA.ORG/WIKI/FULL%20STOP
78 HTTP://EN.WIKIPEDIA.ORG/WIKI/SLASH%20%28PUNCTUATION%29
79 HTTP://EN.WIKIPEDIA.ORG/WIKI/0
80 HTTP://EN.WIKIPEDIA.ORG/WIKI/1%20%28NUMBER%29
81 HTTP://EN.WIKIPEDIA.ORG/WIKI/2%20%28NUMBER%29
82 HTTP://EN.WIKIPEDIA.ORG/WIKI/3%20%28NUMBER%29
83 HTTP://EN.WIKIPEDIA.ORG/WIKI/4%20%28NUMBER%29
84 HTTP://EN.WIKIPEDIA.ORG/WIKI/5%20%28NUMBER%29
85 HTTP://EN.WIKIPEDIA.ORG/WIKI/6%20%28NUMBER%29
86 HTTP://EN.WIKIPEDIA.ORG/WIKI/7%20%28NUMBER%29
87 HTTP://EN.WIKIPEDIA.ORG/WIKI/8%20%28NUMBER%29
88 HTTP://EN.WIKIPEDIA.ORG/WIKI/9%20%28NUMBER%29
89 HTTP://EN.WIKIPEDIA.ORG/WIKI/COLON%20%28PUNCTUATION%29
90 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMICOLON
91 HTTP://EN.WIKIPEDIA.ORG/WIKI/LESS-THAN%20SIGN
92 HTTP://EN.WIKIPEDIA.ORG/WIKI/EQUALS%20SIGN
93 HTTP://EN.WIKIPEDIA.ORG/WIKI/GREATER-THAN%20SIGN

471

http://en.wikipedia.org/wiki/Asterisk
http://en.wikipedia.org/wiki/Plus%20sign
http://en.wikipedia.org/wiki/Comma%20%28punctuation%29
http://en.wikipedia.org/wiki/Hyphen-minus
http://en.wikipedia.org/wiki/Full%20stop
http://en.wikipedia.org/wiki/Slash%20%28punctuation%29
http://en.wikipedia.org/wiki/0
http://en.wikipedia.org/wiki/1%20%28number%29
http://en.wikipedia.org/wiki/2%20%28number%29
http://en.wikipedia.org/wiki/3%20%28number%29
http://en.wikipedia.org/wiki/4%20%28number%29
http://en.wikipedia.org/wiki/5%20%28number%29
http://en.wikipedia.org/wiki/6%20%28number%29
http://en.wikipedia.org/wiki/7%20%28number%29
http://en.wikipedia.org/wiki/8%20%28number%29
http://en.wikipedia.org/wiki/9%20%28number%29
http://en.wikipedia.org/wiki/Colon%20%28punctuation%29
http://en.wikipedia.org/wiki/Semicolon
http://en.wikipedia.org/wiki/Less-than%20sign
http://en.wikipedia.org/wiki/Equals%20sign
http://en.wikipedia.org/wiki/Greater-than%20sign

Object Oriented Programming

Binary OCT59 DEC60 HEX61 GLYPH62

011 1111 077 63 3F ?94

Binary OCT95 DEC96 HEX97 GLYPH98

100 0000 100 64 40 @99

100 0001 101 65 41 A100

100 0010 102 66 42 B101

100 0011 103 67 43 C102

100 0100 104 68 44 D103

100 0101 105 69 45 E104

100 0110 106 70 46 F105

100 0111 107 71 47 G106

100 1000 110 72 48 H107

100 1001 111 73 49 I108

100 1010 112 74 4A J109

100 1011 113 75 4B K110

100 1100 114 76 4C L111

100 1101 115 77 4D M112

100 1110 116 78 4E N113

100 1111 117 79 4F O114

101 0000 120 80 50 P115

101 0001 121 81 51 Q116

101 0010 122 82 52 R117

94 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUESTION%20MARK
99 HTTP://EN.WIKIPEDIA.ORG/WIKI/%40
100 HTTP://EN.WIKIPEDIA.ORG/WIKI/A
101 HTTP://EN.WIKIPEDIA.ORG/WIKI/B
102 HTTP://EN.WIKIPEDIA.ORG/WIKI/C
103 HTTP://EN.WIKIPEDIA.ORG/WIKI/D
104 HTTP://EN.WIKIPEDIA.ORG/WIKI/E
105 HTTP://EN.WIKIPEDIA.ORG/WIKI/F
106 HTTP://EN.WIKIPEDIA.ORG/WIKI/G
107 HTTP://EN.WIKIPEDIA.ORG/WIKI/H
108 HTTP://EN.WIKIPEDIA.ORG/WIKI/I
109 HTTP://EN.WIKIPEDIA.ORG/WIKI/J
110 HTTP://EN.WIKIPEDIA.ORG/WIKI/K
111 HTTP://EN.WIKIPEDIA.ORG/WIKI/L
112 HTTP://EN.WIKIPEDIA.ORG/WIKI/M
113 HTTP://EN.WIKIPEDIA.ORG/WIKI/N
114 HTTP://EN.WIKIPEDIA.ORG/WIKI/O
115 HTTP://EN.WIKIPEDIA.ORG/WIKI/P
116 HTTP://EN.WIKIPEDIA.ORG/WIKI/Q
117 HTTP://EN.WIKIPEDIA.ORG/WIKI/R

472

http://en.wikipedia.org/wiki/Question%20mark
http://en.wikipedia.org/wiki/%40
http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P
http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R

I/O

Binary OCT95 DEC96 HEX97 GLYPH98

101 0011 123 83 53 S118

101 0100 124 84 54 T119

101 0101 125 85 55 U120

101 0110 126 86 56 V121

101 0111 127 87 57 W122

101 1000 130 88 58 X123

101 1001 131 89 59 Y124

101 1010 132 90 5A Z125

101 1011 133 91 5B [126

101 1100 134 92 5C \127

101 1101 135 93 5D]128

101 1110 136 94 5E ˆ129

101 1111 137 95 5F _130

Binary OCT131 DEC132 HEX133 GLYPH134

110 0000 140 96 60 ‘135

110 0001 141 97 61 A136

110 0010 142 98 62 B137

110 0011 143 99 63 C138

110 0100 144 100 64 D139

110 0101 145 101 65 E140

110 0110 146 102 66 F141

118 HTTP://EN.WIKIPEDIA.ORG/WIKI/S
119 HTTP://EN.WIKIPEDIA.ORG/WIKI/T
120 HTTP://EN.WIKIPEDIA.ORG/WIKI/U
121 HTTP://EN.WIKIPEDIA.ORG/WIKI/V
122 HTTP://EN.WIKIPEDIA.ORG/WIKI/W
123 HTTP://EN.WIKIPEDIA.ORG/WIKI/X
124 HTTP://EN.WIKIPEDIA.ORG/WIKI/Y
125 HTTP://EN.WIKIPEDIA.ORG/WIKI/Z
126 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
127 HTTP://EN.WIKIPEDIA.ORG/WIKI/BACKSLASH
128 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
129 HTTP://EN.WIKIPEDIA.ORG/WIKI/CARET
130 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNDERSCORE
135 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRAVE%20ACCENT
136 HTTP://EN.WIKIPEDIA.ORG/WIKI/A
137 HTTP://EN.WIKIPEDIA.ORG/WIKI/B
138 HTTP://EN.WIKIPEDIA.ORG/WIKI/C
139 HTTP://EN.WIKIPEDIA.ORG/WIKI/D
140 HTTP://EN.WIKIPEDIA.ORG/WIKI/E
141 HTTP://EN.WIKIPEDIA.ORG/WIKI/F

473

http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Backslash
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Caret
http://en.wikipedia.org/wiki/Underscore
http://en.wikipedia.org/wiki/Grave%20accent
http://en.wikipedia.org/wiki/a
http://en.wikipedia.org/wiki/b
http://en.wikipedia.org/wiki/c
http://en.wikipedia.org/wiki/d
http://en.wikipedia.org/wiki/e
http://en.wikipedia.org/wiki/f

Object Oriented Programming

Binary OCT131 DEC132 HEX133 GLYPH134

110 0111 147 103 67 G142

110 1000 150 104 68 H143

110 1001 151 105 69 I144

110 1010 152 106 6A J145

110 1011 153 107 6B K146

110 1100 154 108 6C L147

110 1101 155 109 6D M148

110 1110 156 110 6E N149

110 1111 157 111 6F O150

111 0000 160 112 70 P151

111 0001 161 113 71 Q152

111 0010 162 114 72 R153

111 0011 163 115 73 S154

111 0100 164 116 74 T155

111 0101 165 117 75 U156

111 0110 166 118 76 V157

111 0111 167 119 77 W158

111 1000 170 120 78 X159

111 1001 171 121 79 Y160

111 1010 172 122 7A Z161

111 1011 173 123 7B {162

142 HTTP://EN.WIKIPEDIA.ORG/WIKI/G
143 HTTP://EN.WIKIPEDIA.ORG/WIKI/H
144 HTTP://EN.WIKIPEDIA.ORG/WIKI/I
145 HTTP://EN.WIKIPEDIA.ORG/WIKI/J
146 HTTP://EN.WIKIPEDIA.ORG/WIKI/K
147 HTTP://EN.WIKIPEDIA.ORG/WIKI/L
148 HTTP://EN.WIKIPEDIA.ORG/WIKI/M
149 HTTP://EN.WIKIPEDIA.ORG/WIKI/N
150 HTTP://EN.WIKIPEDIA.ORG/WIKI/O
151 HTTP://EN.WIKIPEDIA.ORG/WIKI/P
152 HTTP://EN.WIKIPEDIA.ORG/WIKI/Q
153 HTTP://EN.WIKIPEDIA.ORG/WIKI/R
154 HTTP://EN.WIKIPEDIA.ORG/WIKI/S
155 HTTP://EN.WIKIPEDIA.ORG/WIKI/T
156 HTTP://EN.WIKIPEDIA.ORG/WIKI/U
157 HTTP://EN.WIKIPEDIA.ORG/WIKI/V
158 HTTP://EN.WIKIPEDIA.ORG/WIKI/W
159 HTTP://EN.WIKIPEDIA.ORG/WIKI/X
160 HTTP://EN.WIKIPEDIA.ORG/WIKI/Y
161 HTTP://EN.WIKIPEDIA.ORG/WIKI/Z
162 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET

474

http://en.wikipedia.org/wiki/g
http://en.wikipedia.org/wiki/h
http://en.wikipedia.org/wiki/i
http://en.wikipedia.org/wiki/j
http://en.wikipedia.org/wiki/k
http://en.wikipedia.org/wiki/l
http://en.wikipedia.org/wiki/m
http://en.wikipedia.org/wiki/n
http://en.wikipedia.org/wiki/o
http://en.wikipedia.org/wiki/p
http://en.wikipedia.org/wiki/q
http://en.wikipedia.org/wiki/r
http://en.wikipedia.org/wiki/s
http://en.wikipedia.org/wiki/t
http://en.wikipedia.org/wiki/u
http://en.wikipedia.org/wiki/v
http://en.wikipedia.org/wiki/w
http://en.wikipedia.org/wiki/x
http://en.wikipedia.org/wiki/y
http://en.wikipedia.org/wiki/z
http://en.wikipedia.org/wiki/Bracket

I/O

Binary OCT131 DEC132 HEX133 GLYPH134

111 1100 174 124 7C |163

111 1101 175 125 7D }164

111 1110 176 126 7E ˜165

166

4.8.2 Streams

A stream is a type of object from which we can take values, or to which we can
pass values. This is done transparently in terms of the underlying code that
demonstrates the use of the std::cout stream, known as the standard output
stream.

// ’Hello World!’ program

#include <iostream>

int main()
{
std::cout << "Hello World!" << std::endl;
return 0;

}

Almost all input and output one ever does can be modeled very effectively as a
stream. Having one common model means that one only has to learn it once. If
you understand streams, you know the basics of how to output to files, the screen,
sockets, pipes, and anything else that may come up.

A stream is an object that allows one to push data in or out of a medium, in order.
Usually a stream can only output or can only input. It is possible to have a stream
that does both, but this is rare. One can think of a stream as a car driving along a
one-way street of information. An output stream can insert data and move on. It
(usually) cannot go back and adjust something it has already written. Similarly,
an input stream can read the next bit of data and then wait for the one that comes
after it. It does not skip data or rewind and see what it had read 5 minutes ago.

The semantics of what a stream’s read and write operations do depend on the type
of stream. In the case of a file, an input file stream reads the file’s contents in
order without rewinding, and an output file stream writes to the file in order. For a

163 HTTP://EN.WIKIPEDIA.ORG/WIKI/VERTICAL%20BAR
164 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
165 HTTP://EN.WIKIPEDIA.ORG/WIKI/TILDE
166 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

475

http://en.wikipedia.org/wiki/Vertical%20bar
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Tilde
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

console stream, output means displaying text, and input means getting input from
the user via the console. If the user has not inputted anything, then the program
blocks, or waits, for the user to enter in something.

iostream

Figure 24: c++ program that uses iostream to save output to the file

iostream is a HEADER FILE167 used for input/output. Part of the C++ standard
library. The name stands for Input/Output Stream. In C++ there is no special
syntax for streaming data input or output. Instead, these are combined as a
LIBRARY168 of functions. Like we have seen with the C STANDARD LIBRARY

USE OF <cstdio> HEADER169, iostream provides basic OOP services for I/O.

The <iostream> automatically defines and uses a few standard objects:

• cin, an object of the istream class that reads data from the standard input
device.

• cout, an object of the ostream class, which displays data to the standard output
device.

• cerr, another object of the ostream class that writes unbuffered output to the
standard error device.

• clog, like cerr, but uses buffered output.

167 Chapter 3.1.6 on page 56
168 Chapter 6.3.3 on page 602
169 Chapter 3.7.11 on page 290

476

I/O

for sending data to and from the STANDARD STREAMS170 input, output, error
(unbuffered), and error (buffered) respectively. As part of the C++ standard
library, these objects are a part of the std namespace.

Standard input, output, and error

The most common streams one uses are cout, cin, and cerr (pronounced "c
out", "c in", and "c err(or)", respectively). They are defined in the header
<iostream>. Usually, these streams read and write from a console or terminal. In
UNIX-based operating systems, such as Linux and Mac OS X, the user can
redirect them to other files, or even other programs, for logging or other purposes.
They are analogous to stdout, stdin, and stderr found in C. cout is used for
generic output, cin is used for input, and cerr is used for printing errors. (cerr
typically goes to the same place as cout, unless one or both is redirected, but it is
not buffered and allows the user to fine-tune which parts of the program’s output
is redirected where.)

Output
The standard syntax for outputting to a stream, in this case, cout, is

cout << some_data << some_more_data;

Example

#include <iostream>

using namespace std;

int main()
{
int a = 1;
cout << "Hello world! " << a << ’\n’;

return 0;
}

Result of Execution

Hello world! 1

To add a line break, send a newline character, \n or use std::endl, which writes
a newline and flushes the stream’s buffer.

170 HTTP://EN.WIKIPEDIA.ORG/WIKI/STANDARD%20STREAMS

477

http://en.wikipedia.org/wiki/standard%20streams

Object Oriented Programming

Example

#include <iostream>
#include <ostream>

using namespace std;

int main()
{
int a = 1;
char x = 13;
cout << "Hello world!" << "\n" << a << endl << x << endl;

return 0;
}

Execution

Hello world!
1

It is always a good idea to end your output with a blank line, so as to not mess up
with user’s terminals.

As seen in the "Hello World!" program, we direct the output to std::cout. This
means that it is a member of the standard library. For now, don’t worry about
what this means; we will cover the library and namespaces in later chapters.

What you do need to remember is that, in order to use the output stream, you must
include a reference to the standard IO library, as shown here: #include
<iostream>

This opens up a number of streams, functions and other programming devices
which we can now use. For this section, we are interested in two of these;
std::cout and std::endl.

Once we have referenced the standard IO library, we can use the output stream
very simply. To use a stream, give its name, then pipe something in or out of it, as
shown: std::cout << "Hello, world!";

The << operator feeds everything to the right of it into the stream. We have
essentially fed a text object into the stream. That’s as far as our work goes; the
stream now decides what to do with that object. In the case of the output stream,
it’s printed on-screen.

We’re not limited to only sending a single object type to the stream, nor indeed
are we limited to one object a time. Consider the examples below:

std::cout << "Hello, " << "Joe"<< std::endl;

478

I/O

std::cout << "The answer to life, the universe and everything is " << 42 <<
std::endl;

As can be seen, we feed in various values, separated by a pipe character. The
result comes out something like:

Hello, Joe
The answer to life, the universe and everything is 42

You will have noticed the use of std::endl throughout some of the examples so
far. This is the newline constant. It is a member of the standard IO library, and
comes "free" when we instantiate that in order to use the output stream. When the
output stream receives this constant, it starts a new line in the console.

And of course, we’re not limited to sending only ONE newline, either:

std::cout << "Hello, " << "Joe" << std::endl << std::endl;
std::cout << "How old are you?";

Which produces something like:

Hello, Joe

How old are you?

Input
What would be the use of an application that only ever outputted information, but
didn’t care about what its users wanted? Minimal to none. Fortunately, inputting
is as easy as outputting when you’re using the stream.

The standard input stream is called std::cin and is used very similarly to the
output stream. Once again, we instantiate the standard IO library:

#include <iostream>

This gives us access to std::cin (and the rest of that class). Now, we give the
name of the stream as usual, and pipe output from it into a variable. A number of
things have to happen here, demonstrated in the example below:

#include <iostream>
int main(int argc, char argv[]) {
int a;
std::cout << "Hello! How old are you? ";
std::cin >> a;
std::cout << "You’re really " << a << " years old?" << std::endl;

479

Object Oriented Programming

return 0;
}

We instantiate the standard IO library as usual, and call our main function in the
normal way. Now we need to consider where the user’s input goes. This calls for
a variable (discussed in a later chapter) which we declare as being called a.

Next, we send some output, asking the user for their age. The real input happens
now; everything the user types until they hit Enter is going to be stored in the
input stream. We pull this out of the input stream and save it in our variable.

Finally, we output the user’s age, piping the contents of our variable into the
output stream.

Note: You will notice that if anything other than a whole number is entered, the
program will crash. This is due to the way in which we set up our variable. Don’t
worry about this for now; we will cover variables later on.

A Program Using User Input
The following program inputs two numbers from the user and prints their sum:

#include <iostream>

int main()
{

int num1, num2;
std::cout << "Enter number 1: ";
std::cin >> num1;
std::cout << "Enter number 2: ";
std::cin >> num2;
std::cout << "The sum of " << num1 << " and " << num2 << " is "

<< num1 + num2 << ".\n";
return 0;

}

Just like std::cout which represents the standard output stream, the C++ library
provides (and the iostream header declares) the object std::cin representing
standard input, which usually gets input from the keyboard. The statement:

std::cin >> num1;

uses the extraction operator (>>) to get an integer input from the user. When used
to input integers, any leading whitespace is skipped, a sequence of valid digits
optionally preceded by a + or - sign is read and the value stored in the variable.
Any remaining characters in the user input are not consumed. These would be
considered next time some input operation is performed.

480

I/O

If you want the program to use a function from a specific namespace, normally
you must specify which namespace the function is in. The above example calls to
cout, which is a member of the std namespace (hence std::cout). If you want
a program to specifically use the std namespace for an identifier, which essentially
removes the need for all future scope resolution (e.g. std::), you could write the
above program like this:

#include <iostream>

using namespace std;

int main()
{

int num1, num2;
cout << "Enter number 1: ";
cin >> num1;
cout << "Enter number 2: ";
cin >> num2;
cout << "The sum of " << num1 << " and " << num2 << " is "

<< num1 + num2 << ".\n";
return 0;

}

Please note that ’std’ namespace is the namespace defined by standard C++
library.

Manipulators
A manipulator is a function that can be passed as an argument to a stream in
different circumstances. For example, the manipulator ’hex’ will cause the stream
object to format subsequent integer input to the stream in hexadecimal instead of
decimal. Likewise, ’oct’ results in integers displaying in octal, and ’dec’ reverts
back to decimal.
Example

#include <iostream>
using namespace std;

int main()
{
cout << dec << 16 << ’ ’ << 10 << endl;
cout << oct << 16 << ’ ’ << 10 << endl;
cout << hex << 16 << ’ ’ << 10 << endl;

return 0;
}

Execution

481

Object Oriented Programming

16 10
20 12
10 a

There are many manipulators which can be used in conjunction with streams to
simplify the formatting of input. For example, ’setw()’ sets the field width of the
data item next displayed. Used in conjunction with ’left’ and ’right’(which set the
justification of the data), ’setw’ can easily be used to create columns of data.

Example

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

cout << setw(10) << right << 90 << setw(8) << "Help!" << endl;
cout << setw(10) << left << 45 << setw(8) << "Hi!" << endl;

return 0;
}

Execution

90 Help!
45 Hi!

The data in the top row display at the right of the columns created by ’setw’, while
in the next row, the data is left justified in the column. Please note the inclusion of
a new library ’iomanip’. Most formatting manipulators require this library.

Here are some other manipulators and their uses:

Manipulator Function
boolalpha displays boolean values as ’true’ and

’false’ instead of as integers.
noboolalpha forces bools to display as integer

values
showuppercase converts strings to uppercase before

displaying them
noshowuppercase displays strings as they are received,

instead of in uppercase
fixed forces floating point numbers to dis-

play with a fixed number of decimal
places

482

I/O

Manipulator Function
scientific displays floating point numbers in

scientific notation

Buffers
Most stream objects, including ’cout’ and ’cin’, have an area in memory where
the information they are transferring sits until it is asked for. This is called a
’buffer’. Understanding the function of buffers is essential to mastering streams
and their use.
Example

#include <iostream>
using namespace std;

int main()
{
int num1, num2;
cin >> num1;
cin >> num2;

cout << "Number1: " << num1 << endl
<< "Number2: " << num2 << endl;

return 0;
}

Execution 1

>74
>27
Number1: 74
Number2: 27

The inputs are given separately, with a hard return between them. ’>’ denotes user
input.

Execution 2

>74 27
Number1: 74
Number2: 27

The inputs are entered on the same line. They both go into the ’cin’ stream buffer,
where they are stored until needed. As ’cin’ statements are executed, the contents
of the buffer are read into the appropriate variables.

Execution 3

483

Object Oriented Programming

>74 27 56
Number1: 74
Number2: 27

In this example, ’cin’ received more input than it asked for. The third number it
read in, 56, was never inserted into a variable. It would have stayed in the buffer
until ’cin’ was called again. The use of buffers can explain many strange
behaviors that streams can exhibit.
Example

#include <iostream>
using namespace std;

int main()
{
int num1, num2, num3;
cin >> num1 >> num2;

cout << "Number1: " << num1 << endl
<< "Number2: " << num2 << endl;

cin >> num3;

cout << "Number3: " << num3 << endl;

return 0;
}

Execution

>45 89 37
Number1: 45
Number2: 89
Number3: 37

Notice how all three numbers were entered at the same time in one line, but the
stream only pulled them out of the buffer when they were asked for. This can
cause unexpected output, since the user might accidentally put an extra space into
his input. A well written program will test for this type of unexpected input and
handle it gracefully.

484

I/O

ios

ios is a HEADER FILE171 in the C++ standard library which defines several types
and functions basic to the operation of iostreams. This header is typically
included automatically by other iostream headers. Programmers rarely include it
directly.

Typedefs

Name description
ios Supports the ios class from the old

iostream library.
streamoff Supports internal operations.
streampos Holds the current position of the

buffer pointer or file pointer.
streamsize Specifies the size of the stream.
wios Supports the wios class from the old

iostream library.
wstreampos Holds the current position of the

buffer pointer or file pointer.

Manipulators

Name description
boolalpha Specifies that variables of type bool

appear as true or false in the stream.
dec Specifies that integer variables ap-

pear in base 10 notation.
fixed Specifies that a floating-point num-

ber is displayed in fixed-decimal
notation.

hex Specifies that integer variables ap-
pear in base 16 notation.

internal Causes a number’s sign to be left
justified and the number to be right
justified.

171 Chapter 3.1.6 on page 56

485

Object Oriented Programming

Name description
left Causes text that is not as wide as the

output width to appear in the stream
flush with the left margin.

noboolalpha Specifies that variables of type bool
appear as 1 or 0 in the stream.

noshowbase Turns off indicating the notational
base in which a number is displayed.

noshowpoint Displays only the whole-number
part of floating-point numbers
whose fractional part is zero.

noshowpos Causes positive numbers to not be
explicitly signed.

noskipws Cause spaces to be read by the input
stream.

nounitbuf Causes output to be buffered and
processed when the buffer is full.

nouppercase Specifies that hexadecimal digits
and the exponent in scientific nota-
tion appear in lowercase.

oct Specifies that integer variables ap-
pear in base 8 notation.

right Causes text that is not as wide as the
output width to appear in the stream
flush with the right margin.

scientific Causes floating point numbers to be
displayed using scientific notation.

showbase Indicates the notational base in
which a number is displayed.

showpoint Displays the whole-number part of a
floating-point number and digits to
the right of the decimal point even
when the fractional part is zero.

showpos Causes positive numbers to be ex-
plicitly signed.

skipws Cause spaces to not be read by the
input stream.

unitbuf Causes output to be processed when
the buffer is not empty.

486

I/O

Name description
uppercase Specifies that hexadecimal digits

and the exponent in scientific nota-
tion appear in uppercase.

Classes

Name description
basic_ios The template class describes the

storage and member functions com-
mon to both input streams (of tem-
plate class basic_istream) and output
streams (of template class basic_-
ostream) that depend on the template
parameters.

fpos The template class describes an ob-
ject that can store all the information
needed to restore an arbitrary file-
position indicator within any stream.

ios_base The class describes the storage and
member functions common to both
input and output streams that do not
depend on the template parameters.

fstream

With cout and cin, we can do basic communication with the user. For more
complex io, we would like to read from and write to files. This is done with file
stream classes, defined in the header <fstream>. ofstream is an output file
stream, and ifstream is an input file stream.

Files

To open a file, one can either call open on the file stream or, more commonly, use
the constructor. One can also supply an open mode to further control the file
stream. Open modes include

• ios::app Leaves the file’s original contents and appends new data to the end.

487

Object Oriented Programming

• ios::out Outputs new data in the file, removing the old contents. (default for
ofstream)

• ios::in Reads data from the file. (default for ifstream)

Example

// open a file called Test.txt and write "HELLO, HOW ARE YOU?" to it
#include <fstream>

using namespace std;

int main()
{
ofstream file1;

file1.open("file1.txt", ios::app);
file1 << "This data will be appended to the file file1.txt\n";
file1.close();

ofstream file2("file2.txt");
file2 << "This data will replace the contents of file2.txt\n";

return 0;
}

The call to close() can be omitted if you do not care about the return value
(whether it succeeded); the destructors will call close when the object goes out of
scope.

If an operation (e.g. opening a file) was unsuccessful, a flag is set in the stream
object. You can check the flags’ status using the bad() or fail() member functions,
which return a boolean value. The stream object doesn’t throw any exceptions in
such a situation; hence manual status check is required. See reference for details
on bad() and fail().

Text input until EOF/error/invalid input
Input from the stream infile to a variable data until one of the following:

• EOF reached on infile.
• An error occurs while reading from infile (e.g., connection closed while

reading from a remote file).
• The input item is invalid, e.g. non-numeric characters, when data is of type int.

#include <iostream>

// ...

while (infile >> data)
{

488

I/O

// manipulate data here
}

Note that the following is not correct:

#include <iostream>

// ...

while (!infile.eof())
{

infile >> data; // wrong!
// manipulate data here

}

This will cause the last item in the input file to be processed twice, because eof()
does not return true until input fails due to EOF.

ostream

Classes and output streams

It is often useful to have your own classes’ instances compatible with the stream
framework. For instance, if you defined the class Foo like this:

class Foo
{
public:

Foo() : x(1), y(2)
{
}

int x, y;
};

You will not be able to pass its instance to cout directly using the ’<<’ operator,
because it is not defined for these two objects (Foo and ostream). What needs to
be done is to define this operator and thus bind the user-defined class with the
stream class.

ostream& operator<<(ostream& output, Foo& arg)
{

output << arg.x << "," << arg.y;
return output;

}

Now this is possible:

489

Object Oriented Programming

Foo my_object;
cout << "my_object’s values are: " << my_object << endl;

The operator function needs to have ’ostream&’ as its return type, so chaining
output works as usual between the stream and objects of type Foo:

Foo my1, my2, my3;
cout << my1 << my2 << my3;

This is because (cout << my1) is of type ostream&, so the next argument (my2)
can be appended to it in the same expression, which again gives an ostream& so
my3 can be appended and so on.

If you decided to restrict access to the member variables x and y (which is
probably a good idea) within the class Foo, i.e.:

class Foo
{
public:

Foo() : x(1), y(2)
{
}

private:
int x, y;

};

you will have trouble, because the global operator<< function doesn’t have access
to the private variables of its second argument. There are two possible solutions to
this problem:

1. Within the class Foo, declare the operator<< function as the classes’ friend
which grants it access to private members, i.e. add the following line to the class
declaration:

friend ostream& operator<<(ostream& output, Foo& arg);

Then define the operator<< function as you normally would (note that the
declared function is not a member of Foo, just its friend, so don’t try defining it as
Foo::operator<<).

2. Add public-available functions for accessing the member variables and make
the operator<< function use these instead:

class Foo
{
public:

490

I/O

Foo() : x(1), y(2)
{
}

int get_x()
{

return x;
}

int get_y()
{

return y;
}

private:
int x, y;

};

ostream& operator<<(ostream& output, Foo& arg)
{

output << arg.get_x() << "," << arg.get_y();
return output;

}

I172

4.8.3 The string class

The string class is a part of the C++ standard library, used for convenient
manipulation of sequences of characters, to replace the static, unsafe C method of
handling strings. To use the string class in a program, the <string> header must be
included. The standard library string class can be accessed through the std
namespace.

The basic template class is basic_string<> and its standard specializations are
string and wstring.

Basic usage

Declaring a std string is done by using one of these two methods:

using namespace std;
string std_string;

or

172 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

491

http://en.wikibooks.org/wiki/Category%3A

Object Oriented Programming

std::string std_string;

Text I/O

This section will deal only with keyboard and text input. There are many other
inputs that can be read (mouse movements and button clicks, etc...), but these will
not be covered in this section, even reading the special keys of the keyboard will
be excluded.

Perhaps the most basic use of the string class is for reading text from the user and
writing it to the screen. In the header file iostream, C++ defines an object named
cin that handles input in much the same way that cout handles output.

// snipped designed to get an integer value from the user
int x;
std::cin >> x;

The >> operator will cause the execution to stop and will wait for the user to type
something. If the user types a valid integer, it will be converted into an integer
value and stored in x.

If the user types something other than an integer, the compiler will not report an
error. Instead, it leaves the old content (a "random" meaningless value) in x and
continues.
This can then be extended into the following program:

#include <iostream>
#include <string>

int main(){
std::string name;
std::cout << "Please enter your first name: ";
std::cin >> name;
std::cout << "Welcome " << name << "!" << std::endl;

return 0;
}

Although a string may hold a sequence containing any character--including
spaces and nulls--when reading into a string using cin and the extraction operator
(>>) only the characters before the first space will be stored. Alternatively, if an
entire line of text is desired, the getline function may be used:

std::getline(std::cin, name);

492

I/O

Getting user input
Fortunately, there is a way to check and see if an input statement succeeds. We
can invoke the good function on cin to check what is called the stream state. good
returns a bool: if true, then the last input statement succeeded. If not, we know
that some previous operation failed, and also that the next operation will fail.

Thus, getting input from the user might look like this:

#include <iostream>
int main ()
{
using namespace std; // pull in the std namespace
int x;

// prompt the user for input
cout << "Enter an integer: ";

// get input
cin >> x;

// check and see if the input statement succeeded
if (cin.good() == false) {

cout << "That was not an integer." << endl;
return -1;

}

// print the value we got from the user
cout << x << endl;
return 0;

}

cin can also be used to input a string:

string name;

cout << "What is your name? ";
cin >> name;
cout << name << endl;

As with the scanf() function from the Standard C Library, this statement only
takes the first word of input, and leaves the rest for the next input statement. So, if
you run this program and type your full name, it will only output your first name.

You may also notice the >> operator doesn’t handle errors as expected (for
example, if you accidentally typed your name in a prompt for a number.) Because
of these issues, it may be more suitable to read a line of text, and using the line for
input — this is performed using the function called getline.

string name;

cout << "What is your name? ";

493

Object Oriented Programming

getline (cin, name);
cout << name << endl;

The first argument to getline is cin, which is where the input is coming from. The
second argument is the name of the string variable where you want the result to be
stored.

getline reads the entire line until the user hits Return or Enter. This is useful for
inputting strings that contain spaces.

In fact, getline is generally useful for getting input of any kind. For example, if
you wanted the user to type an integer, you could input a string and then check to
see if it is a valid integer. If so, you can convert it to an integer value. If not, you
can print an error message and ask the user to try again.

To convert a string to an integer you can use the strtol function defined in the
header file cstdlib. (Note that the older function atoi is less safe than strtol, as well
as being less capable.)

If you still need the features of the >> operator, you will need to create a string
stream as available from <sstream>. The use of this stream will be discussed in a
later chapter.

More advanced string manipulation

We will be using this dummy string for some of our examples.

string str("Hello World!");

This invokes the default constructor with a const char* argument. Default
constructor creates a string which contains nothing, i.e. no characters, not even a
’\0’ (however std::string is not null terminated).

string str2(str);

Will trigger the copy constructor. std::string knows enough to make a deep
copy of the characters it stores.

string str2 = str;

This will copy strings using assignment operator. Effect of this code is same as
using copy constructor in example above.

494

I/O

Size

string::size_type string::size() const;
string::size_type string::length() const;

So for example one might do:

string::size_type strSize = str.size();
string::size_type strSize2 = str2.length();

The methods size() and length() both return the size of the string object.
There is no apparent difference. Remember that the last character in the string is
size() - 1 and not size(). Like in C-style strings, and arrays in general,
std::string starts counting from 0.

I/O

ostream& operator<<(ostream &out, string &str);
istream& operator>>(istream &in, string &str);

The shift operators (>> and <<) have been overloaded so you can perform I/O
operations on istream and ostream objects, most notably cout, cin, and
filestreams. Thus you could just do console I/O like this:

std::cout << str << endl;
std::cin >> str;

istream& getline (istream& in, string& str, char delim = ’\n’);

Alternatively, if you want to read entire lines at a time, use getline(). Note that
this is not a member function. getline() will retrieve characters from input
stream in and assign them to str until EOF is reached or delim is encountered.
getline will reset the input string before appending data to it. delim can be set
to any char value and acts as a general delimiter. Here is some example usage:

#include <fstream>
//open a file
std::ifstream file("somefile.cpp");
std::string data, temp;

while(getline(file, temp, ’#’)) //while data left in file
{

//append data
data += temp;

}

495

Object Oriented Programming

std::cout << data;

Because of the way getline works (i.e. it returns the input stream), you can nest
multiple getline() calls to get multiple strings; however this may significantly
reduce readability.

Operators

char& string::operator[](string::size_type pos);

Chars in strings can be accessed directly using the overloaded subscript ([])
operator, like in char arrays:

std::cout << str[0] << str[2];

prints "Hl".

std::string supports casting from the older C string type const char*. You
can also assign or append a simple char to a string. Assigning a char* to a
string is as simple as

str = "Hello World!";

If you want to do it character by character, you can also use

str = ’H’;

Not surprisingly, operator+ and operator+= are also defined! You can append
another string, a const char* or a char to any string.

The comparison operators >, <, ==, >=, <=, != all perform comparison
operations on strings, similar to the C strcmp() function. These return a true/false
value.

if(str == "Hello World!")
{
std::cout << "Strings are equal!";

}

Searching strings

string::size_type string::find(string needle, string::size_type pos = 0) const;

496

I/O

You can use the find() member function to find the first occurrence of a string
inside another. find() will look for needle inside this starting from position
pos and return the position of the first occurrence of the needle. For example:

std::string haystack = "Hello World!";
std::string needle = "o";
std::cout << haystack.find(needle);

Will simply print "4" which is the index of the first occurrence of "o" in str. If we
want the "o" in "World", we need to modify pos to point past the first occurrence.
str.find(find, 4) would return 4, while str.find(find, 5) would give 7.
If the substring isn’t found, find() returns std::string::npos.This simple
code searches a string for all occurrences of "wiki" and prints their positions:

std::string wikistr = "wikipedia is full of wikis (wiki-wiki means fast)";
for(string::size_type i = 0, tfind; (tfind = wikistr.find("wiki", i)) !=
string::npos; i = tfind + 1)

{
std::cout << "Found occurrence of ’wiki’ at position " << tfind << std::endl;

}

string::size_type string::rfind(string needle, string::size_type pos =
string::npos) const;

The function rfind() works similarly, except it returns the last occurrence of the
passed string.

Inserting/erasing

string& string::insert(size_type pos, const string& str);

You can use the insert() member function to insert another string into a string.
For example:

string newstr = " Human";
str.insert (5,newstr);

Would return Hello Human World!

string& string::erase(size_type pos, size_type n);

You can use erase() to remove a substring from a string. For example:

str.erase (6,11);

Would return Hello!

497

Object Oriented Programming

string& string::substr(size_type pos, size_type n);

You can use substr() to extract a substring from a string. For example:

string str = "Hello World!";
string part = str.substr(6,5);

Would return World.

Backwards compatibility

const char* string::c_str() const;
const char* string::data() const;

For backwards compatibility with C/C++ functions which only accept char*
parameters, you can use the member functions string::c_str() and
string::data() to return a temporary const char* string you can pass to a
function. The difference between these two functions is that c_str() returns a
null-terminated string while data() does not necessarily return a null-terminated
string. So, if your legacy function requires a null-terminated string, use c_str(),
otherwise use data() (and presumably pass the length of the string in as well).

String Formatting

Strings can only be appended to other strings, but not to numbers or other
datatypes, so something like std::string("Foo") + 5 would not result in a
string with the content "Foo5". To convert other datatypes into string there exist
the class std::ostringstream, found in the include file <sstream>.
std::ostringstream acts exactly like std::cout, the only difference is that the
output doesn’t go to the current standard output as provided by the operating
system, but into an internal buffer, that buffer can be converted into a
std::string via the std::ostringstream::str() method.

Example

#include <iostream>
#include <sstream>

int main()
{

std::ostringstream buffer;

498

Chapter Summary

// Use the std::ostringstream just like std::cout or other iostreams
buffer << "You have: " << 5 << " Helloworlds in your inbox";

// Convert the std::ostringstream to a normal string
std::string text = buffer.str();

std::cout << text << std::endl;

return 0;
}

Advanced use

173

4.9 Chapter Summary

1. STRUCTURES174

2. UNIONS175

3. CLASSES176 (INHERITANCE177, MEMBER FUNCTIONS178,
POLYMORPHISM179 and THIS180 pointer)

a) ABSTRACT CLASSES181 including PURE ABSTRACT CLASSES

(ABSTRACT TYPES) 182

b) NICE CLASS183

4. OPERATOR OVERLOADING184

5. STANDARD INPUT/OUTPUT STREAMS LIBRARY185

a) STRING186

173 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
174 Chapter 4 on page 403
175 Chapter 4.1.2 on page 408
176 Chapter 4.2.3 on page 411
177 Chapter 4.3.2 on page 416
178 Chapter 4.3.4 on page 425
179 Chapter 4.3.5 on page 436
180 Chapter 4.3.4 on page 423
181 Chapter 4.3.12 on page 448
182 Chapter 4.3.13 on page 450
183 Chapter 4.3.13 on page 452
184 Chapter 4.6 on page 456
185 Chapter 4.7.3 on page 469
186 Chapter 4.8.2 on page 491

499

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

3187

3188

187 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
188 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

500

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

5 Advanced Features

5.1 Templates

Templates are a way to make code more reusable. Trivial examples include
creating generic data structures which can store arbitrary data types. Templates
are of great utility to programmers, especially when combined with multiple
INHERITANCE1 and OPERATOR OVERLOADING2. The STANDARD TEMPLATE

LIBRARY3 (STL) provides many useful functions within a framework of
connected templates.

As the templates are very expressive they may be used for things other than
generic programming. One such use is called TEMPLATE METAPROGRAMMING4,
which is a way of pre-evaluating some of the code at compile-time rather than
run-time. Further discussion here only relates to templates as a method of generic
programming.

By now you should have noticed that functions that perform the same tasks tend
to look similar. For example, if you wrote a function that prints an int, you would
have to have the int declared first. This way, the possibility of error in your code
is reduced, however, it gets somewhat annoying to have to create different
versions of functions just to handle all the different data types you use. For
example, you may want the function to simply print the input variable, regardless
of what type that variable is. Writing a different function for every possible input
type (double,char *, etc. ...) would be extremely cumbersome. That is where
templates come in.

Templates solve some of the same problems as macros, generate "optimized"
code at compile time, but are subject to C++’s strict type checking.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/INHERITANCE%20IN%
20OBJECT-ORIENTED%20PROGRAMMING

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20OVERLOADING
3 Chapter 5.1.5 on page 517
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING

501

http://en.wikipedia.org/wiki/Inheritance%20in%20object-oriented%20programming
http://en.wikipedia.org/wiki/Inheritance%20in%20object-oriented%20programming
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/template%20metaprogramming

Advanced Features

Parameterized types, better known as templates, allow the programmer to create
one function that can handle many different types. Instead of having to take into
account every data type, you have one arbitrary parameter name that the compiler
then replaces with the different data types that you wish the function to use,
manipulate, etc.

• Templates are instantiated at compile-time with the source code.
• Templates are type safe.
• Templates allow user-defined specialization.
• Templates allow non-type parameters.
• Templates use “lazy structural constraints”.
• Templates support mix-ins.

Syntax for Templates

Templates are pretty easy to use, just look at the syntax:

template <class TYPEPARAMETER>

(or, equivalently, and preferred by some)

template <typename TYPEPARAMETER>

5.1.1 Function template

There are two kinds of templates. A function template behaves like a function that
can accept arguments of many different types. For example, the Standard
Template Library contains the function template max(x, y) which returns either
x or y, whichever is larger. max() could be defined like this:

template <typename TYPEPARAMETER>
TYPEPARAMETER max(TYPEPARAMETER x, TYPEPARAMETER y)
{

if (x < y)
return y;

else
return x;

}

This template can be called just like a function:

std::cout << max(3, 7); // outputs 7

502

Templates

The compiler determines by examining the arguments that this is a call to
max(int, int) and instantiates a version of the function where the type
TYPEPARAMETER is int.

This works whether the arguments x and y are integers, strings, or any other type
for which it makes sense to say x < y". If you have defined your own data type,
you can use operator overloading to define the meaning of < for your type, thus
allowing you to use the max() function. While this may seem a minor benefit in
this isolated example, in the context of a comprehensive library like the STL it
allows the programmer to get extensive functionality for a new data type, just by
defining a few operators for it. Merely defining < allows a type to be used with the
standard sort(), stable_sort(), and binary_search() algorithms; data
structures such as sets, heaps, and associative arrays; and more.

As a counterexample, the standard type complex does not define the < operator,
because there is no strict order on COMPLEX NUMBER5s. Therefore max(x, y)
will fail with a compile error if x and y are complex values. Likewise, other
templates that rely on < cannot be applied to complex data. Unfortunately,
compilers historically generate somewhat esoteric and unhelpful error messages
for this sort of error. Ensuring that a certain object adheres to a METHOD

PROTOCOL6 can alleviate this issue.

{TYPEPARAMETER} is just the arbitrary TYPEPARAMETER name that you want
to use in your function. Some programmers prefer using just T in place of
TYPEPARAMETER.

Let us say you want to create a swap function that can handle more than one data
type... something that looks like this:

template <class SOMETYPE>
void swap (SOMETYPE &x, SOMETYPE &y)
{
SOMETYPE temp = x;
x = y;
y = temp;

}

The function you see above looks really similar to any other swap function, with
the differences being the template <class SOMETYPE> line before the function
definition and the instances of SOMETYPE in the code. Everywhere you would
normally need to have the name or class of the datatype that you’re using, you

5 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%20NUMBER
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL%20%28COMPUTER%20SCIENCE%

29

503

http://en.wikipedia.org/wiki/complex%20number
http://en.wikipedia.org/wiki/protocol%20%28computer%20science%29
http://en.wikipedia.org/wiki/protocol%20%28computer%20science%29

Advanced Features

now replace with the arbitrary name that you used in the template <class
SOMETYPE>. For example, if you had SUPERDUPERTYPE instead of
SOMETYPE, the code would look something like this:

template <class SUPERDUPERTYPE>
void swap (SUPERDUPERTYPE &x, SUPERDUPERTYPE &y)
{
SUPERDUPERTYPE temp = x;
x = y;
y = temp;

}

As you can see, you can use whatever label you wish for the template
TYPEPARAMETER, as long as it is not a reserved word.

5.1.2 Class template

A class template extends the same concept to classes. Class templates are often
used to make generic containers. For example, the STL has a LINKED LIST7

container. To make a linked list of integers, one writes list<int>. A list of
strings is denoted list<string>. A list has a set of standard functions
associated with it, which work no matter what you put between the brackets.

If you want to have more than one template TYPEPARAMETER, then the
syntax would be:

template <class SOMETYPE1, class SOMETYPE2, ...>

Templates and Classes

Let us say that rather than create a simple templated function, you would like to
use templates for a class, so that the class may handle more than one datatype.
You may have noticed that some classes are able to accept a type as a parameter
and create variations of an object based on that type (for example the classes of
the STL container class hierarchy). This is because they are declared as templates
using syntax not unlike the one presented below:

template <class T> class Foo
{
public:
Foo();
void some_function();

7 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINKED%20LIST

504

http://en.wikipedia.org/wiki/linked%20list

Templates

T some_other_function();

private:
int member_variable;
T parametrized_variable;

};

Defining member functions of a template class is somewhat like defining a
function template, except for the fact, that you use the scope resolution operator
to indicate that this is the template classes’ member function. The one important
and non-obvious detail is the requirement of using the template operator
containing the parametrized type name after the class name.

The following example describes the required syntax by defining functions from
the example class above.

template <class T> Foo<T>::Foo()
{
member_variable = 0;

}

template <class T> void Foo<T>::some_function()
{
cout << "member_variable = " << member_variable << endl;

}

template <class T> T Foo<T>::some_other_function()
{
return parametrized_variable;

}

As you may have noticed, if you want to declare a function that will return an
object of the parametrized type, you just have to use the name of that parameter as
the function’s return type.

Note:
A class template can be used to avoid the overhead of virtual member functions in
inheritance. Since the type of class is known at compile-time, the class template
will not need the virtual pointer table that is required by a class with virtual member
functions. This distinction also permits the inlining of the function members of a
class template.

505

Advanced Features

5.1.3 Advantages and disadvantages

Some uses of templates, such as the max() function, were previously filled by
function-like PREPROCESSOR8 MACRO9s.

// a max() macro
#define max(a,b) ((a) < (b) ? (b) : (a))

Both macros and templates are expanded at compile time. Macros are always
expanded inline; templates can also be expanded as inline functions when the
compiler deems it appropriate. Thus both function-like macros and function
templates have no run-time overhead.

However, templates are generally considered an improvement over macros for
these purposes. Templates are type-safe. Templates avoid some of the common
errors found in code that makes heavy use of function-like macros. Perhaps most
importantly, templates were designed to be applicable to much larger problems
than macros. The definition of a function-like macro must fit on a single logical
line of code.

There are three primary drawbacks to the use of templates. First, many compilers
historically have very poor support for templates, so the use of templates can
make code somewhat less portable. Second, almost all compilers produce
confusing, unhelpful error messages when errors are detected in template code.
This can make templates difficult to develop. Third, each use of a template may
cause the compiler to generate extra code (an instantiation of the template), so the
indiscriminate use of templates can lead to CODE BLOAT10, resulting in
excessively large executables.

The other big disadvantage of templates is that to replace a #define like max
which acts identically with dissimilar types or function calls is impossible.
Templates have replaced using #defines for complex functions but not for simple
stuff like max(a,b). For a full discussion on trying to create a template for the
#define max, see the paper "MIN, MAX AND MORE"11 that Scott Meyer wrote
for C++ Report in January 1995.

The biggest advantage of using templates, is that a complex algorithm can have a
simple interface that the compiler then uses to choose the correct implementation
based on the type of the arguments. For instance, a searching algorithm can take

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/PREPROCESSOR
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACRO
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20BLOAT
11 HTTP://WWW.ARISTEIA.COM/PAPERS/C%2B%2BREPORTCOLUMNS/JAN95.PDF

506

http://en.wikipedia.org/wiki/preprocessor
http://en.wikipedia.org/wiki/macro
http://en.wikipedia.org/wiki/code%20bloat
http://www.aristeia.com/Papers/C%2B%2BReportColumns/jan95.pdf

Templates

advantage of the properties of the container being searched. This technique is
used throughout the C++ standard library.

5.1.4 Linkage problems

While linking a template-based program consisting over several modules spread
over a couple files, it is a frequent and mystifying situation to find that the object
code of the modules won’t link due to ’unresolved reference to (insert template
member function name here) in (...)’. The offending function’s implementation is
there, so why is it missing from the object code? Let us stop a moment and
consider how can this be possible.

Assume you have created a template based class called Foo and put its declaration
in the file Util.hpp along with some other regular class called Bar:

template <class T> Foo
{
public:
Foo();
T some_function();
T some_other_function();
T some_yet_other_function();
T member;

};

class Bar
{
Bar();
void do_something();

};

Now, to adhere to all the rules of the art, you create a file called Util.cc, where
you put all the function definitions, template or otherwise:

#include "Util.hpp"

template <class T> T Foo<T>::some_function()
{
...
}

template <class T> T Foo<T>::some_other_function()
{
...
}

template <class T> T Foo<T>::some_yet_other_function()
{
...

}

507

Advanced Features

and, finally:

void Bar::do_something()
{
Foo<int> my_foo;
int x = my_foo.some_function();
int y = my_foo.some_other_function();

}

Next, you compile the module, there are no errors, you are happy. But suppose
there is an another (main) module in the program, which resides in MyProg.cc:

#include "Util.hpp" // imports our utility classes’ declarations, including
the template

int main()
{
Foo<int> main_foo;
int z = main_foo.some_yet_other_function();
return 0;

}

This also compiles clean to the object code. Yet when you try to link the two
modules together, you get an error saying there is an undefined reference to
Foo<int>::some_yet_other function() in MyProg.cc. You defined the template
member function correctly, so what is the problem?

As you remember, templates are instantiated at compile-time. This helps avoid
code bloat, which would be the result of generating all the template class and
function variants for all possible types as its parameters. So, when the compiler
processed the Util.cc code, it saw that the only variant of the Foo class was
Foo<int>, and the only needed functions were:

int Foo<int>::some_function();
int Foo<int>::some_other_function();

No code in Util.cc required any other variants of Foo or its methods to exist, so
the compiler generated no code other than that. There is no implementation of
some_yet_other_function() in the object code, just as there is no implementation
for

double Foo<double>::some_function();

or

string Foo<string>::some_function();

508

Templates

The MyProg.cc code compiled without errors, because the member function of
Foo it uses is correctly declared in the Util.hpp header, and it is expected that it
will be available upon linking. But it is not and hence the error, and a lot of
nuisance if you are new to templates and start looking for errors in your code,
which ironically is perfectly correct.

The solution is somewhat compiler dependent. For the GNU compiler, try
experimenting with the -frepo flag, and also reading the template-related section
of ’info gcc’ (node "Template Instantiation": "Where is the Template?") may
prove enlightening. In Borland, supposedly, there is a selection in the linker
options, which activates ’smart’ templates just for this kind of problem.

The other thing you may try is called explicit instantiation. What you do is create
some dummy code in the module with the templates, which creates all variants of
the template class and calls all variants of its member functions, which you know
are needed elsewhere. Obviously, this requires you to know a lot about what
variants you need throughout your code. In our simple example this would go like
this:

1. Add the following class declaration to Util.hpp:

class Instantiations
{
private:
void Instantiate();

};

2. Add the following member function definition to Util.cc:

void Instantiations::Instantiate()
{
Foo<int> my_foo;
my_foo.some_yet_other_function();
// other explicit instantiations may follow

}

Of course, you never need to actual instantiate the Instantiations class, or call any
of its methods. The fact that they just exist in the code makes the compiler
generate all the template variations which are required. Now the object code will
link without problems.

There is still one, if not elegant, solution. Just move all the template functions’
definition code to the Util.hpp header file. This is not pretty, because header files
are for declarations, and the implementation is supposed to be defined elsewhere,
but it does the trick in this situation. While compiling the MyProg.cc (and any

509

Advanced Features

other modules which include Util.hpp) code, the compiler will generate all the
template variants which are needed, because the definitions are readily available.
12

5.1.5 Template Meta-programming Overview

Template meta-programming (TMP) refers to uses of the C++ template system to
perform computation at compile-time within the code. It can, for the most part, be
considered to be "programming with types" — in that, largely, the "values" that
TMP works with are specific C++ types. Using types as the basic objects of
calculation allows the full power of the type-inference rules to be used for
general-purpose computing.

Compile-time programming

The preprocessor allows certain calculations to be carried out at compile time,
meaning that by the time the code has finished compiling the decision has already
been taken, and can be left out of the compiled executable. The following is a
very contrived example:

#define myvar 17

#if myvar % 2
cout << "Constant is odd" << endl;

#else
cout << "Constant is even" << endl;

#endif

This kind of construction does not have much application beyond conditional
inclusion of platform-specific code. In particular there’s no way to iterate, so it
can not be used for general computing. Compile-time programming with
templates works in a similar way but is much more powerful, indeed it is actually
Turing complete.

Traits classes are a familiar example of a simple form of template
meta-programming: given input of a type, they compute as output properties
associated with that type (for example, std::iterator_traits<> takes an iterator type
as input, and computes properties such as the iterator’s difference_type,
value_type and so on).

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

510

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Templates

The nature of template meta-programming

Template meta-programming is much closer to functional programming than
ordinary idiomatic C++ is. This is because ’variables’ are all immutable, and
hence it is necessary to use recursion rather than iteration to process elements of a
set. This adds another layer of challenge for C++ programmers learning TMP: as
well as learning the mechanics of it, they must learn to think in a different way.

Limitations of Template Meta-programming

Because template meta-programming evolved from an unintended use of the
template system, it is frequently cumbersome. Often it is very hard to make the
intent of the code clear to a maintainer, since the natural meaning of the code
being used is very different from the purpose to which it is being put. The most
effective way to deal with this is through reliance on idiom; if you want to be a
productive template meta-programmer you will have to learn to recognize the
common idioms.

It also challenges the capabilities of older compilers; generally speaking,
compilers from around the year 2000 and later are able to deal with much
practical TMP code. Even when the compiler supports it, the compile times can
be extremely large and in the case of a compile failure the error messages are
frequently impenetrable.

Some coding standards go as far as to outlaw template meta-programming, at
least outside of third-party libraries like Boost.

History of TMP

Historically TMP is something of an accident; it was discovered during the
process of standardizing the C++ language that its template system happens to be
Turing-complete, i.e., capable in principle of computing anything that is
computable. The first concrete demonstration of this was a program written by
Erwin Unruh which computed prime numbers although it did not actually finish
compiling: the list of prime numbers was part of an error message generated by
the compiler on attempting to compile the
code.HTTP://ASZT.INF.ELTE.HU/˜GSD/HALADO_CPP/CH06S04.HTML#STATIC-

511

Advanced Features

METAPROGRAMMING13 TMP has since advanced considerably, and is now a
practical tool for library builders in C++, though its complexities mean that it is
not generally appropriate for the majority of applications or systems
programming contexts.

#include <iostream>

template <int p, int i>
class is_prime {
public:

enum { prim = (p==2) || (p%i) && is_prime<(i>2?p:0),i-1>::prim
};

};

template<>
class is_prime<0,0> {
public:

enum {prim=1};
};

template<>
class is_prime<0,1> {
public:

enum {prim=1};
};

template <int i>
class Prime_print { // primary template for loop to print prime numbers
public:

Prime_print<i-1> a;
enum { prim = is_prime<i,i-1>::prim
};
void f() {

a.f();
if (prim)
{

std::cout << "prime number:" << i << std::endl;
}

}
};

template<>
class Prime_print<1> { // full specialization to end the loop
public:

enum {prim=0};
void f() {
};

};

#ifndef LAST
#define LAST 18

13 HTTP://ASZT.INF.ELTE.HU/~{}GSD/HALADO_CPP/CH06S04.HTML#
STATIC-METAPROGRAMMING

512

http://aszt.inf.elte.hu/~{}gsd/halado_cpp/ch06s04.html#Static-metaprogramming
http://aszt.inf.elte.hu/~{}gsd/halado_cpp/ch06s04.html#Static-metaprogramming

Templates

#endif

int main()
{

Prime_print<LAST> a;
a.f();

}

Building Blocks

Values
The ’variables’ in TMP are not really variables since their values can not be
altered, but you can have named values that you use rather like you would
variables in ordinary programming. When programming with types, named
values are typedefs:

struct ValueHolder
{

typedef int value;
};

You can think of this as ’storing’ the int type so that it can be accessed under the
value name. Integer values are usually stored as members in an enum:

struct ValueHolder
{

enum { value = 2 };
};

This again stores the value so that it can be accessed under the name value.
Neither of these examples is any use on its own, but they form the basis of most
other TMP, so they are vital patterns to be aware of.

Functions
A function maps one or more input parameters into an output value. The TMP
analogue to this is a template class:

template<int X, int Y>
struct Adder
{

enum { result = X + Y };
};

This is a function that adds its two parameters and stores the result in the result
enum member. You can call this at compile time with something like Adder<1,

513

Advanced Features

2>::result, which will be expanded at compile time and act exactly like a literal
3 in your program.

Branching
A conditional branch can be constructed by writing two alternative

specialisations of a template class. The compiler will choose the one that fits the
types provided, and a value defined in the instantiated class can then be accessed.
For example, consider the following partial specialisation:

template<typename X, typename Y>
struct SameType
{

enum { result = 0 };
};

template<typename T>
struct SameType<T, T>
{

enum { result = 1 };
};

This tells us if the two types it is instantiated with are the same. This might not
seem very useful, but it can see through typedefs that might otherwise obscure
whether types are the same, and it can be used on template arguments in template
code. You can use it like this:

if (SameType<SomeThirdPartyType, int>::result)
{

// ... Use some optimised code that can assume the type is an int
}
else
{

// ... Use defensive code that doesn’t make any assumptions about the type
}

The above code isn’t very idiomatic: since the types can be identified at
compile-time, the if() block will always have a trivial condition (it’ll always
resolve to either if (1) { ... } or if (0) { ... }). However, this does
illustrate the kind of thing that can be achieved.

Recursion
Since you don’t have mutable variables available when you’re programming with

templates, it’s impossible to iterate over a sequence of values. Tasks that might be
achieved with iteration in standard C++ have to be redefined in terms of recursion,
i.e. a function that calls itself. This usually takes the shape of a template class
whose output value recursively refers to itself, and one or more specialisations

514

Templates

that give fixed values to prevent infinite recursion. You can think of this as a
combination of the function and conditional branch ideas described above.

Calculating factorials is naturally done recursively: 0! = 1, and for n > 0,
n! = n∗ (n−1)!. In TMP, this corresponds to a class template "factorial" whose
general form uses the recurrence relation, and a specialization of which
terminates the recursion.

First, the general (unspecialized) template says that factorial<n>::value is
given by n*factorial<n-1>::value:

template <unsigned n>
struct factorial
{
enum { value = n * factorial<n-1>::value };

};

Next, the specialization for zero says that factorial<0>::value evaluates to 1:

template <>
struct factorial<0>
{
enum { value = 1 };

};

And now some code that "calls" the factorial template at compile-time:

int main() {
// Because calculations are done at compile-time, they can be
// used for things such as array sizes.
int array[factorial<7>::value];

}

Observe that the factorial<N>::value member is expressed in terms of the
factorial<N> template, but this can’t continue infinitely: each time it is
evaluated, it calls itself with a progressively smaller (but non-negative) number.
This must eventually hit zero, at which point the specialisation kicks in and
evaluation doesn’t recurse any further.

Example: Compile-time "If"

The following code defines a meta-function called "if_"; this is a class template
that can be used to choose between two types based on a compile-time constant,
as demonstrated in main below:

template <bool Condition, typename TrueResult, typename FalseResult>
class if_;

515

Advanced Features

template <typename TrueResult, typename FalseResult>
struct if_<true, TrueResult, FalseResult>
{
typedef TrueResult result;

};

template <typename TrueResult, typename FalseResult>
struct if_<false, TrueResult, FalseResult>
{
typedef FalseResult result;

};

int main()
{
typename if_<true, int, void*>::result number(3);
typename if_<false, int, void*>::result pointer(&number);

typedef typename if_<(sizeof(void *) > sizeof(uint32_t)), uint64_t,
uint32_t>::result

integral_ptr_t;

integral_ptr_t converted_pointer = reinterpret_cast<integral_ptr_t>(pointer);
}

On line 18, we evaluate the if_ template with a true value, so the type used is the
first of the provided values. Thus the entire expression if_<true, int,
void*>::result evaluates to int. Similarly, on line 19 the template code
evaluates to void *. These expressions act exactly the same as if the types had
been written as literal values in the source code.

Line 21 is where it starts to get clever: we define a type that depends on the value
of a platform-dependent sizeof expression. On platforms where pointers are
either 32 or 64 bits, this will choose the correct type at compile time without any
modification, and without preprocessor macros. Once the type has been chosen, it
can then be used like any other type.

Note:
This code is just an illustration of the power of template meta-programming, it is
not meant to illustrate good cross-platform practice with pointers.

For comparison, this problem is best attacked in C90 as follows

include <stddef.h>
typedef size_t integral_ptr_t;
typedef int the_correct_size_was_chosen [sizeof (integral_ptr_t) >= sizeof (void
*)? 1: -1];

As it happens, the library-defined type size_t should be the correct choice for
this particular problem on any platform. To ensure this, line 3 is used as a compile

516

Standard Template Library (STL)

time check to see if the selected type is actually large enough; if not, the array
type the_correct_size_was_chosen will be defined with a negative length,
causing a compile-time error. In C99, <stdint.h> may define the types
intptr_h and uintptr_h.

Conventions for "Structured" TMP

14

5.2 Standard Template Library (STL)

The Standard Template Library (STL), part of the C++ STANDARD

LIBRARY15, offers collections of algorithms, containers, iterators, and other
fundamental components, implemented as templates, classes, and functions
essential to extend functionality and standardization to C++. STL main focus is to
provide improvements implementation standardization with emphasis in
performance and correctness.

Instead of wondering if your array would ever need to hold 257 records or having
nightmares of string buffer overflows, you can enjoy vector and string that
automatically extend to contain more records or characters. For example, vector
is just like an array, except that vector’s size can expand to hold more cells or
shrink when fewer will suffice. One must keep in mind that the STL does not
conflict with OOP but in itself is not object oriented; In particular it makes no use
of runtime polymorphism (i.e., has no virtual functions).

The true power of the STL lies not in its CONTAINER16 classes, but in the fact that
it is a framework, combining algorithms with data structures using indirection
through iterators to allow generic implementations of higher order algorithms to
work efficiently on varied forms of data. To give a simple example, the same
std::copy function can be used to copy elements from one array to another, or to
copy the bytes of a file, or to copy the whitespace-separated words in "text like
this" into a container such as std::vector<std::string>.

// std::copy from array a to array b
int a[10] = { 3,1,4,1,5,9,2,6,5,4 };

14 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
15 Chapter 3.1.2 on page 47
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23CONTAINERS

517

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/%23Containers

Advanced Features

int b[10];
std::copy(&a[0], &a[10], b);

// std::copy from input stream a to an arbitrary OutputIterator
template <typename OutputIterator>
void f(std::istream &a, OutputIterator destination) {

std::copy(std::istreambuf_iterator<char>(a),
std::istreambuf_iterator<char>(),
destination);

}

// std::copy from a buffer containing text, inserting items in
// order at the back of the container called words.
std::istringstream buffer("text like this");
std::vector<std::string> words;
std::copy(std::istream_iterator<std::string>(buffer),

std::istream_iterator<std::string>(),
std::back_inserter(words));

assert(words[0] == "text");
assert(words[1] == "like");
assert(words[2] == "this");

5.2.1 History

Figure 25: Alexander
Stepanov

The C++ Standard Library incorporated part of the STL (published as a software
library by SGI17/Hewlett-Packard Company). The primary implementer of the
C++ Standard Template Library was ALEXANDER STEPANOV18.

17 HTTP://EN.WIKIPEDIA.ORG/WIKI/SILICON%20GRAPHICS
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALEXANDER%20STEPANOV

518

http://en.wikipedia.org/wiki/Silicon%20Graphics
http://en.wikipedia.org/wiki/Alexander%20Stepanov

Standard Template Library (STL)

Today we call STL to what was adopted into the C++ Standard. The ISO C++
does not specify header content, and allows implementation of the STL either in
the headers, or in a true library.

Note:
In an interview Alexander Stepanov, stated that he originally, wanted all auxiliary
functions in STL to be visible but it was not politically possible, especially the
heap functions. That Bjarne did reduce the number of components in STL by a
factor of two as to permit the adoption into the standard.

Compilers will already have one implementation included as part of the C++
Standard (i.e., MS Visual Studio uses the Dinkum STL). All implementations will
have to comply to the standard’s requirements regarding functionality and
behavior, but consistency of programs across all major hardware
implementations, operating systems, and compilers will also depends on the
portability of the STL implementation. They may also offer extended features or
be optimized to distinct setups.

List of STL implementations.

• libstdc++ from gnu (was part of libg++)
• SGI STL library (HTTP://WWW.SGI.COM/TECH/STL/)19 free STL

implementation.
• Rogue Wave standard library (HP, SGI, SunSoft, Siemens-Nixdorf) / APACHE

C++ STANDARD LIBRARY (STDCXX)20

• Dinkum STL library by P.J. Plauger (HTTP://WWW.DINKUMWARE.COM/)21

commercial STL implementation widely used, since it was licensed in is
co-maintained by Microsoft and it is the STL implementation that ships with
Visual Studio.

There are many different implementations of the STL, all based on the language
standard but nevertheless differing from each other, making it transparent for the
programmer, enabling specialization and rapid evolution of the code base.

Open Source versions of the STL are available (can be useful to consult)

19 HTTP://WWW.SGI.COM/TECH/STL/)
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/APACHE%20C%2B%2B%20STANDARD%

20LIBRARY
21 HTTP://WWW.DINKUMWARE.COM/)

519

http://www.sgi.com/tech/stl/)
http://en.wikipedia.org/wiki/Apache%20C%2B%2B%20Standard%20Library
http://en.wikipedia.org/wiki/Apache%20C%2B%2B%20Standard%20Library
http://www.dinkumware.com/)

Advanced Features

• Apache C++ Standard Library (STDCXX) (HTTP://STDCXX.APACHE.ORG/22

).
• STLport STL library (HTTP://WWW.STLPORT.COM/)23 free and highly

cross-platform implementation based on the SGI implementation.

Note:
There are advantages on having compartmentalized functionalities, some develop-
ers actively avoid using some of the language features, for a multitude of reasons.
C++ permits the programmer to chose how to express himself, have control over
the development paradigms and not be constricted by an higher level of abstrac-
tion.

5.2.2 Containers

The containers we will discuss in this section of the book are part of the standard
namespace (std::). They all originated in the original SGI implementation of the
STL.

Note:
When choosing a container, you should have in mind what makes them different,
this will help you produce more efficient code. See also the OPTIMIZATION SEC-
TIONa of the book, about USING THE RIGHT DATA IN THE RIGHT CONTAINERb.

a Chapter 6.7.2 on page 651
b Chapter 6.8.1 on page 653

Sequence Containers

Sequences - easier than arrays

Sequences are similar to C arrays, but they are easier to use. Vector is usually the
first sequence to be learned. Other sequences, list and double-ended queues, are
similar to vector but more efficient in some special cases. (Their behavior is also
different in important ways concerning validity of iterators when the container is

22 HTTP://STDCXX.APACHE.ORG/
23 HTTP://WWW.STLPORT.COM/)

520

http://stdcxx.apache.org/
http://www.stlport.com/)

Standard Template Library (STL)

changed; iterator validity is an important, though somewhat advanced, concept
when using containers in C++.)

• vector - "an easy-to-use array"
• list - in effect, a doubly-linked list
• deque - double-ended queue (properly pronounced "deck", often

mispronounced as "dee-queue")

vector
The vector is a template class in itself, it is a Sequence Container and allows you
to easily create a DYNAMIC ARRAY24 of elements (one type per instance) of
almost any data-type or object within a programs when using it. The vector class
handles most of the memory management for you.

Since a vector contain contiguous elements it is an ideal choice to replace the old
C style array, in a situation where you need to store data, and ideal in a situation
where you need to store dynamic data as an array that changes in size during the
program’s execution (old C style arrays can’t do it). However, vectors do incur a
very small overhead compared to static arrays (depending on the quality of your
compiler), and cannot be initialized through an initialization list.

Note:
Vector is known to be slow when using the MSVC compiler due to the SECURE_-
SCL flag, that, by default, forces bounds checking even in optimized builds.

Accessing members of a vector or appending elements takes a fixed amount of
time, no matter how large the vector is, whereas locating a specific value in a
vector element or inserting elements into the vector takes an amount of time
directly proportional to its location in it (size dependent).

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20ARRAY

521

http://en.wikipedia.org/wiki/dynamic%20array

Advanced Features

Note:
If you create a vector you can access its data using consecutive pointers:
std::vector<type> myvector(8); type * ptr = myvector[0]; ptr[0],

ptr[7]; // access the first and last objects in myvector

this information is present in INCITS/ISO/IEC 14882-2003 but was not properly
documented in the 1998 version of the C++ standard.

Be aware that ptr[i] is faster than myvector.at(i) because no error checking is per-
formed. Watch out for how long that pointer is valid. The contiguous nature of
vectors is most often important when interfacing to C code.
You should also keep in mind that std::vector<T>::iterator may not be a pointer;
using an iterator is the safest mode to access a container but safety has always a
cost in performance.

Example

/*
David Cary 2009-03-04
quick demo for wikibooks

*/

#include <iostream>
#include <vector>
using namespace std;

vector<int> pick_vector_with_biggest_fifth_element(vector<int> left,vector<int>
right)

{
if(left[5] < right[5])
{

return(right);
}
// else
return left ;

}

int* pick_array_with_biggest_fifth_element(int * left,int * right)
{

if(left[5] < right[5])
{

return(right);
}
// else
return left ;

}

522

Standard Template Library (STL)

int vector_demo(void)
{

cout << "vector demo" << endl;
vector<int> left(7);
vector<int> right(7);

left[5] = 7;
right[5] = 8;
cout << left[5] << endl;
cout << right[5] << endl;
vector<int> biggest(pick_vector_with_biggest_fifth_element(left, right));
cout << biggest[5] << endl;

return 0;
}

int array_demo(void)
{

cout << "array demo" << endl;
int left[7];
int right[7];

left[5] = 7;
right[5] = 8;
cout << left[5] << endl;
cout << right[5] << endl;
int * biggest =

pick_array_with_biggest_fifth_element(left, right);
cout << biggest[5] << endl;

return 0;
}

int main(void)
{

vector_demo();
array_demo();

}

Member Functions

The vector class models the CONTAINER25 CONCEPT26, which means it has
begin(), end(), size(), max_size(), empty(), and swap() methods.

25 HTTP://WWW.SGI.COM/TECH/STL/CONTAINER.HTML
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONCEPT%20%28GENERIC%

20PROGRAMMING%29

523

http://www.sgi.com/tech/stl/Container.html
http://en.wikipedia.org/wiki/concept%20%28generic%20programming%29
http://en.wikipedia.org/wiki/concept%20%28generic%20programming%29

Advanced Features

Note:
Since most vector (or deque) implementations typically reserves some extra inter-
nal storage for future growth. Prefer the swap() method when altering a standard
vector size (or freeing the memory used) when memory resources becomes a fac-
tor.

• informative
• vector::front - Returns reference to first element of vector.
• vector::back - Returns reference to last element of vector.
• vector::size - Returns number of elements in the vector.
• vector::empty - Returns true if vector has no elements.

• standard operations
• vector::insert - Inserts elements into a vector (single & range), shifts later

elements up. Inefficient.
• vector::push_back - Appends (inserts) an element to the end of a vector,

allocating memory for it if necessary. AMORTIZED27 O(1) time.
• vector::erase - Deletes elements from a vector (single & range), shifts

later elements down. Inefficient.
• vector::pop_back - Erases the last element of the vector, (possibly

reducing capacity - usually it isn’t reduced, but this depends on particular
STL implementation). AMORTIZED28 O(1) time.

• vector::clear - Erases all of the elements. Note however that if the data
elements are pointers to memory that was created dynamically (e.g., the new
operator was used), the memory will not be freed.

• allocation/size modification
• vector::assign - Used to delete a origin vector and copies the specified

elements to an empty target vector.
• vector::reserve - Changes capacity (allocates more memory) of vector, if

needed. In many STL implementations capacity can only grow, and is never
reduced.

• vector::capacity - Returns current capacity (allocated memory) of vector.
• vector::resize - Changes the vector size.

• iteration
• vector::begin - Returns an iterator to start traversal of the vector.
• vector::end - Returns an iterator that points just beyond the end of the

vector.

27 HTTP://EN.WIKIPEDIA.ORG/WIKI/AMORTIZED%20ANALYSIS
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/AMORTIZED%20ANALYSIS

524

http://en.wikipedia.org/wiki/Amortized%20analysis
http://en.wikipedia.org/wiki/Amortized%20analysis

Standard Template Library (STL)

• vector::at - Returns a reference to the data element at the specified
location in the vector, with bounds checking.

Note:
It is important to remember the distinctions of capacity(), size() and empty() when
dealing with containers.

vector<int> v;
for (vector<int>::iterator it = v.begin(); it!=v.end(); ++it/* increment operand
is used to move to next element*/) {

cout << *it << endl;
}

vector::Iterators
std::vector<T> provides Random Access Iterators; as with all containers, the
primary access to iterators is via begin() and end() member functions. These are
overloaded for const- and non-const containers, returning iterators of types
std::vector<T>::const_iterator and std::vector<T>::iterator respectively.

vector examples

/* Vector sort example */
#include <iostream>
#include <vector>

int main()
{

using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;
cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

vector<int> vec;
int tmp;
while (cin>>tmp) {

vec.push_back(tmp);
}

cout << "Sorted: " << endl;
sort(vec.begin(), vec.end());
int i = 0;
for (i=0; i<vec.size(); i++) {

cout << vec[i] << endl;;
}

return 0;
}

525

Advanced Features

The call to sort above actually calls an instantiation of the function template
std::sort, which will work on any half-open range specified by two random
access iterators.

If you like to make the code above more "STLish" you can write this program in
the following way:

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>

int main()
{

using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;
cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

vector<int> vec(istream_iterator<int>(cin), istream_iterator<int>());

sort(vec.begin(), vec.end());

cout << "Sorted: " << endl;

copy(vec.begin(), vec.end(), ostream_iterator<int>(cout, "\n"));

return 0;
}

Linked lists
The STL provides a class template called list (part of the standard namespace

(std::)) which implements a non-intrusive doubly-LINKED LIST29. Linked lists
can insert or remove elements in the middle in constant time, but do not have
random access. One useful feature of std::list is that references, pointers and
iterators to items inserted into a list remain valid so long as that item remains in
the list.

Note:
Consider using vector instead of list for better cache coherency and avoid "death
by swapping", see the OPTIMIZATION SECTIONa, about using the RIGHT DATA IN

THE RIGHT CONTAINERb.

a Chapter 6.7.2 on page 651
b Chapter 6.8.1 on page 653

29 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINKED%20LIST

526

http://en.wikipedia.org/wiki/linked%20list

Standard Template Library (STL)

list examples

Associative Containers (key and value)

This type of container point to each element in the container with a key value,
thus simplifying searching containers for the programmer. Instead of iterating
through an array or vector element by element to find a specific one, you can
simply ask for people["tero"]. Just like vectors and other containers, associative
containers can expand to hold any number of elements.

Maps and Multimaps
map and multimap are associative containers that manage key/value pairs as
elements as seen above. The elements of each container will sort automatically
using the actual key for sorting criterion. The difference between the two is that
maps do not allow duplicates, whereas, multimaps does.

• map - unique keys
• multimap - same key can be used many times
• set - unique key is the value
• multiset - key is the value, same key can be used many times

/* Map example - character distribution */
#include <iostream>
#include <map>
#include <string>
#include <cctype>

using namespace std;

int main()
{

/* Character counts are stored in a map, so that

* character is the key.

* Count of char a is chars[’a’]. */
map<char, long> chars;

cout << "chardist - Count character distributions" << endl;
cout << "Type some text. Press ctrl-D to quit." << endl;
char c;
while (cin.get(c)) {

// Upper A and lower a are considered the same
c=tolower(static_cast<unsigned char>(c));
chars[c]=chars[c]+1; // Could be written as ++chars[c];

}

cout << "Character distribution: " << endl;

527

Advanced Features

string alphabet("abcdefghijklmnopqrstuvwxyz");
for (string::iterator letter_index=alphabet.begin(); letter_index !=

alphabet.end(); letter_index++) {
if (chars[*letter_index] != 0) {

cout << char(toupper(*letter_index))
<< ":" << chars[*letter_index]
<< "\t" << endl;

}
}
return 0;

}

Container Adapters

• stack - last in, first out (LIFO)
• queue - first in, first out (FIFO)
• priority queue

5.2.3 Iterators

C++’s iterators are one of the foundation of the STL. Iterators exist in languages
other than C++, but C++ uses an unusual form of iterators, with pros and cons.

In C++, an iterator is a concept rather than a specific type, they are a
generalization of the pointers as an abstraction for the use of containers. Iterators
are further divided based on properties such as traversal properties.

The basic idea of an iterator is to provide a way to navigate over some collection
of objects concept.

Some (overlapping) categories of iterators are:

• Singular iterators
• Invalid iterators
• Random access iterators
• Bidirectional iterators
• Forward iterators
• Input iterators
• Output iterators
• Mutable iterators

528

Standard Template Library (STL)

A pair of iterators [begin, end) is used to define a HALF OPEN RANGE30, which
includes the element identified from begin to end, except for the element
identified by end. As a special case, the half open range [x, x) is empty, for any
valid iterator x.

Note:
The range notation may vary, the meaning is to express the inclusion or exclusion
of the range limits. An also common notation is [begin, end[(meaning begin is
part of the range and end is not).

The most primitive examples of iterators in C++ (and likely the inspiration for
their syntax) are the built-in pointers, which are commonly used to iterate over
elements within arrays.

Iteration over a Container

Accessing (but not modifying) each element of a container group of type C<T>
using an iterator.

for (
typename C<T>::const_iterator iter = group.begin();
iter != group.end();
++iter
)

{
T const &element = *iter;

// access element here
}

Note the usage of typename. It informs the compiler that ’const_iterator’ is a type
as opposed to a static member variable. (It is only necessary inside templated
code, and indeed in C++98 is invalid in regular, non-template, code. This may
change in the next revision of the C++ standard so that the typename above is
always permitted.)

Modifying each element of a container group of type C<T> using an iterator.

for (
typename C<T>::iterator iter = group.begin();
iter != group.end();
++iter
)

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/ALGEBRA%2FINTERVAL%20NOTATION

529

http://en.wikibooks.org/wiki/Algebra%2FInterval%20Notation

Advanced Features

{
T &element = *iter;

// modify element here
}

When modifying the container itself while iterating over it, some containers (such
as vector) require care that the iterator doesn’t become invalidated, and end up
pointing to an invalid element. For example, instead of:

for (i = v.begin(); i != v.end(); ++i) {
...
if (erase_required) {
v.erase(i);

}
}

Do:

for (i = v.begin(); i != v.end();) {
...
if (erase_required) {

i = v.erase(i);
} else {

++i;
}

}

The erase() member function returns the next valid iterator, or end(), thus
ending the loop. Note that ++i is not executed when erase() has been called on
an element.

5.2.4 Functors

A functor or function object, is an object that has an operator (). The
importance of functors is that they can be used in many contexts in which C++
functions can be used, whilst also having the ability to maintain state information.
Next to iterators, functors are one of the most fundamental ideas exploited by the
STL.

The STL provides a number of pre-built functor classes; std::less, for example, is
often used to specify a default comparison function for algorithms that need to
determine which of two objects comes "before" the other.

#include <vector>
#include <algorithm>
#include <iostream>

530

Standard Template Library (STL)

// Define the Functor for AccumulateSquareValues
template<typename T>
struct AccumulateSquareValues
{

AccumulateSquareValues() : sumOfSquares()
{
}
void operator()(const T& value)
{

sumOfSquares += value*value;
}
T Result() const
{

return sumOfSquares;
}
T sumOfSquares;

};

std::vector<int> intVec;
intVec.reserve(10);
for(int idx = 0; idx < 10; ++idx)
{

intVec.push_back(idx);
}
AccumulateSquareValues<int> sumOfSquare = std::for_each(intVec.begin(),

intVec.end(),

AccumulateSquareValues<int>());
std::cout << "The sum of squares for 1-10 is " << sumOfSquare.Result() <<
std::endl;

// note: this problem can be solved in another, more clear way:
// int sum_of_squares = std::inner_product(intVec.begin(), intVec.end(),
intVec.begin(), 0);

5.2.5 Algorithms

The STL also provides several useful algorithms, in the form of template
functions, that are provided to, with the help of the iterator concept, manipulate
the STL containers (or derivations).

The STL algorithms aren’t restricted to STL containers, for instance:

#include <algorithm>

int array[10] = { 2,3,4,5,6,7,1,9,8,0 }

int* begin = &array[0];
int* end = &array[0] + 10;

std::sort(begin, end);// the sort algorithm will work on a C style array

The _if suffix

531

Advanced Features

The _copy suffix

• Non-modifying algorithms
• Modifying algorithms
• Removing algorithms
• Mutating algorithms
• Sorting algorithms
• Sorted range algorithms
• Numeric algorithms

Permutations

Sorting and related operations

sort

stable_sort

partial_sort

Minimum and maximum
The standard library provides function templates min and max, which return the

minimum and maximum of their two arguments respectively. Each has an
overload available that allows you to customize the way the values are compared.

template<class T>
const T& min(const T& a, const T& b);

template<class T, class Compare>
const T& min(const T& a, const T& b, Compare c);

template<class T>
const T& max(const T& a, const T& b);

template<class T, class Compare>
const T& max(const T& a, const T& b, Compare c);

532

Smart Pointers

5.2.6 Allocators

Allocators are used by the Standard C++ Library (and particularly by the STL) to
allow parameterization of memory allocation strategies.

The subject of allocators is somewhat obscure, and can safely be ignored by most
application software developers. All standard library constructs that allow for
specification of an allocator have a default allocator which is used if none is given
by the user.

Custom allocators can be useful if the memory use of a piece of code is unusual in
a way that leads to performance problems if used with the general-purpose default
allocator. There are also other cases in which the default allocator is
inappropriate, such as when using standard containers within an implementation
of replacements for global operators new and delete.
31

5.3 Smart Pointers

Using raw pointers to store allocated data and then cleaning them up in the
destructor can generally be considered a very bad idea since it is error-prone.
Even temporarily storing allocated data in a raw pointer and then deleting it when
done with it should be avoided for this reason. For example, if your code throws
an exception, it can be cumbersome to properly catch the exception and delete all
allocated objects.

Smart pointers can alleviate this headache by using the compiler and language
semantics to ensure the pointer content is automatically released when the pointer
itself goes out of scope.

#include <memory>
class A
{
public:

virtual ~A() {}
virtual char val() = 0;

};

class B : public A
{
public:

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

533

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Advanced Features

virtual char val() { return ’B’; }
};

A* get_a_new_b()
{

return new B();
}

bool some_func()
{

bool rval = true;
std::auto_ptr<A> a(get_a_new_b());
try {

std::cout << a->val();
} catch(...) {

if(!a.get()) {
throw "Memory allocation failure!";

}
rval = false;

}
return rval;

}

5.4 Semantics

The auto_ptr has semantics of strict ownership, meaning that the auto_ptr
instance is the sole entity responsible for the object’s lifetime. If an auto_ptr is
copied, the source loses the reference. For example:

#include <iostream>
#include <memory>
using namespace std;

int main(int argc, char **arv)
{

int *i = new int;
auto_ptr<int> x(i);
auto_ptr<int> y;

y = x;

cout << x.get() << endl;
cout << y.get() << endl;

}

This code will print a NULL address for the first auto_ptr object and some
non-NULL address for the second, showing that the source object lost the
reference during the assignment (=). The raw pointer i in the example should not
be deleted, as it will be deleted by the auto_ptr that owns the reference. In fact,
new int could be passed directly into x, eliminating the need for i.

534

Exception Handling

Notice that the object pointed by an auto_ptr is destructed using operator
delete; this means that you should only use auto_ptr for pointers obtained with
operator new. This excludes pointers returned by malloc(), calloc() or
realloc() and operator new[].
32

5.5 Exception Handling

EXCEPTION HANDLING33 is a construct designed to handle the occurrence of
exceptions, that is special conditions that changes the normal flow of program
execution. Since when designing a programming task (a class or even a function),
one cannot always assume that application/task will run or be completed correctly
(exit with the result it was intended to). It may be the case that it will be just
inappropriate for that given task to report an error message (return an error code)
or just exit. To handle these types of cases, C++ supports the use of language
constructs to separate error handling and reporting code from ordinary code, that
is, constructs that can deal with these exceptions (errors and abnormalities) and
so we call this global approach that adds uniformity to program design the
exception handling.

An exception is said to be thrown at the place where some error or abnormal
condition is detected. The throwing will cause the normal program flow to be
aborted, in a raised exception. An exception is thrown programmatic, the
programmer specifies the conditions of a throw.

In handled exceptions, execution of the program will resume at a designated
block of code, called a catch block, which encloses the point of throwing in terms
of program execution. The catch block can be, and usually is, located in a
different function/method than the point of throwing. In this way, C++ supports
non-local error handling. Along with altering the program flow, throwing of an
exception passes an object to the catch block. This object can provide data that is
necessary for the handling code to decide in which way it should react on the
exception.

Consider this next code example of a try and catch block combination for
clarification:

void AFunction()

32 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXCEPTION%20HANDLING

535

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Exception%20handling

Advanced Features

{
// This function does not return normally,
// instead execution will resume at a catch block.
// The thrown object is in this case of the type char const*,
// i.e. it is a C-style string. More usually, exception
// objects are of class type.
throw "This is an exception!";

}

void AnotherFunction()
{

// To catch exceptions, you first have to introduce
// a try block via " try { ... } ". Then multiple catch
// blocks can follow the try block.
// " try { ... } catch(type 1) { ... } catch(type 2) { ... }"
try
{

AFunction();
// Because the function throws an exception,
// the rest of the code in this block will not
// be executed

}
catch(char const* pch) // This catch block

// will react on exceptions
// of type char const*

{
// Execution will resume here.
// You can handle the exception here.

}
// As can be seen

catch(...) // The ellipsis indicates that this
// block will catch exceptions of any type.

{
// In this example, this block will not be executed,
// because the preceding catch block is chosen to
// handle the exception.

}
}

Unhandled exceptions on the other hand will result in a function termination and
the STACK WILL BE UNWOUND34 (stack allocated objects will have destructors
called) as it looks for an exception handler. If none is found it will ultimately
result in the termination of the program.

From the point of view of a programmer, raising an exception is a useful way to
signal that a routine could not execute normally. For example, when an input
argument is invalid (e.g. a zero denominator in division) or when a resource it
relies on is unavailable (like a missing file, or a hard disk error). In systems
without exceptions, routines would need to return some special error code.
However, this is sometimes complicated by the SEMI-PREDICATE PROBLEM35, in

34 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STACK%20UNWINDING
35 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMIPREDICATE%20PROBLEM

536

http://en.wikibooks.org/wiki/%23Stack%20unwinding
http://en.wikipedia.org/wiki/semipredicate%20problem

Exception Handling

which users of the routine need to write extra code to distinguish normal return
values from erroneous ones.
Because it is hard to write exception safe code, you should only use an exception
when you have to - when an error has occurred that you can not handle. Do not
use exceptions for the normal flow of the program. This example is WRONG.

void sum(int iA, int iB)
{

throw iA + iB;
}

int main()
{

int iResult;

try
{

sum(2, 3);
}
catch(int iTmpResult)
{

// Here the exception is used instead of a return value!
// This is wrong!
iResult = iTmpResult;

}

return 0;
}

5.5.1 Stack unwinding

Consider the following code

void g()
{

throw std::exception();
}

void f()
{

std::string str = "Hello"; // This string is newly allocated
g();

}

int main()
{

try
{

f();
}
catch(...)
{ }

}

537

Advanced Features

The flow of the program:

• main() calls f()
• f() creates a local variable named str
• str constructor allocates a memory chunk to hold the string

"Hello"
• f() calls g()
• g()throws an exception
• f() does not catch the exception.

Because the exception was not caught, we now need to exit f() in a clean
fashion.

At this point, all the destructors of local variables previous to the throw

are called - This is called ’stack unwinding’.

• The destructor of str is called, which releases the memory occupied by it.

As you can see, the mechanism of ’stack unwinding’ is essential to prevent
resource leaks - without it, str would never be destroyed, and the memory it used
would be lost forever.

• main() catches the exception
• The program continues.

The ’stack unwinding’ guarantees destructors of local variables (stack variables)
will be called when we leave its scope.

5.5.2 Throwing objects

There are several ways to throw an exception object.

Throw a pointer to the object:

void foo()
{

throw new MyApplicationException();
}

void bar()
{

try
{

538

Exception Handling

foo();
}
catch(MyApplicationException* e)
{

// Handle exception
}

}

But now, who is responsible to delete the exception? The handler? This makes
code uglier. There must be a better way!

How about this:

void foo()
{

throw MyApplicationException();
}

void bar()
{

try
{

foo();
}
catch(MyApplicationException e)
{

// Handle exception
}

}

Looks better! But now, the catch handler that catches the exception, does it by
value, meaning that a copy constructor is called. This can cause the program to
crash if the exception caught was a bad_alloc caused by insufficient memory. In
such a situation, seemingly safe code that is assumed to handle memory
allocation problems results in the program crashing with a failure of the exception
handler. Moreover, catching by value may cause the copy to have different
behavior because of object slicing.

The correct approach is:

void foo()
{

throw MyApplicationException();
}

void bar()
{

try
{

foo();
}
catch(MyApplicationException const& e)
{

539

Advanced Features

// Handle exception
}

}

This method has all the advantages - the compiler is responsible for destroying
the object, and no copying is done at catch time!

The conclusion is that exceptions should be thrown by value, and caught by
(usually const) reference.

5.5.3 Constructors and destructors

When an exception is thrown from a constructor, the object is not considered
instantiated, and therefore its destructor will not be called. But all destructors of
already successfully constructed base and member objects of the same master
object will be called. Constructors of not yet constructed base or member objects
of the same master object will not be executed. Example:

class A : public B, public C
{
public:

D sD;
E sE;
A(void)
:B(), C(), sD(), sE()
{
}

};

Let’s assume the constructor of base class C throws. Then the order of execution
is:

• B
• C (throws)
• ˜B

Let’s assume the constructor of member object sE throws. Then the order of
execution is:

• B
• C
• sD
• sE (throws)
• ˜sD
• ˜C
• ˜B

540

Exception Handling

Thus if some constructor is executed, one can rely on that all other constructors of
the same master object executed before, were successful. This enables one, to use
an already constructed member or base object as an argument for the constructor
of one of the following member or base objects of the same master object.

What happens when we allocate this object with new?

• Memory for the object is allocated
• The object’s constructor throws an exception

• The object was not instantiated due to the exception
• The memory occupied by the object is deleted
• The exception is propagated, until it is caught

The main purpose of throwing an exception from a constructor is to inform the
program/user that the creation and initialization of the object did not finish
correctly. This is a very clean way of providing this important information, as
constructors do not return a separate value containing some error code (as an
initialization function would).

In contrast, it is strongly recommended not to throw exceptions inside a
destructor. It is important to note when a destructor is called:

• as part of a normal deallocation (exit from a scope, delete)
• as part of a stack unwinding that handles a previously thrown exception.

In the former case, throwing an exception inside a destructor can simply cause
memory leaks due to incorrectly deallocated object. In the latter, the code must be
more clever. If an exception was thrown as part of the stack unwinding caused by
another exception, there is no way to choose which exception to handle first. This
is interpreted as a failure of the exception handling mechanism and that causes the
program to call the function terminate.

To address this problem, it is possible to test if the destructor was called as part of
an exception handling process. To this end, one should use the standard library
function uncaught_exception, which returns true if an exception has been thrown,
but hasn’t been caught yet. All code executed in such a situation must not throw
another exception.

Situations where such careful coding is necessary are extremely rare. It is far
safer and easier to debug if the code was written in such a way that destructors did
not throw exceptions at all.

541

Advanced Features

5.5.4 Writing exception safe code

Exception safety

A piece of code is said to be exception-safe, if run-time failures within the code
will not produce ill effects, such as MEMORY LEAK36s, garbled stored data, or
invalid output. Exception-safe code must satisfy INVARIANT37s placed on the
code even if exceptions occur. There are several levels of exception safety:

1. Failure transparency, also known as the no throw guarantee: Operations
are guaranteed to succeed and satisfy all requirements even in presence of
exceptional situations. If an exception occurs, it will not throw the
exception further up. (Best level of exception safety.)

2. Commit or rollback semantics, also known as strong exception safety or
no-change guarantee: Operations can fail, but failed operations are
guaranteed to have no side effects so all data retain original values.

3. Basic exception safety: Partial execution of failed operations can cause
side effects, but invariants on the state are preserved. Any stored data will
contain valid values even if data has different values now from before the
exception.

4. Minimal exception safety also known as no-leak guarantee: Partial
execution of failed operations may store invalid data but will not cause a
crash, and no resources get leaked.

5. No exception safety: No guarantees are made. (Worst level of exception
safety)

Partial handling

Consider the following case:

void g()
{

throw "Exception";
}

void f()
{

int* pI = new int(0);

36 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY%20LEAK
37 HTTP://EN.WIKIPEDIA.ORG/WIKI/INVARIANT%20%28COMPUTER%

20SCIENCE%29

542

http://en.wikipedia.org/wiki/memory%20leak
http://en.wikipedia.org/wiki/Invariant%20%28computer%20science%29
http://en.wikipedia.org/wiki/Invariant%20%28computer%20science%29

Exception Handling

g();
delete pI;

}

int main()
{

f();
return 0;

}

Can you see the problem in this code? If g() throws an exception, the variable pI
is never deleted and we have a memory leak.

To prevent the memory leak, f() must catch the exception, and delete pI. But
f() can’t handle the exception, it doesn’t know how!

What is the solution then? f() shall catch the exception, and then re-throw it:

void g()
{

throw "Exception";
}

void f()
{

int* pI = new int(0)

try
{

g();
}
catch (...)
{

delete pI;
throw; // This empty throw re-throws the exception we caught

// An empty throw can only exist in a catch block
}

delete pI;
}

int main()
{

f();
return 0;

}

There’s a better way though; using RAII classes to avoid the need to use
exception handling.

Guards
If you plan to use exceptions in your code, you must always try to write your
code in an exception safe manner. Let’s see some of the problems that can occur:

543

Advanced Features

Consider the following code:

void g()
{

throw std::exception();
}

void f()
{

int* pI = new int(2);

*pI = 3;
g();
// Oops, if an exception is thrown, pI is never deleted
// and we have a memory leak
delete pI;

}

int main()
{

try
{

f();
}
catch(...)
{ }

return 0;
}

Can you see the problem in this code? When an exception is thrown, we will
never run the line that deletes pI!

What’s the solution to this? Earlier we saw a solution based on f() ability to
catch and re-throw. But there is a neater solution using the ’stack unwinding’
mechanism. But ’stack unwinding’ only applies to destructors for objects, so how
can we use it?
We can write a simple wrapper class:

// Note: This type of class is best implemented using templates, discussed in
the next chapter.
class IntDeleter {
public:

IntDeleter(int* piValue)
{

m_piValue = piValue;
}

~IntDeleter()
{

delete m_piValue;
}

// operator *, enables us to dereference the object and use it

544

Exception Handling

// like a regular pointer.
int& operator *()
{

return *m_piValue;
}

private:
int* m_piValue;

};

The new version of f():

void f()
{
IntDeleter pI(new int(2));

*pI = 3;
g();
// No need to delete pI, this will be done in destruction.
// This code is also exception safe.

}

The pattern presented here is called a guard. A guard is very useful in other cases,
and it can also help us make our code more exception safe. The guard pattern is
similar to a finally block in other languages.

Note that the C++ Standard Library provides a templated guard by the name of
auto_ptr.

Exception hierarchy

You may throw as exception an object (like a class or string), a pointer (like
char*), or a primitive (like int). So, which should you choose? You should
throw objects, as they ease the handling of exceptions for the programmer. It is
common to create a class hierarchy of exception classes:

• class MyApplicationException {};
• class MathematicalException : public MyApplicationException {};

• class DivisionByZeroException : public MathematicalException {};
• class InvalidArgumentException : public MyApplicationException {};

An example:

float divide(float fNumerator, float fDenominator)
{

if (fDenominator == 0.0)
{

throw DivisionByZeroException();
}

545

Advanced Features

return fNumerator/fDenominator;
}

enum MathOperators {DIVISION, PRODUCT};

float operate(int iAction, float fArgLeft, float fArgRight)
{

if (iAction == DIVISION)
{

return divide(fArgLeft, fArgRight);
}
else if (iAction == PRODUCT))
{

// call the product function
// ...

}

// No match for the action! iAction is an invalid agument
throw InvalidArgumentException();

}

int main(int iArgc, char* a_pchArgv[])
{

try
{

operate(atoi(a_pchArgv[0]), atof(a_pchArgv[1]), atof(a_pchArgv[2]));
}
catch(MathematicalException&)
{

// Handle Error
}
catch(MyApplicationException&)
{

// This will catch in InvalidArgumentException too.
// Display help to the user, and explain about the arguments.

}

return 0;
}

Note:
The order of the catch blocks is important. A thrown object (say, InvalidArgu-
mentException) can be caught in a catch block of one of its super-classes. (e.g.
catch (MyApplicationException&) will catch it too). This is why it is im-
portant to place the catch blocks of derived classes before the catch block of their
super classes.

5.5.5 Exception specifications

The range of exceptions that can be thrown by a function are an important part of
that function’s public interface. Without this information, you would have to

546

Exception Handling

assume that any exception could occur when calling any function, and
consequently write code that was extremely defensive. Knowing the list of
exceptions that can be thrown, you can simplify your code since it doesn’t need to
handle every case.

This exception information is specifically part of the public interface. Users of a
class don’t need to know anything about the way it is implemented, but they do
need to know about the exceptions that can be thrown, just as they need to know
the number and type of parameters to a member function. One way of providing
this information to clients of a library is via code documentation, but this needs to
be manually updated very carefully. Incorrect exception information is worse than
none at all, since you may end up writing code that is less exception-safe than you
intended to.

C++ provides another way of recording the exception interface, by means of
exception specifications. An exception specification is parsed by the compiler,
which provides a measure of automated checking. An exception specification can
be applied to any function, and looks like this:

double divide(double dNumerator, double dDenominator) throws
(DivideByZeroException);

You can specify that a function cannot throw any exceptions by using an empty
exception specification:

void safeFunction(int iFoo) throws();

Shortcomings of exception specifications

C++ does not programmatically enforce exception specifications at compile time.
For example, the following code is legal:

void DubiousFunction(int iFoo) throws()
{

if (iFoo < 0)
{

throw RangeException();
}

}

Rather than checking exception specifications at compile time, C++ checks them
at run time, which means that you might not realize that you have an inaccurate
exception specification until testing or, if you are unlucky, when the code is
already in production.

547

Advanced Features

If an exception is thrown at run time that propagates out of a function that doesn’t
allow the exception in its exception specification, the exception will not propagate
any further and instead, the function RangeException() will be called. The
RangeException() function doesn’t return, but can throw a different type of
exception that may (or may not) satisfy the exception specification and allow
exception handling to carry on normally. If this still doesn’t recover the situation,
the program will be terminated.

Many people regard the behavior of attempting to translate exceptions at run time
to be worse than simply allowing the exception to propagate up the stack to a
caller who may be able to handle it. The fact that the exception specification has
been violated does not mean that the caller can’t handle the situation, only that
the author of the code didn’t expect it. Often there will be a catch (...) block
somewhere on the stack that can deal with any exception.

Note:
Some coding standards require that exception specifications are not used. In the
upcoming C++ language standard (C++0x), the use of exception specifications as
specified in the current version of the standard (C++03), is deprecated.

38

5.6 Run-Time Type Information (RTTI)

RTTI refers to the ability of the system to report on the dynamic type of an object
and to provide information about that type at runtime (as opposed to at compile
time), when utilized consistently can be a powerful tool to ease the work of the
programmer in managing resources.

5.6.1 dynamic_cast

Consider what you have already learned about the dynamic_cast keyword and
let’s say that we have the following class hierarchy:

class Interface
{
public:

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

548

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Run-Time Type Information (RTTI)

virtual void GenericOp() = 0;// pure virtual function
};

class SpecificClass : public Interface
{
public:

virtual void GenericOp();
virtual void SpecificOp();

};

Let’s say that we also have a pointer of type Interface*, like so:

Interface* ptr_interface;

Supposing that a situation emerges that we are forced to presume but have no
guarantee that the pointer points to an object of type SpecificClass and we
would like to call the member SpecificOp() of that class. To dynamically
convert to a derived type we can use dynamic_cast, like so:

SpecificClass* ptr_specific = dynamic_cast<SpecificClass*>(ptr_interface);
if(ptr_specific){

// our suspicions are confirmed -- it really was a SpecificClass
ptr_specific->SpecificOp();

}else{
// our suspicions were incorrect -- it is definitely not a SpecificClass.
// The ptr_interface points to an instance of some other child class of the

base InterfaceClass.
};
ptr_interface->GenericOp();

With dynamic_cast, the program converts the base class pointer to a derived
class pointer and allows the derived class members to be called. Be very careful,
however: if the pointer that you are trying to cast is not of the correct type, then
dynamic_cast will return a null pointer.

We can also use dynamic_cast with references.

SpecificClass& ref_specific = dynamic_cast<SpecificClass&>(ref_interface);

This works almost in the same way as pointers. However, if the real type of the
object being cast is not correct then dynamic_cast will not return null (there’s no
such thing as a null reference). Instead, it will throw a std::bad_cast exception.

5.6.2 typeid

Syntax

549

Advanced Features

typeid(object);

The typeid operator, used to determine the class of an object at runtime. It returns
a reference to a std::type_info object, which exists until the end of the
program, that describes the "object". If the "object" is a dereferenced null pointer,
then the operation will throw a std::bad_typeid exception.

Objects of class std::bad_typeid are derived from std::exception, and
thrown by typeid and others.

Note:
The C++98 standard requires that header file <typeinfo> to be included before
operator typeid is used within a compilation unit. Otherwise, the program is con-
sidered ill-formed.

The use of typeid is often preferred over dynamic_cast<class_type> in
situations where just the class information is needed, because typeid, applied on
a type or non de-referenced value is a CONSTANT-TIME39 procedure, whereas
dynamic_cast must traverse the class derivation lattice of its argument at
runtime. Though one should never rely on the exact content, like for example
returned by std::type_info::name(), as this is implementation specific with
respect to the compile.

It is generally only useful to use typeid on the dereference of a pointer or
reference (i.e. typeid(*ptr) or typeid(ref)) to an object of polymorphic class
type (a class with at least one VIRTUAL MEMBER FUNCTION40). This is because
these are the only expressions that are associated with run-time type information.
The type of any other expression is statically known at compile time.

Example

#include <iostream>
#include <typeinfo> //for ’typeid’ to work

class Person {
public:

// ... Person members ...
virtual ~Person() {}

};

39 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONSTANT%20TIME
40 Chapter 4.3.1 on page 412

550

http://en.wikipedia.org/wiki/Constant%20time

Run-Time Type Information (RTTI)

class Employee : public Person {
// ... Employee members ...

};

int main () {
Person person;
Employee employee;
Person *ptr = &employee;
// The string returned by typeid::name is implementation-defined
std::cout << typeid(person).name() << std::endl; // Person (statically known

at compile-time)
std::cout << typeid(employee).name() << std::endl; // Employee (statically

known at compile-time)
std::cout << typeid(ptr).name() << std::endl; // Person * (statically

known at compile-time)
std::cout << typeid(*ptr).name() << std::endl; // Employee (looked up

dynamically at run-time
// because it is

the dereference of a
// pointer to a

polymorphic class)
}

Output (exact output varies by system):

Person
Employee
Person*
Employee

In RTTI it is used in this setup:

const std::type_info& info = typeid(object_expression);

Sometimes we need to know the exact type of an object. The typeid operator
returns a reference to a standard class std::type_info that contains information
about the type. This class provides some useful members including the == and !=
operators. The most interesting method is probably:

const char* std::type_info::name() const;

This member function returns a pointer to a C-style string with the name of the
object type. For example, using the classes from our earlier example:

const std::type_info &info = typeid(*ptr_interface);
std::cout << info.name() << std::endl;

551

Advanced Features

This program would print something like41 SpecificClass because that is the
dynamic type of the pointer ptr_interface.

typeid is actually an operator rather than a function, as it can also act on types:

const std::type_info& info = typeid(type);

for example (and somewhat circularly)

const std::type_info& info = typeid(std::type_info);

will give a type_info object which describes type_info objects. This latter use
is not RTTI, but rather CTTI (compile-time type identification).

5.6.3 Limitations

There are some limitations to RTTI. First, RTTI can only be used with
polymorphic types. That means that your classes must have at least one virtual
function, either directly or through inheritance. Second, because of the additional
information required to store types some compilers require a special switch to
enable RTTI.

Note that references to pointers will not work under RTTI:

void example(int*& refptrTest)
{

std::cout << "What type is *&refptrTest : " << typeid(refptrTest
).name() << std::endl;

}

Will report int*, as typeid() does not support reference types.

5.6.4 Misuses of RTTI

RTTI should only be used sparingly in C++ programs. There are several reasons
for this. Most importantly, other language mechanisms such as polymorphism
and templates are almost always superior to RTTI. As with everything, there are
exceptions, but the usual rule concerning RTTI is more or less the same as with
goto statements. Do not use it as a shortcut around proper, more robust design.
Only use RTTI if you have a very good reason to do so and only use it if you
know what you are doing.

41 (The exact string returned by std::type_info::name() is compiler-dependent).

552

Chapter Summary

42

5.7 Chapter Summary

1. TEMPLATES43

a) TEMPLATE META-PROGRAMMING (TMP)44

2. STANDARD TEMPLATE LIBRARY (STL)45

3. SMART POINTERS46

4. EXCEPTION HANDLING47

5. RUN-TIME TYPE INFORMATION (RTTI)48

449

450

42 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
43 Chapter 5 on page 501
44 Chapter 5.1.4 on page 510
45 Chapter 5.1.5 on page 517
46 Chapter 5.2.6 on page 533
47 Chapter 5.4 on page 535
48 Chapter 5.5.5 on page 548
49 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
50 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

553

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Advanced Features

554

6 Beyond the Standard

6.1 Resource Acquisition Is Initialization (RAII)

The RAII technique is often used for controlling thread locks in multi-threaded
applications. Another typical example of RAII is file operations, e.g. the C++
standard library’s file-streams. An input file stream is opened in the object’s
constructor, and it is closed upon destruction of the object. Since C++ allows
objects to be allocated on the STACK1, C++’s scoping mechanism can be used to
control file access.

With RAII we can use, for instance, Class destructors to guarantee clean up,
similar to the finally keyword in other languages. Doing this automates the task
and so avoids errors but gives the freedom not to use it.

RAII is also used (as shown in the example below) to ensure exception safety.
RAII makes it possible to avoid resource leaks without extensive use of
try/catch blocks and is widely used in the software industry.

The ownership of dynamically allocated memory (memory allocated with new)
can be controlled with RAII. For this purpose, the C++ Standard Library defines
AUTO PTR2. Furthermore, lifetime of shared objects can be managed by a smart
pointer with shared-ownership semantics such as boost::shared_ptr defined in
C++ by the BOOST LIBRARY3 or policy based Loki::SmartPtr from LOKI

LIBRARY4.
The following RAII class is a lightweight wrapper to the C standard library file
system calls.

#include <cstdio>

// exceptions
class file_error { } ;

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/CALL%20STACK
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUTO%20PTR
3 Chapter 6.4.3 on page 610
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOKI%20%28C%2B%2B%29

555

http://en.wikipedia.org/wiki/call%20stack
http://en.wikipedia.org/wiki/auto%20ptr
http://en.wikipedia.org/wiki/Loki%20%28C%2B%2B%29

Beyond the Standard

class open_error : public file_error { } ;
class close_error : public file_error { } ;
class write_error : public file_error { } ;

class file
{
public:

file(const char* filename)
:
m_file_handle(std::fopen(filename, "w+"))

{
if(m_file_handle == NULL)
{

throw open_error() ;
}

}

~file()
{

std::fclose(m_file_handle) ;
}

void write(const char* str)
{

if(std::fputs(str, m_file_handle) == EOF)
{

throw write_error() ;
}

}

void write(const char* buffer, std::size_t num_chars)
{

if(num_chars != 0
&&
std::fwrite(buffer, num_chars, 1, m_file_handle) == 0)

{
throw write_error() ;

}
}

private:
std::FILE* m_file_handle ;

// copy and assignment not implemented; prevent their use by
// declaring private.
file(const file &) ;
file & operator=(const file &) ;

} ;

This RAII class can be used as follows :

void example_with_RAII()
{
// open file (acquire resource)
file logfile("logfile.txt") ;

logfile.write("hello logfile!") ;

556

Resource Acquisition Is Initialization (RAII)

// continue writing to logfile.txt ...

// logfile.txt will automatically be closed because logfile’s
// destructor is always called when example_with_RAII() returns or
// throws an exception.

}

Without using RAII, each function using an output log would have to manage the
file explicitly. For example, an equivalent implementation without using RAII is
this:

void example_without_RAII()
{
// open file
std::FILE* file_handle = std::fopen("logfile.txt", "w+") ;

if(file_handle == NULL)
{
throw open_error() ;

}

try
{

if(std::fputs("hello logfile!", file_handle) == EOF)
{
throw write_error() ;

}

// continue writing to logfile.txt ... do not return
// prematurely, as cleanup happens at the end of this function

}
catch(...)
{
// manually close logfile.txt
std::fclose(file_handle) ;

// re-throw the exception we just caught
throw ;

}

// manually close logfile.txt
std::fclose(file_handle) ;

}

The implementation of file and example_without_RAII() becomes more
complex if fopen() and fclose() could potentially throw exceptions;
example_with_RAII() would be unaffected, however.

The essence of the RAII idiom is that the class file encapsulates the
management of any finite resource, like the FILE* file handle. It guarantees that
the resource will properly be disposed of at function exit. Furthermore, file

557

Beyond the Standard

instances guarantee that a valid log file is available (by throwing an exception if
the file could not be opened).

There’s also a big problem in the presence of exceptions: in
example_without_RAII(), if more than one resource were allocated, but an
exception was to be thrown between their allocations, there’s no general way to
know which resources need to be released in the final catch block - and releasing
a not-allocated resource is usually a bad thing. RAII takes care of this problem;
the automatic variables are destructed in the reverse order of their construction,
and an object is only destructed if it was fully constructed (no exception was
thrown inside its constructor). So example_without_RAII() can never be as
safe as example_with_RAII() without special coding for each situation, such as
checking for invalid default values or nesting try-catch blocks. Indeed, it should
be noted that example_without_RAII() contained resource bugs in previous
versions of this article.

This frees example_with_RAII() from explicitly managing the resource as
would otherwise be required. When several functions use file, this simplifies
and reduces overall code size and helps ensure program correctness.

example_without_RAII() resembles the idiom used for resource management
in non-RAII languages such as Java. While Java’s try-finally blocks allow for the
correct release of resources, the burden nonetheless falls on the programmer to
ensure correct behavior, as each and every function using file may explicitly
demand the destruction of the log file with a try-finally block.
5

6.2 Garbage collection

Garbage collection is a form of automatic memory management. The garbage
collector or collector attempts to reclaim garbage, or memory used by objects that
will never be accessed or mutated again by the application.

Tracing garbage collectors require some implicit runtime overhead that may be
beyond the control of the programmer, and can sometimes lead to performance
problems. For example, commonly used Stop-The-World garbage collectors,
which pause program execution at arbitrary times, may make garbage collecting
languages inappropriate for some embedded systems, high-performance server
software, and applications with real-time needs.

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

558

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Garbage collection

A more fundamental issue is that garbage collectors violate locality of reference,
since they deliberately go out of their way to find bits of memory that haven’t
been accessed recently. The performance of modern computer architectures is
increasingly tied to caching, which depends on the assumption of locality of
reference for its effectiveness. Some garbage collection methods result in better
locality of reference than others. Generational garbage collection is relatively
cache-friendly, and copying collectors automatically defragment memory helping
to keep related data together. Nonetheless, poorly timed garbage collection cycles
could have a severe performance impact on some computations, and for this
reason many runtime systems provide mechanisms that allow the program to
temporarily suspend, delay or activate garbage collection cycles.

Despite these issues, for many practical purposes,
allocation/deallocation-intensive algorithms implemented in modern garbage
collected languages can actually be faster than their equivalents using explicit
memory management (at least without heroic optimizations by an expert
programmer). A major reason for this is that the garbage collector allows the
runtime system to amortize allocation and deallocation operations in a potentially
advantageous fashion. For example, consider the following program in C++:

#include <iostream>

class A {
int x;

public:
A() { x = 0; ++x; }

};

int main() {
for (int i = 0; i < 1000000000; ++i) {
A *a = new A();
delete a;

}
std::cout << "DING!" << std::endl;

}

One of more widely used libraries that provides this function is HANS BOEHM’S

CONSERVATIVE GC6. As we have seen earlier C++ also supports a powerful
idiom called RAII (resource acquisition is initialization)7 that can be used to
safely and automatically manage resources including memory.
8

6 HTTP://WWW.HPL.HP.COM/PERSONAL/HANS_BOEHM/GC/
7 Chapter 6 on page 555
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

559

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

6.3 Programming Patterns

"To understand is to perceive patterns"
—ISAIAH BERLIN9

Software design patterns are abstractions that help structure system designs.
While not new, since the concept was already described by CHRISTOPHER

ALEXANDER10 in its architectural theories, it only gathered some traction in
programming due to the publication of DESIGN PATTERNS: ELEMENTS OF

REUSABLE OBJECT-ORIENTED SOFTWARE11 book in October 1994 by ERICH

GAMMA12, RICHARD HELM13, RALPH JOHNSON14 and JOHN VLISSIDES15,
known as the Gang of Four (GoF), that identifies and describes 23 classic
software design patterns.

A design pattern is neither a static solution, nor is it an algorithm. A pattern is a
way to describe and address by name (mostly a simplistic description of its goal),
a repeatable solution or approach to a common design problem, that is, a common
way to solve a generic problem (how generic or complex, depends on how
restricted the target goal is). Patterns can emerge on their own or by design. This
is why design patterns are useful as an abstraction over the implementation and a
help at design stage. With this concept, an easier way to facilitate communication
over a design choice as normalization technique is given so that every person can
share the design concept.

Depending on the design problem they address, design patterns can be classified
in different categories, of which the main categories are:

• CREATIONAL PATTERNS16

• STRUCTURAL PATTERNS17

• BEHAVIORAL PATTERNS18.

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISAIAH%20BERLIN
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHRISTOPHER%20ALEXANDER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERNS
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERICH%20GAMMA
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/RICHARD%20HELM
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/RALPH%20JOHNSON
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/JOHN%20VLISSIDES
16 Chapter 6.3 on page 561
17 Chapter 6.3.1 on page 577
18 Chapter 6.3.2 on page 582

560

http://en.wikipedia.org/wiki/Isaiah%20Berlin
http://en.wikipedia.org/wiki/Christopher%20Alexander
http://en.wikipedia.org/wiki/Design%20Patterns
http://en.wikipedia.org/wiki/Erich%20Gamma
http://en.wikipedia.org/wiki/Richard%20Helm
http://en.wikipedia.org/wiki/Ralph%20Johnson
http://en.wikipedia.org/wiki/John%20Vlissides

Programming Patterns

Patterns are commonly found in objected-oriented programming languages like
C++ or Java. They can be seen as a template for how to solve a problem that
occurs in many different situations or applications. It is not code reuse, as it
usually does not specify code, but code can be easily created from a design
pattern. Object-oriented design patterns typically show relationships and
interactions between classes or objects without specifying the final application
classes or objects that are involved.

Each design pattern consists of the following parts:

Problem/requirement

To use a design pattern, we need to go through a mini analysis design that may
be coded to test out the solution. This section states the requirements of the
problem we want to solve. This is usually a common problem that will occur in
more than one application.

Forces

This section states the technological boundaries, that helps and guides the
creation of the solution.

Solution

This section describes how to write the code to solve the above problem. This is
the design part of the design pattern. It may contain class diagrams, sequence
diagrams, and or whatever is needed to describe how to code the solution.

Design patterns can be considered as a standardization of commonly agreed best
practices to solve specific design problems. One should understand them as a way
to implement good design patterns within applications. Doing so will reduce the
use of inefficient and obscure solutions. Using design patterns speeds up your
design and helps to communicate it to other programmers.

6.3.1 Creational Patterns

In SOFTWARE ENGINEERING19, creational design patterns are DESIGN

PATTERNS20 that deal with OBJECT CREATION21 mechanisms, trying to create
objects in a manner suitable to the situation. The basic form of object creation

19 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20ENGINEERING
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERN%20%28COMPUTER%

20SCIENCE%29
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%20LIFETIME

561

http://en.wikipedia.org/wiki/software%20engineering
http://en.wikipedia.org/wiki/design%20pattern%20%28computer%20science%29
http://en.wikipedia.org/wiki/design%20pattern%20%28computer%20science%29
http://en.wikipedia.org/wiki/object%20lifetime

Beyond the Standard

could result in design problems or added complexity to the design. Creational
design patterns solve this problem by somehow controlling this object creation.

In this section of the book we assume that the reader has enough familiarity with
functions, global variables, stack vs. heap, classes, pointers, and static member
functions as introduced before.

As we will see there are several creational design patterns, and all will deal with a
specific implementation task, that will create a higher level of abstraction to the
code base, we will now cover each one.

Builder

The Builder Creational Pattern is used to separate the construction of a complex
object from its representation so that the same construction process can create
different objects representations.

Problem

We want to construct a complex object, however we do not want to have a
complex constructor member or one that would need many arguments.

Solution

Define an intermediate object whose member functions define the desired object
part by part before the object is available to the client. Build Pattern lets us defer
the construction of the object until all the options for creation have been
specified.

#include <string>
#include <iostream>

using namespace std;

// "Product"
class Pizza
{

public:
void setDough(const string& dough)
{

m_dough = dough;
}
void setSauce(const string& sauce)
{

m_sauce = sauce;
}
void setTopping(const string& topping)
{

m_topping = topping;

562

Programming Patterns

}
void open() const
{

cout << "Pizza with " << m_dough << " dough, " << m_sauce << " sauce
and "

<< m_topping << " topping. Mmm." << endl;
}

private:
string m_dough;
string m_sauce;
string m_topping;

};

// "Abstract Builder"
class PizzaBuilder
{

public:
Pizza* getPizza()
{

return m_pizza;
}
void createNewPizzaProduct()
{

m_pizza = new Pizza;
}
virtual void buildDough() = 0;
virtual void buildSauce() = 0;
virtual void buildTopping() = 0;

protected:
Pizza* m_pizza;

};

//--

class HawaiianPizzaBuilder : public PizzaBuilder
{

public:
virtual void buildDough()
{

m_pizza->setDough("cross");
}
virtual void buildSauce()
{

m_pizza->setSauce("mild");
}
virtual void buildTopping()
{

m_pizza->setTopping("ham+pineapple");
}

};

class SpicyPizzaBuilder : public PizzaBuilder
{

public:
virtual void buildDough()
{

m_pizza->setDough("pan baked");
}

563

Beyond the Standard

virtual void buildSauce()
{

m_pizza->setSauce("hot");
}
virtual void buildTopping()
{

m_pizza->setTopping("pepperoni+salami");
}

};

//--

class Cook
{

public:
void setPizzaBuilder(PizzaBuilder* pb)
{

m_pizzaBuilder = pb;
}
Pizza* getPizza()
{

return m_pizzaBuilder->getPizza();
}
void constructPizza()
{

m_pizzaBuilder->createNewPizzaProduct();
m_pizzaBuilder->buildDough();
m_pizzaBuilder->buildSauce();
m_pizzaBuilder->buildTopping();

}
private:

PizzaBuilder* m_pizzaBuilder;
};

int main()
{

Cook cook;
PizzaBuilder* hawaiianPizzaBuilder = new HawaiianPizzaBuilder;
PizzaBuilder* spicyPizzaBuilder = new SpicyPizzaBuilder;

cook.setPizzaBuilder(hawaiianPizzaBuilder);
cook.constructPizza();

Pizza* hawaiian = cook.getPizza();
hawaiian->open();

cook.setPizzaBuilder(spicyPizzaBuilder);
cook.constructPizza();

Pizza* spicy = cook.getPizza();
spicy->open();

delete hawaiianPizzaBuilder;
delete spicyPizzaBuilder;
delete hawaiian;
delete spicy;

}

564

Programming Patterns

Factory

Definition: A utility class that creates an instance of a class from a family of
derived classes

Abstract Factory
Definition: A utility class that creates an instance of several families of classes.
It can also return a factory for a certain group.

Factory Method

The Factory Design Pattern is useful in a situation that requires the creation of
many different types of objects, all derived from a common base type. The
Factory Method defines a method for creating the objects, which subclasses can
then override to specify the derived type that will be created. Thus, at run time,
the Factory Method can be passed a description of a desired object (e.g., a string
read from user input) and return a base class pointer to a new instance of that
object. The pattern works best when a well-designed interface is used for the base
class, so there is no need to cast the returned object.

Problem

We want to decide at run time what object is to be created based on some
configuration or application parameter. When we write the code, we do not
know what class should be instantiated.

Solution

Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses.

In the following example, a factory method is used to create laptop or desktop
computer objects at run time.

Let’s start by defining Computer, which is an abstract base class (interface) and
its derived classes: Laptop and Desktop.

class Computer
{
public:

virtual void Run() = 0;
virtual void Stop() = 0;

};
class Laptop: public Computer

565

Beyond the Standard

{
public:

virtual void Run(){mHibernating = false;}
virtual void Stop(){mHibernating = true;}

private:
bool mHibernating; // Whether or not the machine is hibernating

};
class Desktop: public Computer
{
public:

virtual void Run(){mOn = true;}
virtual void Stop(){mOn = false;}

private:
bool mOn; // Whether or not the machine has been turned on

};

The actual ComputerFactory class returns a Computer, given a real world
description of the object.

class ComputerFactory
{
public:

static Computer *NewComputer(const std::string &description)
{

if(description == "laptop")
return new Laptop;

if(description == "desktop")
return new Desktop;

return NULL;
}

};

Let’s analyze the benefits of this design. First, there is a compilation benefit. If
we move the interface Computer into a separate header file with the factory, we
can then move the implementation of the NewComputer() function into a separate
implementation file. Now the implementation file for NewComputer() is the only
one that requires knowledge of the derived classes. Thus, if a change is made to
any derived class of Computer, or a new Computer subtype is added, the
implementation file for NewComputer() is the only file that needs to be
recompiled. Everyone who uses the factory will only care about the interface,
which should remain consistent throughout the life of the application.

Also, if there is a need to add a class, and the user is requesting objects through a
user interface, no code calling the factory may be required to change to support
the additional computer type. The code using the factory would simply pass on
the new string to the factory, and allow the factory to handle the new types
entirely.

Imagine programming a video game, where you would like to add new types of
enemies in the future, each of which has different AI functions and can update

566

Programming Patterns

differently. By using a factory method, the controller of the program can call to
the factory to create the enemies, without any dependency or knowledge of the
actual types of enemies. Now, future developers can create new enemies, with
new AI controls and new drawing member functions, add it to the factory, and
create a level which calls the factory, asking for the enemies by name. Combine
this method with an XML22 description of levels, and developers could create
new levels without having to recompile their program. All this, thanks to the
separation of creation of objects from the usage of objects.

Another example:

#include <stdexcept>
#include <iostream>
#include <memory>

class Pizza {
public:

virtual int getPrice() const = 0;
};

class HamAndMushroomPizza : public Pizza {
public:

virtual int getPrice() const { return 850; }
};

class DeluxePizza : public Pizza {
public:

virtual int getPrice() const { return 1050; }
};

class HawaiianPizza : public Pizza {
public:

virtual int getPrice() const { return 1150; }
};

class PizzaFactory {
public:

enum PizzaType {
HamMushroom,
Deluxe,
Hawaiian

};

static Pizza* createPizza(PizzaType pizzaType) {
switch (pizzaType) {

case HamMushroom:
return new HamAndMushroomPizza();

case Deluxe:
return new DeluxePizza();

case Hawaiian:
return new HawaiianPizza();

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/XML

567

http://en.wikibooks.org/wiki/XML

Beyond the Standard

}
throw "invalid pizza type.";

}
};

/*
* Create all available pizzas and print their prices

*/
void pizza_information(PizzaFactory::PizzaType pizzatype)
{

Pizza* pizza = PizzaFactory::createPizza(pizzatype);
std::cout << "Price of " << pizzatype << " is " << pizza->getPrice() <<

std::endl;
delete pizza;

}

int main ()
{

pizza_information(PizzaFactory::HamMushroom);
pizza_information(PizzaFactory::Deluxe);
pizza_information(PizzaFactory::Hawaiian);

}

Prototype

A prototype pattern is used in software development when the type of objects to
create is determined by a prototypical instance, which is cloned to produce new
objects. This pattern is used, for example, when the inherent cost of creating a
new object in the standard way (e.g., using the new keyword) is prohibitively
expensive for a given application.

Implementation: Declare an abstract base class that specifies a pure virtual
clone() method. Any class that needs a "polymorphic constructor" capability
derives itself from the abstract base class, and implements the clone() operation.

Here the client code first invokes the factory method. This factory method,
depending on the parameter, finds out concrete class. On this concrete class call
to the clone() method is called and the object is returned by the factory method.

• This is sample code which is a sample implementation of Prototype method.
We have the detailed description of all the components here.
• Record class, which is a pure virtual class that has a pure virtual method
clone().

• CarRecord, BikeRecord and PersonRecord as concrete implementation of
a Record class.

• An enum RECORD_TYPE_en as one to one mapping of each concrete
implementation of Record class.

568

Programming Patterns

• RecordFactory class that has a Factory method CreateRecord(...). This
method requires an enum RECORD_TYPE_en as parameter and depending
on this parameter it returns the concrete implementation of Record class.

/**
* Implementation of Prototype Method
**/

#include <iostream>
#include <map.h>
#include <string>

using namespace std;

enum RECORD_TYPE_en
{
CAR,
BIKE,
PERSON

};

/**
* Record is the Prototype

*/

class Record
{
public :

Record() {}

virtual ~Record() {}

virtual Record* clone()=0;

virtual void print()=0;
};

/**
* CarRecord is a Concrete Prototype

*/

class CarRecord : public Record
{
private:
string m_carName;
int m_ID;

public:
CarRecord(string carName, int ID)
: Record(), m_carName(carName),
m_ID(ID)

{
}

CarRecord(CarRecord& carRecord)
: Record()

569

Beyond the Standard

{
m_carName = carRecord.m_carName;
m_ID = carRecord.m_ID;

}

~CarRecord() {}

Record* clone()
{
return new CarRecord(*this);

}

void print()
{
cout << "Car Record" << endl
<< "Name : " << m_carName << endl
<< "Number: " << m_ID << endl << endl;

}
};

/**
* BikeRecord is the Concrete Prototype

*/

class BikeRecord : public Record
{
private :
string m_bikeName;

int m_ID;

public :
BikeRecord(string bikeName, int ID)
: Record(), m_bikeName(bikeName),
m_ID(ID)

{
}

BikeRecord(BikeRecord& bikeRecord)
: Record()

{
m_bikeName = bikeRecord.m_bikeName;
m_ID = bikeRecord.m_ID;

}

~BikeRecord() {}

Record* clone()
{
return new BikeRecord(*this);

}

void print()
{
cout << "Bike Record" << endl
<< "Name : " << m_bikeName << endl
<< "Number: " << m_ID << endl << endl;

570

Programming Patterns

}
};

/**
* PersonRecord is the Concrete Prototype

*/

class PersonRecord : public Record
{
private :
string m_personName;

int m_age;

public :
PersonRecord(string personName, int age)
: Record(), m_personName(personName),
m_age(age)

{
}

PersonRecord(PersonRecord& personRecord)
: Record()

{
m_personName = personRecord.m_personName;
m_age = personRecord.m_age;

}

~PersonRecord() {}

Record* clone()
{
return new PersonRecord(*this);

}

void print()
{
cout << "Person Record" << endl
<< "Name : " << m_personName << endl
<< "Age : " << m_age << endl << endl ;

}
};

/**
* RecordFactory is the client

*/

class RecordFactory
{
private :
map<RECORD_TYPE_en, Record* > m_recordReference;

public :
RecordFactory()
{
m_recordReference[CAR] = new CarRecord("Ferrari", 5050);

571

Beyond the Standard

m_recordReference[BIKE] = new BikeRecord("Yamaha", 2525);
m_recordReference[PERSON] = new PersonRecord("Tom", 25);

}

~RecordFactory()
{
delete m_recordReference[CAR];
delete m_recordReference[BIKE];
delete m_recordReference[PERSON];

}

Record* createRecord(RECORD_TYPE_en enType)
{
return m_recordReference[enType]->clone();

}
};

int main()
{
RecordFactory* poRecordFactory = new RecordFactory();

Record* poRecord;
poRecord = poRecordFactory->createRecord(CAR);
poRecord->print();
delete poRecord;

poRecord = poRecordFactory->createRecord(BIKE);
poRecord->print();
delete poRecord;

poRecord = poRecordFactory->createRecord(PERSON);
poRecord->print();
delete poRecord;

delete poRecordFactory;
return 0;

}

Another example:

To implement the pattern, declare an abstract base class that specifies a pure
virtual clone() member function. Any class that needs a "polymorphic
constructor" capability derives itself from the abstract base class, and implements
the clone() operation.

The client, instead of writing code that invokes the new operator on a hard-wired
class name, calls the clone() member function on the prototype, calls a factory
member function with a parameter designating the particular concrete derived
class desired, or invokes the clone() member function through some mechanism
provided by another design pattern.

class CPrototypeMonster
{
protected:

572

Programming Patterns

CString _name;
public:

CPrototypeMonster();
CPrototypeMonster(const CPrototypeMonster& copy);
virtual ~CPrototypeMonster();

virtual CPrototypeMonster* Clone() const=0; // This forces every derived
class to provide an overload for this function.

void Name(CString name);
CString Name() const;

};

class CGreenMonster : public CPrototypeMonster
{
protected:

int _numberOfArms;
double _slimeAvailable;

public:
CGreenMonster();
CGreenMonster(const CGreenMonster& copy);
~CGreenMonster();

virtual CPrototypeMonster* Clone() const;
void NumberOfArms(int numberOfArms);
void SlimeAvailable(double slimeAvailable);

int NumberOfArms() const;
double SlimeAvailable() const;

};

class CPurpleMonster : public CPrototypeMonster
{
protected:

int _intensityOfBadBreath;
double _lengthOfWhiplikeAntenna;

public:
CPurpleMonster();
CPurpleMonster(const CPurpleMonster& copy);
~CPurpleMonster();

virtual CPrototypeMonster* Clone() const;

void IntensityOfBadBreath(int intensityOfBadBreath);
void LengthOfWhiplikeAntenna(double lengthOfWhiplikeAntenna);

int IntensityOfBadBreath() const;
double LengthOfWhiplikeAntenna() const;

};

class CBellyMonster : public CPrototypeMonster
{
protected:

double _roomAvailableInBelly;
public:

CBellyMonster();
CBellyMonster(const CBellyMonster& copy);
~CBellyMonster();

573

Beyond the Standard

virtual CPrototypeMonster* Clone() const;

void RoomAvailableInBelly(double roomAvailableInBelly);
double RoomAvailableInBelly() const;

};

CPrototypeMonster* CGreenMonster::Clone() const
{

return new CGreenMonster(*this);
}

CPrototypeMonster* CPurpleMonster::Clone() const
{

return new CPurpleMonster(*this);
}

CPrototypeMonster* CBellyMonster::Clone() const
{

return new CBellyMonster(*this);
}

A client of one of the concrete monster classes only needs a reference (pointer) to
a CPrototypeMonster class object to be able to call the ‘Clone’ function and
create copies of that object. The function below demonstrates this concept:

void DoSomeStuffWithAMonster(const CPrototypeMonster* originalMonster)
{

CPrototypeMonster* newMonster = originalMonster->Clone();
ASSERT(newMonster);

newMonster->Name("MyOwnMonster");
// Add code doing all sorts of cool stuff with the monster.
delete newMonster;

}

Now originalMonster can be passed as a pointer to CGreenMonster,
CPurpleMonster or CBellyMonster.

Singleton

The term Singleton refers to an object that can only be instantiated once. This
pattern is generally used where a global variable would have otherwise been used.
The main advantage of the singleton is that its existence is guaranteed. Other
advantages of the design pattern include the clarity, from the unique access, that
the object used is not on the local stack. Some of the downfalls of the object
include that, like a global variable, it can be hard to tell what chunk of code
corrupted memory, when a bug is found, since everyone has access to it.

Let’s take a look at how a Singleton differs from other variable types.

574

Programming Patterns

Like a global variable, the Singleton exists outside of the scope of any functions.
Traditional implementation uses a static member function of the Singleton class,
which will create a single instance of the Singleton class on the first call, and
forever return that instance. The following code example illustrates the elements
of a C++ singleton class, that simply stores a single string.

class StringSingleton
{
public:

// Some accessor functions for the class, itself
std::string GetString() const
{return mString;}
void SetString(const std::string &newStr)
{mString = newStr;}

// The magic function, which allows access to the class from anywhere
// To get the value of the instance of the class, call:
// StringSingleton::Instance().GetString();
static StringSingleton &Instance()
{

// This line only runs once, thus creating the only instance in
existence

static StringSingleton *instance = new StringSingleton;
// dereferencing the variable here, saves the caller from having to use
// the arrow operator, and removes tempation to try and delete the
// returned instance.
return *instance; // always returns the same instance

}

private:
// We need to make some given functions private to finish the definition of

the singleton
StringSingleton(){} // default constructor available only to members or

friends of this class

// Note that the next two functions are not given bodies, thus any attempt
// to call them implicitly will return as compiler errors. This prevents
// accidental copying of the only instance of the class.
StringSingleton(const StringSingleton &old); // disallow copy constructor
const StringSingleton &operator=(const StringSingleton &old); //disallow

assignment operator

// Note that although this should be allowed,
// some compilers may not implement private destructors
// This prevents others from deleting our one single instance, which was

otherwise created on the heap
~StringSingleton(){}

private: // private data for an instance of this class
std::string mString;

};

Variations of Singletons:

Applications of Singleton Class:

575

Beyond the Standard

One common use of the singleton design pattern is for application configurations.
Configurations may need to be accessible globally, and future expansions to the
application configurations may be needed. The subset C’s closest alternative
would be to create a single global struct. This had the lack of clarity as to where
this object was instantiated, as well as not guaranteeing the existence of the object.

Take, for example, the situation of another developer using your singleton inside
the constructor of their object. Then, yet another developer decides to create an
instance of the second class in the global scope. If you had simply used a global
variable, the order of linking would then matter. Since your global will be
accessed, possibly before main begins executing, there is no definition as to
whether the global is initialized, or the constructor of the second class is called
first. This behavior can then change with slight modifications to other areas of
code, which would change order of global code execution. Such an error can be
very hard to debug. But, with use of the singleton, the first time the object is
accessed, the object will also be created. You now have an object which will
always exist, in relation to being used, and will never exist if never used.

A second common use of this class is in updating old code to work in a new
architecture. Since developers may have used globals liberally, moving them into
a single class and making it a singleton, can be an intermediary step to bring the
program inline to stronger object oriented structure.

Another example:

#include <iostream>
using namespace std;

/* Place holder for thread synchronization mutex */
class Mutex
{ /* placeholder for code to create, use, and free a mutex */
};

/* Place holder for thread synchronization lock */
class Lock
{ public:

Lock(Mutex& m) : mutex(m) { /* placeholder code to acquire the mutex */ }
~Lock() { /* placeholder code to release the mutex */ }

private:
Mutex & mutex;

};

class Singleton
{ public:

static Singleton* GetInstance();
int a;
~Singleton() { cout << "In Dtor" << endl; }

private:
Singleton(int _a) : a(_a) { cout << "In Ctor" << endl; }

576

Programming Patterns

static Mutex mutex;

// Not defined, to prevent copying
Singleton(const Singleton&);
Singleton& operator =(const Singleton& other);

};

Mutex Singleton::mutex;

Singleton* Singleton::GetInstance()
{

Lock lock(mutex);

cout << "Get Inst" << endl;

// Initialized during first access
static Singleton inst(1);

return &inst;
}

int main()
{

Singleton* singleton = Singleton::GetInstance();
cout << "The value of the singleton: " << singleton->a << endl;
return 0;

}

Note:
In the above example, the first call to Singleton::GetInstance will initialize
the singleton instance. This example is for illustrative purposes only; for anything
but a trivial example program, this code contains errors.

23

6.3.2 Structural Patterns

Adapter

Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn’t otherwise because of incompatible interfaces.

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

577

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

Bridge

The Bridge Pattern is used to separate out the interface from its implementation.
Doing this gives the flexibility so that both can vary independently.

The following example will output:
API1.circle at 1:2 7.5

API2.circle at 5:7 27.5

#include <iostream>

using namespace std;

/* Implementor*/
class DrawingAPI {
public:
virtual void drawCircle(double x, double y, double radius) = 0;
virtual ~DrawingAPI() {}

};

/* Concrete ImplementorA*/
class DrawingAPI1 : public DrawingAPI {
public:
void drawCircle(double x, double y, double radius) {

cout << "API1.circle at " << x << ’:’ << y << ’ ’ << radius << endl;
}

};

/* Concrete ImplementorB*/
class DrawingAPI2 : public DrawingAPI {
public:

void drawCircle(double x, double y, double radius) {
cout << "API2.circle at " << x << ’:’ << y << ’ ’ << radius << endl;

}
};

/* Abstraction*/
class Shape {
public:
virtual ~Shape() {}
virtual void draw() = 0;
virtual void resizeByPercentage(double pct) = 0;

};

/* Refined Abstraction*/
class CircleShape : public Shape {
public:
CircleShape(double x, double y,double radius, DrawingAPI *drawingAPI) :

m_x(x), m_y(y), m_radius(radius), m_drawingAPI(drawingAPI)
{}
void draw() {

m_drawingAPI->drawCircle(m_x, m_y, m_radius);
}

578

Programming Patterns

void resizeByPercentage(double pct) {
m_radius *= pct;

}
private:
double m_x, m_y, m_radius;
DrawingAPI *m_drawingAPI;

};

int main(void) {
CircleShape circle1(1,2,3,new DrawingAPI1());
CircleShape circle2(5,7,11,new DrawingAPI2());
circle1.resizeByPercentage(2.5);
circle2.resizeByPercentage(2.5);
circle1.draw();
circle2.draw();
return 0;

}

Composite

Composite lets clients treat individual objects and compositions of objects
uniformly. The Composite pattern can represent both the conditions. In this
pattern, one can develop tree structures for representing part-whole hierarchies.

#include <vector>
#include <iostream> // std::cout
#include <memory> // std::auto_ptr
#include <algorithm> // std::for_each
#include <functional> // std::mem_fun
using namespace std;

class Graphic
{
public:
virtual void print() const = 0;
virtual ~Graphic() {}

};

class Ellipse : public Graphic
{
public:
void print() const {
cout << "Ellipse \n";

}
};

class CompositeGraphic : public Graphic
{
public:
void print() const {
// for each element in graphicList_, call the print member function
for_each(graphicList_.begin(), graphicList_.end(), mem_fun(&Graphic::print));

}

579

Beyond the Standard

void add(Graphic *aGraphic) {
graphicList_.push_back(aGraphic);

}

private:
vector<Graphic*> graphicList_;

};

int main()
{
// Initialize four ellipses
const auto_ptr<Ellipse> ellipse1(new Ellipse());
const auto_ptr<Ellipse> ellipse2(new Ellipse());
const auto_ptr<Ellipse> ellipse3(new Ellipse());
const auto_ptr<Ellipse> ellipse4(new Ellipse());

// Initialize three composite graphics
const auto_ptr<CompositeGraphic> graphic(new CompositeGraphic());
const auto_ptr<CompositeGraphic> graphic1(new CompositeGraphic());
const auto_ptr<CompositeGraphic> graphic2(new CompositeGraphic());

// Composes the graphics
graphic1->add(ellipse1.get());
graphic1->add(ellipse2.get());
graphic1->add(ellipse3.get());

graphic2->add(ellipse4.get());

graphic->add(graphic1.get());
graphic->add(graphic2.get());

// Prints the complete graphic (four times the string "Ellipse")
graphic->print();
return 0;

}

Decorator

The decorator pattern helps to attach additional behavior or responsibilities to an
object dynamically. Decorators provide a flexible alternative to subclassing for
extending functionality. This is also called “Wrapper”.

Facade

The Facade Pattern hides the complexities of the system by providing an interface
to the client from where the client can access the system on an unified interface.
Facade defines a higher-level interface that makes the subsystem easier to use.
For instance making one class method perform a complex process by calling
several other classes.

580

Programming Patterns

Flyweight

It is the use of sharing mechanism by which you can avoid creating a large
number of object instances to represent the entire system by using a smaller set
fine-grained objects efficiently. A flyweight is a shared object that can be used in
multiple contexts simultaneously. The flyweight will act as an independent object
in each context, becoming indistinguishable from an instance of the object that’s
not shared. To decide if some part of a program is a candidate for using
Flyweights, consider whether it is possible to remove some data from the class
and make it extrinsic.

Proxy

The Proxy Pattern will provide an object a surrogate or placeholder for another
object to control access to it. It is used when you need to represent a complex
object with a simpler one. If creation of an object is expensive, it can be
postponed until the very need arises and meanwhile a simpler object can serve as a
placeholder. This placeholder object is called the “Proxy” for the complex object.

Curiously Recurring Template

This technique is known more widely as a mixin. Mixins are described in the
literature to be a powerful tool for expressing abstractions.

Interface-based Programming (IBP)

Interface-based programming is closely related with Modular Programming and
Object-Oriented Programming, it defines the application as a collection of
inter-coupled modules (interconnected and which plug into each other via
interface). Modules can be unplugged, replaced, or upgraded, without the need of
compromising the contents of other modules.

The total system complexity is greatly reduced. Interface Based Programming
adds more to modular Programming in that it insists that Interfaces are to be
added to these modules. The entire system is thus viewed as Components and the
interfaces that helps them to co-act.

Interface-based Programming increases the modularity of the application and
hence its maintainability at a later development cycles, especially when each

581

Beyond the Standard

module must be developed by different teams. It is a well-known methodology
that has been around for a long time and it is a core technology behind
frameworks such as CORBA.

This is particularly convenient when third parties develop additional components
for the established system. They just have to develop components that satisfy the
interface specified by the parent application vendor.

Thus the publisher of the interfaces assures that he will not change the interface
and the subscriber agrees to implement the interface as whole without any
deviation. An interface is therefore said to be a Contractual agreement and the
PROGRAMMING PARADIGM24 based on this is termed as "interface based
programming".
25

6.3.3 Behavioral Patterns

Chain of Responsibility

Chain of Responsibility pattern has the intent to avoid coupling the sender of a
request to its receiver by giving more than one object a chance to handle the
request. Chains the receiving objects and passes the requests along the chain until
an object handles it.

Command

Command pattern is an Object behavioral pattern that decouples sender and
receiver by encapsulating a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support undo-able
operations. It can also be thought as an object oriented equivalent of call back
method.

Call Back: It is a function that is registered to be called at later point of time
based on user actions.

#include <iostream>

using namespace std;

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20PARADIGM
25 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

582

http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Programming Patterns

/*the Command interface*/
class Command
{
public:

virtual void execute()=0;
};

/*Receiver class*/
class Light {

public:
Light() { }

void turnOn()
{

cout << "The light is on" << endl;
}

void turnOff()
{

cout << "The light is off" << endl;
}

};

/*the Command for turning on the light*/
class FlipUpCommand: public Command
{
public:

FlipUpCommand(Light& light):theLight(light)
{

}

virtual void execute()
{

theLight.turnOn();
}

private:
Light& theLight;

};

/*the Command for turning off the light*/
class FlipDownCommand: public Command
{
public:

FlipDownCommand(Light& light) :theLight(light)
{

}
virtual void execute()
{

theLight.turnOff();
}

private:
Light& theLight;

583

Beyond the Standard

};

class Switch {
public:

Switch(Command& flipUpCmd, Command& flipDownCmd)
:flipUpCommand(flipUpCmd),flipDownCommand(flipDownCmd)
{

}

void flipUp()
{

flipUpCommand.execute();
}

void flipDown()
{

flipDownCommand.execute();
}

private:
Command& flipUpCommand;
Command& flipDownCommand;

};

/*The test class or client*/
int main()
{

Light lamp;
FlipUpCommand switchUp(lamp);
FlipDownCommand switchDown(lamp);

Switch s(switchUp, switchDown);
s.flipUp();
s.flipDown();

}

Interpreter

Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

Iterator

The ’iterator’ design pattern is used liberally within the STL for traversal of
various containers. The full understanding of this will liberate a developer to
create highly reusable and easily understandable data containers.

The basic idea of the iterator is that it permits the traversal of a container (like a
pointer moving across an array). However, to get to the next element of a

584

Programming Patterns

container, you need not know anything about how the container is constructed.
This is the iterators job. By simply using the member functions provided by the
iterator, you can move, in the intended order of the container, from the first
element to the last element.

Let us start by considering a traditional single dimensional array with a pointer
moving from the start to the end. This example assumes knowledge of pointer
arithmetic. Note that the use of "it" or "itr," henceforth, is a short version of
"iterator."

const int ARRAY_LEN = 42;
int *myArray = new int[ARRAY_LEN];
// Set the iterator to point to the first memory location of the array
int *arrayItr = myArray;
// Move through each element of the array, setting it equal to its position in
the array
for(int i = 0; i < ARRAY_LEN; ++i)
{

// set the value of the current location in the array
*arrayItr = i;
// by incrementing the pointer, we move it to the next position in the array.
// This is easy for a contiguous memory container, since pointer arithmetic
// handles the traversal.
++arrayItr;

}
// Do not be messy, clean up after yourself
delete[] myArray;

This code works very quickly for arrays, but how would we traverse a linked list,
when the memory is not contiguous? Consider the implementation of a
rudimentary linked list as follows:

class IteratorCannotMoveToNext{}; // Error class
class MyIntLList
{
public:

// The Node class represents a single element in the linked list.
// The node has a next node and a previous node, so that the user
// may move from one position to the next, or step back a single
// position. Notice that the traversal of a linked list is O(N),
// as is searching, since the list is not ordered.
class Node
{
public:

Node():mNextNode(0),mPrevNode(0),mValue(0){}
Node *mNextNode;
Node *mPrevNode;
int mValue;

};
MyIntLList():mSize(0)
{}
~MyIntLList()
{

585

Beyond the Standard

while(!Empty())
pop_front();

} // See expansion for further implementation;
int Size() const {return mSize;}
// Add this value to the end of the list
void push_back(int value)
{

Node *newNode = new Node;
newNode->mValue = value;
newNode->mPrevNode = mTail;
mTail->mNextNode = newNode;
mTail = newNode;
++mSize;

}
// Remove the value from the beginning of the list
void pop_front()
{

if(Empty())
return;

Node *tmpnode = mHead;
mHead = mHead->mNextNode
delete tmpnode;
--mSize;

}
bool Empty()
{return mSize == 0;}

// This is where the iterator definition will go,
// but lets finish the definition of the list, first

private:
Node *mHead;
Node *mTail;
int mSize;

};

This linked list has non-contiguous memory, and is therefore not a candidate for
pointer arithmetic. And we do not want to expose the internals of the list to other
developers, forcing them to learn them, and keeping us from changing it.

This is where the iterator comes in. The common interface makes learning the
usage of the container easier, and hides the traversal logic from other developers.

Let us examine the code for the iterator, itself.

/*
* The iterator class knows the internals of the linked list, so that it

* may move from one element to the next. In this implementation, I have

* chosen the classic traversal method of overloading the increment

* operators. More thorough implementations of a bi-directional linked

* list would include decrement operators so that the iterator may move

* in the opposite direction.

*/
class Iterator
{

586

Programming Patterns

public:
Iterator(Node *position):mCurrNode(position){}
// Prefix increment
const Iterator &operator++()
{

if(mCurrNode == 0 || mCurrNode->mNextNode == 0)
throw IteratorCannotMoveToNext();e

mCurrNode = mCurrNode->mNextNode;
return *this;

}
// Postfix increment
Iterator operator++(int)
{

Iterator tempItr = *this;
++(*this);
return tempItr;

}
// Dereferencing operator returns the current node, which should then
// be dereferenced for the int. TODO: Check syntax for overloading
// dereferencing operator
Node * operator*()
{return mCurrNode;}
// TODO: implement arrow operator and clean up example usage following

private:
Node *mCurrNode;

};
// The following two functions make it possible to create
// iterators for an instance of this class.
// First position for iterators should be the first element in the

container.
Iterator Begin(){return Iterator(mHead);}
// Final position for iterators should be one past the last element in the

container.
Iterator End(){return Iterator(0);}

With this implementation, it is now possible, without knowledge of the size of the
container or how its data is organized, to move through each element in order,
manipulating or simply accessing the data. This is done through the accessors in
the MyIntLList class, Begin() and End().

// Create a list
MyIntLList mylist;
// Add some items to the list
for(int i = 0; i < 10; ++i)

myList.push_back(i);
// Move through the list, adding 42 to each item.
for(MyIntLList::Iterator it = myList.Begin(); it != myList.End(); ++it)

(*it)->mValue += 42;

The following program gives the implementation of iterator design pattern with a
generic template:

/**/
/* Iterator.h */
/**/

587

Beyond the Standard

#ifndef MY_ITERATOR_HEADER
#define MY_ITERATOR_HEADER

#include <iterator>
#include <vector>
#include <set>

//
template<class T, class U>
class Iterator
{
public:

typedef typename std::vector<T>::iterator iter_type;
Iterator(U *pData):m_pData(pData){

m_it = m_pData->m_data.begin();
}

void first()
{

m_it = m_pData->m_data.begin();
}

void next()
{

m_it++;
}

bool isDone()
{

return (m_it == m_pData->m_data.end());
}

iter_type current()
{

return m_it;
}

private:
U *m_pData;
iter_type m_it;

};

template<class T, class U, class A>
class setIterator
{
public:

typedef typename std::set<T,U>::iterator iter_type;

setIterator(A *pData):m_pData(pData)
{

m_it = m_pData->m_data.begin();
}

void first()
{

m_it = m_pData->m_data.begin();
}

void next()

588

Programming Patterns

{
m_it++;

}

bool isDone()
{

return (m_it == m_pData->m_data.end());
}

iter_type current()
{

return m_it;
}

private:
A *m_pData;
iter_type m_it;

};
#endif

/**/
/* Aggregate.h */
/**/
#ifndef MY_DATACOLLECTION_HEADER
#define MY_DATACOLLECTION_HEADER
#include "Iterator.h"

template <class T>
class aggregate
{

friend class Iterator<T, aggregate>;
public:

void add(T a)
{

m_data.push_back(a);
}

Iterator<T, aggregate> *create_iterator()
{

return new Iterator<T, aggregate>(this);
}

private:
std::vector<T> m_data;

};
template <class T, class U>
class aggregateSet
{

friend class setIterator<T, U, aggregateSet>;
public:

void add(T a)
{

m_data.insert(a);
}

setIterator<T, U, aggregateSet> *create_iterator()

589

Beyond the Standard

{
return new setIterator<T,U,aggregateSet>(this);

}

void Print()
{

copy(m_data.begin(), m_data.end(), std::ostream_iterator<T>(std::cout,
"\n"));

}

private:
std::set<T,U> m_data;

};

#endif

/**/
/* Iterator Test.cpp */
/**/
#include <iostream>
#include <string>
#include "Aggregate.h"
using namespace std;

class Money
{
public:

Money(int a = 0): m_data(a) {}

void SetMoney(int a)
{

m_data = a;
}

int GetMoney()
{

return m_data;
}

private:
int m_data;

};

class Name
{
public:

Name(string name): m_name(name) {}

const string &GetName() const
{

return m_name;
}

friend ostream &operator<<(ostream& out, Name name)
{

out << name.GetName();
return out;

590

Programming Patterns

}

private:
string m_name;

};

struct NameLess
{

bool operator()(const Name &lhs, const Name &rhs) const
{

return (lhs.GetName() < rhs.GetName());
}

};

int main()
{

//sample 1
cout << "________________Iterator with

int______________________________________" << endl;
aggregate<int> agg;

for (int i = 0; i < 10; i++)
agg.add(i);

Iterator< int,aggregate<int> > *it = agg.create_iterator();
for(it->first(); !it->isDone(); it->next())

cout << *it->current() << endl;

//sample 2
aggregate<Money> agg2;
Money a(100), b(1000), c(10000);
agg2.add(a);
agg2.add(b);
agg2.add(c);

cout << "________________Iterator with Class
Money______________________________" << endl;

Iterator<Money, aggregate<Money> > *it2 = agg2.create_iterator();
for (it2->first(); !it2->isDone(); it2->next())

cout << it2->current()->GetMoney() << endl;

//sample 3
cout << "________________Set Iterator with Class

Name______________________________" << endl;

aggregateSet<Name, NameLess> aset;
aset.add(Name("Qmt"));
aset.add(Name("Bmt"));
aset.add(Name("Cmt"));
aset.add(Name("Amt"));

setIterator<Name, NameLess, aggregateSet<Name, NameLess> > *it3 =
aset.create_iterator();

for (it3->first(); !it3->isDone(); it3->next())
cout << (*it3->current()) << endl;

}

591

Beyond the Standard

Console output:
________________Iterator with int______________________________________

0

1

2

3

4

5

6

7

8

9

________________Iterator with Class Money______________________________

100

1000

10000

________________Set Iterator with Class Name___________________________

Amt

Bmt

Cmt

Qmt

Mediator

Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

Memento

Without violating encapsulation the Memento Pattern will capture and externalize
an object’s internal state so that the object can be restored to this state later.
Though the GANG OF FOUR26 uses friend as a way to implement this pattern it is
not the best design. It can also be implemented using PIMPL (POINTER TO

26 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERNS

592

http://en.wikipedia.org/wiki/Design%20Patterns

Programming Patterns

IMPLEMENTATION OR OPAQUE POINTER)27. Best Use case is ’Undo-Redo’ in an
editor.

The Originator (the object to be saved) creates a snap-shot of itself as a Memento
object, and passes that reference to the Caretaker object. The Caretaker object
keeps the Memento until such a time as the Originator may want to revert to a
previous state as recorded in the Memento object.

Observer

The Observer Pattern defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated
automatically.

Problem

In one place or many places in the application we need to be aware about a
system event or an application state change. We’d like to have a standard way of
subscribing to listening for system events and a standard way of notifying the
interested parties. The notification should be automated after an interested party
subscribed to the system event or application state change. There also should be
a way to unsubscribe.

Forces

Observers and observables probably should be represented by objects. The
observer objects will be notified by the observable objects.

Solution

After subscribing the listening objects will be notified by a way of method call.

#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

// The Abstract Observer
class ObserverBoardInterface
{
public:

virtual void update(float a,float b,float c) = 0;
};

// Abstract Interface for Displays

27 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPAQUE%20POINTER

593

http://en.wikipedia.org/wiki/Opaque%20pointer

Beyond the Standard

class DisplayBoardInterface
{
public:

virtual void show() = 0;
};

// The Abstract Subject
class WeatherDataInterface
{
public:

virtual void registerOb(ObserverBoardInterface* ob) = 0;
virtual void removeOb(ObserverBoardInterface* ob) = 0;
virtual void notifyOb() = 0;

};

// The Concrete Subject
class ParaWeatherData: public WeatherDataInterface
{
public:

void SensorDataChange(float a,float b,float c)
{

m_humidity = a;
m_temperature = b;
m_pressure = c;
notifyOb();

}

void registerOb(ObserverBoardInterface* ob)
{

m_obs.push_back(ob);
}

void removeOb(ObserverBoardInterface* ob)
{

m_obs.remove(ob);
}

protected:
void notifyOb()
{

list<ObserverBoardInterface*>::iterator pos = m_obs.begin();
while (pos != m_obs.end())
{

((ObserverBoardInterface*
)(*pos))->update(m_humidity,m_temperature,m_pressure);

(dynamic_cast<DisplayBoardInterface*>(*pos))->show();
++pos;

}
}

private:
float m_humidity;
float m_temperature;
float m_pressure;
list<ObserverBoardInterface* > m_obs;

};

// A Concrete Observer
class CurrentConditionBoard : public ObserverBoardInterface, public

594

Programming Patterns

DisplayBoardInterface
{
public:

CurrentConditionBoard(ParaWeatherData& a):m_data(a)
{

m_data.registerOb(this);
}
void show()
{

cout<<"_____CurrentConditionBoard_____"<<endl;
cout<<"humidity: "<<m_h<<endl;
cout<<"temperature: "<<m_t<<endl;
cout<<"pressure: "<<m_p<<endl;
cout<<"_______________________________"<<endl;

}

void update(float h, float t, float p)
{

m_h = h;
m_t = t;
m_p = p;

}

private:
float m_h;
float m_t;
float m_p;
ParaWeatherData& m_data;

};

// A Concrete Observer
class StatisticBoard : public ObserverBoardInterface, public
DisplayBoardInterface

{
public:

StatisticBoard(ParaWeatherData&
a):m_maxt(-1000),m_mint(1000),m_avet(0),m_count(0),m_data(a)

{
m_data.registerOb(this);

}

void show()
{

cout<<"________StatisticBoard_________"<<endl;
cout<<"lowest temperature: "<<m_mint<<endl;
cout<<"highest temperature: "<<m_maxt<<endl;
cout<<"average temperature: "<<m_avet<<endl;
cout<<"_______________________________"<<endl;

}

void update(float h, float t, float p)
{

++m_count;
if (t>m_maxt)
{

m_maxt = t;
}
if (t<m_mint)

595

Beyond the Standard

{
m_mint = t;

}
m_avet = (m_avet * (m_count-1) + t)/m_count;

}

private:
float m_maxt;
float m_mint;
float m_avet;
int m_count;
ParaWeatherData& m_data;

};

int main(int argc, char *argv[])
{

ParaWeatherData * wdata = new ParaWeatherData;
CurrentConditionBoard* currentB = new CurrentConditionBoard(*wdata);
StatisticBoard* statisticB = new StatisticBoard(*wdata);

wdata->SensorDataChange(10.2, 28.2, 1001);
wdata->SensorDataChange(12, 30.12, 1003);
wdata->SensorDataChange(10.2, 26, 806);
wdata->SensorDataChange(10.3, 35.9, 900);

wdata->removeOb(currentB);

wdata->SensorDataChange(100, 40, 1900);

delete statisticB;
delete currentB;
delete wdata;

return 0;
}

State

The State Pattern allows an object to alter its behavior when its internal state
changes. The object will appear as having changed its class.

Strategy

Defines a family of algorithms, encapsulates each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients who
use it.

#include <iostream>

596

Programming Patterns

using namespace std;

class StrategyInterface
{

public:
virtual void execute() const = 0;

};

class ConcreteStrategyA: public StrategyInterface
{

public:
virtual void execute() const
{

cout << "Called ConcreteStrategyA execute method" << endl;
}

};

class ConcreteStrategyB: public StrategyInterface
{

public:
virtual void execute() const
{

cout << "Called ConcreteStrategyB execute method" << endl;
}

};

class ConcreteStrategyC: public StrategyInterface
{

public:
virtual void execute() const
{

cout << "Called ConcreteStrategyC execute method" << endl;
}

};

class Context
{

private:
StrategyInterface * strategy_;

public:
explicit Context(StrategyInterface *strategy):strategy_(strategy)
{
}

void set_strategy(StrategyInterface *strategy)
{

strategy_ = strategy;
}

void execute() const
{

strategy_->execute();
}

};

int main(int argc, char *argv[])
{

597

Beyond the Standard

ConcreteStrategyA concreteStrategyA;
ConcreteStrategyB concreteStrategyB;
ConcreteStrategyC concreteStrategyC;

Context contextA(&concreteStrategyA);
Context contextB(&concreteStrategyB);
Context contextC(&concreteStrategyC);

contextA.execute(); // output: "Called ConcreteStrategyA execute method"
contextB.execute(); // output: "Called ConcreteStrategyB execute method"
contextC.execute(); // output: "Called ConcreteStrategyC execute method"

contextA.set_strategy(&concreteStrategyB);
contextA.execute(); // output: "Called ConcreteStrategyB execute method"
contextA.set_strategy(&concreteStrategyC);
contextA.execute(); // output: "Called ConcreteStrategyC execute method"

return 0;
}

Template Method

By defining a skeleton of an algorithm in an operation, deferring some steps to
subclasses, the Template Method lets subclasses redefine certain steps of that
algorithm without changing the algorithms structure.

Visitor

The Visitor Pattern will represent an operation to be performed on the elements of
an object structure by letting you define a new operation without changing the
classes of the elements on which it operates.

#include <string>
#include <iostream>
#include <vector>

using namespace std;

class Wheel;
class Engine;
class Body;
class Car;

// interface to all car ’parts’
struct CarElementVisitor
{
virtual void visit(Wheel& wheel) const = 0;
virtual void visit(Engine& engine) const = 0;
virtual void visit(Body& body) const = 0;

598

Programming Patterns

virtual void visitCar(Car& car) const = 0;
virtual ~CarElementVisitor() {}

};

// interface to one part
struct CarElement
{
virtual void accept(const CarElementVisitor& visitor) = 0;
virtual ~CarElement() {}

};

// wheel element, there are four wheels with unique names
class Wheel : public CarElement
{
public:
explicit Wheel(const string& name) :
name_(name)

{
}
const string& getName() const
{
return name_;

}
void accept(const CarElementVisitor& visitor)
{
visitor.visit(*this);

}
private:

string name_;
};

// engine
class Engine : public CarElement
{
public:
void accept(const CarElementVisitor& visitor)
{
visitor.visit(*this);

}
};

// body
class Body : public CarElement
{
public:
void accept(const CarElementVisitor& visitor)
{
visitor.visit(*this);

}
};

// car, all car elements(parts) together
class Car
{
public:
vector<CarElement*>& getElements()
{
return elements_;

599

Beyond the Standard

}
Car()
{
// assume that neither push_back nor Wheel(const string&) may throw
elements_.push_back(new Wheel("front left"));
elements_.push_back(new Wheel("front right"));
elements_.push_back(new Wheel("back left"));
elements_.push_back(new Wheel("back right"));
elements_.push_back(new Body());
elements_.push_back(new Engine());

}
~Car()
{
for(vector<CarElement*>::iterator it = elements_.begin();
it != elements_.end(); ++it)

{
delete *it;

}
}

private:
vector<CarElement*> elements_;

};

// PrintVisitor and DoVisitor show by using a different implementation the Car
class is unchanged
// even though the algorithm is different in PrintVisitor and DoVisitor.
class CarElementPrintVisitor : public CarElementVisitor
{
public:

void visit(Wheel& wheel) const
{
cout << "Visiting " << wheel.getName() << " wheel" << endl;

}
void visit(Engine& engine) const
{
cout << "Visiting engine" << endl;

}
void visit(Body& body) const
{
cout << "Visiting body" << endl;

}
void visitCar(Car& car) const
{
cout << endl << "Visiting car" << endl;
vector<CarElement*>& elems = car.getElements();
for(vector<CarElement*>::iterator it = elems.begin();
it != elems.end(); ++it)

{
(*it)->accept(*this); // this issues the callback i.e. to this from the

element
}
cout << "Visited car" << endl;

}
};

class CarElementDoVisitor : public CarElementVisitor
{
public:

600

Programming Patterns

// these are specific implementations added to the original object without
modifying the original struct
void visit(Wheel& wheel) const
{
cout << "Kicking my " << wheel.getName() << " wheel" << endl;

}
void visit(Engine& engine) const
{
cout << "Starting my engine" << endl;

}
void visit(Body& body) const
{
cout << "Moving my body" << endl;

}
void visitCar(Car& car) const
{
cout << endl << "Starting my car" << endl;
vector<CarElement*>& elems = car.getElements();
for(vector<CarElement*>::iterator it = elems.begin();
it != elems.end(); ++it)

{
(*it)->accept(*this); // this issues the callback i.e. to this from the

element
}
cout << "Stopped car" << endl;

}
};

int main()
{
Car car;
CarElementPrintVisitor printVisitor;
CarElementDoVisitor doVisitor;

printVisitor.visitCar(car);
doVisitor.visitCar(car);

return 0;
}

Model-View-Controller (MVC)

A pattern often used by applications that need the ability to maintain multiple
views of the same data. The model-view-controller pattern was until recently a
very common pattern especially for graphic user interlace programming, it splits
the code in 3 pieces. The model, the view, and the controller.

The Model is the actual data representation (for example, Array vs Linked List) or
other objects representing a database. The View is an interface to reading the
model or a fat client GUI. The Controller provides the interface of changing or
modifying the data, and then selecting the "Next Best View" (NBV).

601

Beyond the Standard

Newcomers will probably see this "MVC" model as wasteful, mainly because you
are working with many extra objects at runtime, when it seems like one giant
object will do. But the secret to the MVC pattern is not writing the code, but in
maintaining it, and allowing people to modify the code without changing much
else. Also, keep in mind, that different developers have different strengths and
weaknesses, so team building around MVC is easier. Imagine a View Team that is
responsible for great views, a Model Team that knows a lot about data, and a
Controller Team that see the big picture of application flow, handing requests,
working with the model, and selecting the most appropriate next view for that
client.

For example: A naive central database can be organized using only a "model", for
example, a straight array. However, later on, it may be more applicable to use a
linked list. All array accesses will have to be remade into their respective Linked
List form (for example, you would change myarray[5] into mylist.at(5) or
whatever is equivalent in the language you use).

Well, if we followed the MVC pattern, the central database would be accessed
using some sort of a function, for example, myarray.at(5). If we change the model
from an array to a linked list, all we have to do is change the view with the model,
and the whole program is changed. Keep the interface the same but change the
underpinnings of it. This would allow us to make optimizations more freely and
quickly than before.

One of the great advantages of the Model-View-Controller Pattern is obviously
the ability to reuse the application’s logic (which is implemented in the model)
when implementing a different view. A good example is found in web
development, where a common task is to implement an external API inside of an
existing piece of software. If the MVC pattern has cleanly been followed, this
only requires modification to the controller, which can have the ability to render
different types of views dependent on the content type requested by the user agent.
28

29

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

602

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Libraries

6.4 Libraries

Libraries allow existing code to be reused in a program. Libraries are like
programs except that instead of relying on main() to do the work you call the
specific functions provided by the library to do the work. Functions provide the
interface between the program being written and the library being used. This
interface is called Application Programming Interface30 or API.

Libraries should and tend to be domain specific as to permit greater mobility
across applications, and provide extended specialization. Libraries that are not,
are often header only distribution, intended for static linking as to permit the
compiler and the application, only to use the needed bits of code.

What is an API?

To a programmer, an operating system is defined by its API. API stands for
Application Programming Interface. An API encompasses all the function calls
that an application program can communicate with the hardware or the operating
system, or any other application that provides a set of interfaces to the
programmer (i.e.: a library), as well as definitions of associated data types and
structures. Most APIs are defined on the application Software Development Kit
(SDK) for program development.

In simple terms the API can be considered as the interface through which the user
(or user programs) will be able interact with the operating system, hardware or
other programs to make them to perform a task that may also result in obtaining a
result message.

Can an API be called a framework?

No, a framework may provide an API, but a framework is more than a simple
API. By default a framework also defines how the code is written, it is a set of
solutions, even classes, that as a group addresses the handling of a limited set of
related problems and provides not only an API but a default functionality, well
designed frameworks enable its interchangeability for a similar framework,
striving to provides the same API.

30 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20PROGRAMMING%
20INTERFACE

603

http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface

Beyond the Standard

31

As seen in the FILE ORGANIZATION SECTION32, compiled libraries consists in
C++ headers files that are included by the preprocessor and binary library files
which are used by the linker to generate the resulting compilation. For a
dynamically linked library, only the loading code is added to the compilation that
uses them, the actual loading of the library is done in the memory at run-time.

Programs can make use of libraries in two forms, as static or dynamic depending
on how the programmer decides to distribute its code or even due to the licensing
used by third party libraries, the STATIC AND DYNAMIC LIBRARIES33 section of
this book will cover in depth this subject.

Note:
As we will see when covering MULTI-THREADINGa when selecting libraries. Re-
member to verify if they conform to the your requirements on that area.

a Chapter 6.6.2 on page 629

6.4.1 Third party libraries

Additional functionality that goes beyond the standard libraries (like GARBAGE

COLLECTION34) are available (often free) by third party libraries, but remember
that third party libraries do not necessarily provide the same ubiquitous
cross-platform functionality or an API style conformant with as standard libraries.
The main motivation for their existence is for preventing one tho reinvent the
wheel and to make efforts converge; too much energy has been spent by
generations of programmers to write safe and "portable" code.

There are several libraries a the programmer is expected to know about or have at
least a passing idea of what they are. Time, consistency and extended references
will make a few libraries pop-out from the rest. One notable example is the highly
respected collection of BOOST LIBRARIES35 that we will examine ahead.

Licensing on third party libraries

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
32 Chapter 3.1.5 on page 51
33 Chapter 6.4.1 on page 605
34 Chapter 6.1 on page 558
35 Chapter 6.4.3 on page 610

604

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Libraries

The programmer may also be limited by the requirements of the license used on
external libraries that he has no direct control, for instance the use of the GNU
GENERAL PUBLIC LICENSE36 (GNU GPL) code in closed source applications
isn’t permitted to address this issue the FSF provides an alternative in the form of
the GNU LGPL license that permits such uses but only in the dynamically linked
form, this is mirrored by several other legal requirements a programmer must
attend and comply to.

6.4.2 Static and Dynamic Libraries

Libraries come in two forms, either in source form or in compiled/binary form.
Libraries in source-form must first be compiled before they can be included in
another project. This will transform the libraries’ cpp-files into a lib-file. If a
program must be recompiled to run with a new version of a library, but does not
need any further changes, the library is said to be source compatible. If a program
does not need to be modified and recompiled to use a new version of a library, the
library is then classified as being binary compatible.

Advantages of using static binaries:

• Simplification of program distribution (fewer files).
• Code simplification (no version checks as required in dynamic libraries).
• Will only compile the code that is used.

Disadvantages of using static binaries:

• Waste of resources: Generates larger binaries, since the library is compiled into
the executable. Wastes memory as the library cannot be shared (in memory)
between processes (depending on the operating system).

• Program will not benefit from bug fixes or extensions in the libraries without
being recompiled.

Binary/Source Compatibility of libraries

A library is said to be binary compatible if the program that dynamically links to
an earlier version of that library, continues to work using another versions of the
same library. If a recompilation of the program is needed for it to run with each
new version the library is said to be source compatible.

36 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20GENERAL%20PUBLIC%20LICENSE

605

http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

Beyond the Standard

Producing binary compatible libraries is beneficial for distribution but harder to
maintain by the programmer. It is often seen as a better solution to do static
linking, if the library is only source compatible, since it will not cause problems
to the end-user.

Binary compatibility saves a lot of trouble and is a signal that the library reached
a status of stability. It makes it easier to distribute software for a certain platform.
Without ensuring binary compatibility between releases, people will be forced to
offer statically linked binaries.

header-only libraries

Another distinction that is commonly made about libraries are on how they are
distributed (regarding structure and use). A library that is contained only on
header files is considered header-only library. Often this means that they are
simpler and easy to use, however this will not be the ideal solution for complex
code, it will not only hamper readability but result in larger compile times. Also
depending on the compiler and it’s optimizing capabilities (or options) can, due to
the resulting inlining, generate larger binaries. This may not be as important in
libraries mostly implemented with templates. Header-only libraries will always
contain the source code to the implementation, commercial is rare.

6.4.3 Example: Configuring MS Visual C++ to use external libraries

The BOOST LIBRARY37 is used as example library.

Note:
BOOST.ORGa has a install guide named Getting Started on Windows, that points
to an automatic installed provided by BOOSTPRO COMPUTINGb (commonly sup-
porting the previous and older release versions), noting also that if used with the
option “Source and Documentation” deselected (selected by default), it will not
show the libs/ subdirectory. This will disable the user from rebuilding part of the
libraries that aren’t only header files. This makes installing it yourself as shown in
this section the best option.

a HTTP://WWW.BOOST.ORG/
b HTTP://WWW.BOOSTPRO.COM/PRODUCTS/FREE

37 Chapter 6.4.3 on page 610

606

http://www.boost.org/
http://www.boostpro.com/products/free

Libraries

Considering you already have decompressed and have the binary part of the Boost
library built. There the steps which have to be performed:

Include directory

Set up the include directory. This is the directory that contains the header files
(.h/hpp), which describes the library interface:

Figure 26: include directories

Library directory

Set up the library directory. This is the directory that contains the pre-compiled
library files (.lib):

607

Beyond the Standard

Figure 27: library directories

Library files

Enter library filenames in additional dependencies for the libraries to use:

608

Libraries

Figure 28: library filenames (the Boost "REGEXP"-library in this example)

Some libraries (such as e.g. Boost) uses AUTO-LINKING38 to automate the
process of selecting library files for linking, based on which header-files are
included. Manual selection of library filenames are not required for such libraries
if your compiler supports auto-linking.

Dynamic libraries

In case of dynamically loaded (.dll) libraries, one also have to place the DLL-files
either in the same folder as the executable, or in the system PATH39.

Run-time library

The libraries also have to be compiled with the same run-time library as the one
used in your project. Many libraries therefore come in different editions,

38 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUTO-LINKING
39 HTTP://EN.WIKIPEDIA.ORG/WIKI/PATH%20%28VARIABLE%29

609

http://en.wikipedia.org/wiki/auto-linking
http://en.wikipedia.org/wiki/Path%20%28variable%29

Beyond the Standard

depending on whether they are compiled for single- or multithreaded runtime and
debug or release runtime, as well as whether they contain debug symbols or not.

Figure 29: selection of run-time library

40

41

42

40 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
41 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
42 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

610

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Boost Library

6.5 Boost Library

The Boost library43 (HTTP://WWW.BOOST.ORG/)44 provides free
PEER-REVIEWED45 , OPEN SOURCE46 LIBRARIES47 that extend the functionality
of C++. Most of the libraries are licensed under the BOOST SOFTWARE

LICENSE48, designed to allow Boost to be used with both open and CLOSED

SOURCE49 projects.

Many of Boost’s founders are on the C++ STANDARD50 committee and several
Boost libraries have been accepted for incorporation into the TECHNICAL

REPORT 151 of C++0X52. Although Boost was begun by members of the C++
Standards Committee Library Working Group, participation has expanded to
include thousands of programmers from the C++ community at large.

The emphasis is on libraries which work well with the C++ Standard Library. The
libraries are aimed at a wide range of C++ users and application domains, and are
in regular use by thousands of programmers. They range from general-purpose
libraries like SMARTPTR53, to OS Abstractions like FILESYSTEM54, to libraries
primarily aimed at other library developers and advanced C++ users, like MPL55.

A further goal is to establish "existing practice" and provide reference
implementations so that Boost libraries are suitable for eventual standardization.
Ten Boost libraries will be included in the C++ STANDARDS COMMITTEE’S56

upcoming C++ STANDARD LIBRARY TECHNICAL REPORT57 as a step toward
becoming part of a future C++ Standard.

43 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOOST%20%28PROGRAMMING%29
44 HTTP://WWW.BOOST.ORG/)
45 HTTP://EN.WIKIPEDIA.ORG/WIKI/PEER-REVIEW
46 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPEN%20SOURCE
47 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIBRARY%20%28COMPUTER%20SCIENCE%

29
48 HTTP://WWW.BOOST.ORG/MORE/LICENSE_INFO.HTML
49 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLOSED%20SOURCE
50 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISO%2FIEC%2014882
51 HTTP://EN.WIKIPEDIA.ORG/WIKI/TECHNICAL%20REPORT%201
52 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%2B%2B0X
53 HTTP://WWW.BOOST.ORG/LIBS/SMART_PTR
54 HTTP://WWW.BOOST.ORG/LIBS/FILESYSTEM
55 HTTP://WWW.BOOST.ORG/LIBS/MPL
56 HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/
57 HTTP://STD.DKUUG.DK/JTC1/SC22/WG21/DOCS/LIBRARY_TECHNICAL_

REPORT.HTML

611

http://en.wikipedia.org/wiki/Boost%20%28programming%29
http://www.boost.org/)
http://en.wikipedia.org/wiki/peer-review
http://en.wikipedia.org/wiki/open%20source
http://en.wikipedia.org/wiki/Library%20%28computer%20science%29
http://en.wikipedia.org/wiki/Library%20%28computer%20science%29
http://www.boost.org/more/license_info.html
http://en.wikipedia.org/wiki/closed%20source
http://en.wikipedia.org/wiki/ISO%2FIEC%2014882
http://en.wikipedia.org/wiki/Technical%20Report%201
http://en.wikipedia.org/wiki/C%2B%2B0x
http://www.boost.org/libs/smart_ptr
http://www.boost.org/libs/filesystem
http://www.boost.org/libs/mpl
http://www.open-std.org/jtc1/sc22/wg21/
http://std.dkuug.dk/jtc1/sc22/wg21/docs/library_technical_report.html
http://std.dkuug.dk/jtc1/sc22/wg21/docs/library_technical_report.html

Beyond the Standard

In order to ensure efficiency and flexibility, Boost makes extensive use of
TEMPLATE58s. Boost has been a source of extensive work and research into
GENERIC PROGRAMMING59 and METAPROGRAMMING60 in C++.

6.5.1 extension libraries

• Algorithms
• Concurrent programming (THREADS61)
• CONTAINERS62

• ARRAY63 - Management of fixed-size arrays with STL container semantics
• BOOST GRAPH LIBRARY (BGL)64 - Generic graph containers, components

and algorithms
• MULTI-ARRAY65 - Simplifies creation of N-dimensional arrays
• MULTI-INDEX CONTAINERS66 - Containers with built in indexes that allow

different sorting and access semantics
• POINTER CONTAINERS67 - Containers modeled after most standard STL

containers that allow for transparent management of pointers to values
• PROPERTY MAP68 - Interface specifications in the form of concepts and a

general purpose interface for mapping key values to objects
• VARIANT69 - A safe and generic stack-based object container that allows for

the efficient storage of and access to an object of a type that can be chosen
from among a set of types that must be specified at compile time.

• Correctness and TESTING70

• CONCEPT CHECK71 - Allows for the enforcement of actual template
parameter requirements (concepts)

• STATIC ASSERT72 - Compile time assertion support

58 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20%28PROGRAMMING%29
59 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING
60 HTTP://EN.WIKIPEDIA.ORG/WIKI/METAPROGRAMMING
61 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
62 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20STRUCTURE
63 HTTP://BOOST.ORG/DOC/HTML/ARRAY.HTML
64 HTTP://BOOST.ORG/LIBS/GRAPH/DOC/TABLE_OF_CONTENTS.HTML
65 HTTP://BOOST.ORG/LIBS/MULTI_ARRAY/DOC/INDEX.HTML
66 HTTP://BOOST.ORG/LIBS/MULTI_INDEX/DOC/INDEX.HTML
67 HTTP://BOOST.ORG/LIBS/PTR_CONTAINER/DOC/PTR_CONTAINER.HTML
68 HTTP://BOOST.ORG/LIBS/PROPERTY_MAP/PROPERTY_MAP.HTML
69 HTTP://BOOST.ORG/DOC/HTML/VARIANT.HTML
70 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20TESTING
71 HTTP://BOOST.ORG/LIBS/CONCEPT_CHECK/CONCEPT_CHECK.HTM
72 HTTP://BOOST.ORG/DOC/HTML/BOOST_STATICASSERT.HTML

612

http://en.wikipedia.org/wiki/template%20%28programming%29
http://en.wikipedia.org/wiki/generic%20programming
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/Data%20structure
http://boost.org/doc/html/array.html
http://boost.org/libs/graph/doc/table_of_contents.html
http://boost.org/libs/multi_array/doc/index.html
http://boost.org/libs/multi_index/doc/index.html
http://boost.org/libs/ptr_container/doc/ptr_container.html
http://boost.org/libs/property_map/property_map.html
http://boost.org/doc/html/variant.html
http://en.wikipedia.org/wiki/Software%20testing
http://boost.org/libs/concept_check/concept_check.htm
http://boost.org/doc/html/boost_staticassert.html

Boost Library

• BOOST TEST LIBRARY73 - A matched set of components for writing test
programs, organizing tests into test cases and test suites, and controlling their
runtime execution

• Data structures
• DYNAMIC_BITSET74 - Dynamic std::bitset-like data structure

• Function objects and HIGHER-ORDER PROGRAMMING75

• BIND76 and MEM_FN77 - General binders for functions, function objects,
function pointers and member functions

• FUNCTION78 - Function object wrappers for deferred calls. Also, provides a
generalized mechanism for callbacks

• FUNCTIONAL79 - Enhancements to the function object adapters specified in
the C++ Standard Library, including:
• FUNCTION OBJECT TRAITS80

• NEGATORS81

• BINDERS82

• ADAPTERS FOR POINTERS TO FUNCTIONS83

• ADAPTERS FOR POINTERS TO MEMBER FUNCTIONS84

• HASH85 - An implementation of the hash function object specified by the
C++ Technical Report 1 (TR1). Can be used as the default hash function for
unordered associative containers

• LAMBDA86 - In the spirit of LAMBDA ABSTRACTIONS87, allows for the
definition of small anonymous function objects and operations on those
objects at a call site, using placeholders, especially for use with deferred
callbacks from algorithms.

• REF88 - Provides utility class templates for enhancing the capabilities of
standard C++ references, especially for use with generic functions

73 HTTP://BOOST.ORG/LIBS/TEST/DOC/INDEX.HTML
74 HTTP://BOOST.ORG/LIBS/DYNAMIC_BITSET/
75 HTTP://EN.WIKIPEDIA.ORG/WIKI/HIGHER-ORDER%20PROGRAMMING
76 HTTP://BOOST.ORG/LIBS/BIND/BIND.HTML
77 HTTP://WWW.BOOST.ORG/LIBS/BIND/MEM_FN.HTML
78 HTTP://BOOST.ORG/DOC/HTML/FUNCTION.HTML
79 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/INDEX.HTML
80 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/FUNCTION_TRAITS.HTML
81 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/NEGATORS.HTML
82 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/BINDERS.HTML
83 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/PTR_FUN.HTML
84 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/MEM_FUN.HTML
85 HTTP://BOOST.ORG/DOC/HTML/HASH.HTML
86 HTTP://BOOST.ORG/DOC/HTML/LAMBDA.HTML
87 HTTP://EN.WIKIPEDIA.ORG/WIKI/LAMBDA%20CALCULUS
88 HTTP://BOOST.ORG/DOC/HTML/REF.HTML

613

http://boost.org/libs/test/doc/index.html
http://boost.org/libs/dynamic_bitset/
http://en.wikipedia.org/wiki/higher-order%20programming
http://boost.org/libs/bind/bind.html
http://www.boost.org/libs/bind/mem_fn.html
http://boost.org/doc/html/function.html
http://boost.org/libs/functional/index.html
http://boost.org/libs/functional/function_traits.html
http://boost.org/libs/functional/negators.html
http://boost.org/libs/functional/binders.html
http://boost.org/libs/functional/ptr_fun.html
http://boost.org/libs/functional/mem_fun.html
http://boost.org/doc/html/hash.html
http://boost.org/doc/html/lambda.html
http://en.wikipedia.org/wiki/Lambda%20calculus
http://boost.org/doc/html/ref.html

Beyond the Standard

• RESULT_OF89 - Helps in the determination of the type of a call expression
• SIGNALS AND SLOTS90 - Managed signals and slots callback implementation

• GENERIC PROGRAMMING91

• GRAPHS92

• Input/output
• Interlanguage support (for PYTHON93)
• ITERATORS94

• ITERATORS95

• OPERATORS96 - Class templates that help with overloaded operator
definitions for user defined iterators and classes that can participate in
arithmetic computation.

• TOKENIZER97 - Provides a view of a set of tokens contained in a sequence
that makes them appear as a container with iterator access

• Math and Numerics
• MEMORY98

• POOL99 - Provides a simple segregated storage based memory management
scheme

• SMART_PTR100 - A collection of smart pointer class templates with different
pointee management semantics
• SCOPED_PTR101 - Owns the pointee (single object)
• SCOPED_ARRAY102 - Like scoped_ptr, but for arrays
• SHARED_PTR103 - Potentially shares the pointer with other shared_ptrs.

Pointee is destroyed when last shared_ptr to it is destroyed
• SHARED_ARRAY104 - Like shared_ptr, but for arrays

89 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#RESULT_OF
90 HTTP://BOOST.ORG/DOC/HTML/SIGNALS.HTML
91 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING
92 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRAPH%20%28DATA%20STRUCTURE%29
93 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHON%20%28PROGRAMMING%

20LANGUAGE%29
94 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATOR%23C.2B.2B
95 HTTP://BOOST.ORG/LIBS/ITERATOR/DOC/INDEX.HTML
96 HTTP://BOOST.ORG/LIBS/UTILITY/OPERATORS.HTM
97 HTTP://BOOST.ORG/LIBS/TOKENIZER/INDEX.HTML
98 HTTP://EN.WIKIPEDIA.ORG/WIKI/MAIN%20MEMORY
99 HTTP://BOOST.ORG/LIBS/POOL/DOC/INDEX.HTML
100 HTTP://BOOST.ORG/LIBS/SMART_PTR/SMART_PTR.HTM
101 HTTP://BOOST.ORG/LIBS/SMART_PTR/SCOPED_PTR.HTM
102 HTTP://BOOST.ORG/LIBS/SMART_PTR/SCOPED_ARRAY.HTM
103 HTTP://BOOST.ORG/LIBS/SMART_PTR/SHARED_PTR.HTM
104 HTTP://BOOST.ORG/LIBS/SMART_PTR/SHARED_ARRAY.HTM

614

http://boost.org/libs/utility/utility.htm#result_of
http://boost.org/doc/html/signals.html
http://en.wikipedia.org/wiki/Generic%20programming
http://en.wikipedia.org/wiki/Graph%20%28data%20structure%29
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Iterator%23C.2B.2B
http://boost.org/libs/iterator/doc/index.html
http://boost.org/libs/utility/operators.htm
http://boost.org/libs/tokenizer/index.html
http://en.wikipedia.org/wiki/Main%20memory
http://boost.org/libs/pool/doc/index.html
http://boost.org/libs/smart_ptr/smart_ptr.htm
http://boost.org/libs/smart_ptr/scoped_ptr.htm
http://boost.org/libs/smart_ptr/scoped_array.htm
http://boost.org/libs/smart_ptr/shared_ptr.htm
http://boost.org/libs/smart_ptr/shared_array.htm

Boost Library

• WEAK_PTR105 - Provides a "weak" reference to an object that is already
managed by a shared_ptr

• INTRUSIVE_PTR106 - Similared to shared_ptr, but uses a reference count
provided by the pointee

• UTILITY107 - Miscellaneous support classes, including:
• BASE FROM MEMBER IDIOM108 - Provides a workaround for a class that

needs to initialize a member of a base class inside its own (i.e., the derived
class’) constructor’s initializer list

• CHECKED DELETE109 - Check if an attempt is made to destroy an object or
array of objects using a pointer to an incomplete type

• NEXT AND PRIOR FUNCTIONS110 - Allow for easier motion of a forward
or bidirectional iterator, especially when the results of such a motion need
to be stored in a separate iterator (i.e., should not change the original
iterator)

• NONCOPYABLE111 - Allows for the prohibition of copy construction and
copy assignment

• ADDRESSOF112 - Allows for the acquisition of an object’s real address,
bypassing any overloads of operator&(), in the process

• RESULT_OF113 - Helps in the determination of the type of a call expression
• Miscellaneous
• PARSERS114

• Preprocessor metaprogramming
• STRING115 and text processing

• LEXICAL_CAST116 - Type conversions to/from text
• FORMAT117 - Type safe argument formatting according to a format string
• IOSTREAMS118 - C++ streams and stream buffer assistance for new

sources/sinks, filters framework

105 HTTP://BOOST.ORG/LIBS/SMART_PTR/WEAK_PTR.HTM
106 HTTP://BOOST.ORG/LIBS/SMART_PTR/INTRUSIVE_PTR.HTML
107 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM
108 HTTP://BOOST.ORG/LIBS/UTILITY/BASE_FROM_MEMBER.HTML
109 HTTP://BOOST.ORG/LIBS/UTILITY/CHECKED_DELETE.HTML
110 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#FUNCTIONS_NEXT_PRIOR
111 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#CLASS_NONCOPYABLE
112 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#ADDRESSOF
113 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#RESULT_OF
114 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPIRIT%20PARSER%20FRAMEWORK
115 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRING%20%28COMPUTER%20SCIENCE%29
116 HTTP://BOOST.ORG/LIBS/CONVERSION/LEXICAL_CAST.HTM
117 HTTP://BOOST.ORG/LIBS/FORMAT/INDEX.HTML
118 HTTP://BOOST.ORG/LIBS/IOSTREAMS/DOC/INDEX.HTML

615

http://boost.org/libs/smart_ptr/weak_ptr.htm
http://boost.org/libs/smart_ptr/intrusive_ptr.html
http://boost.org/libs/utility/utility.htm
http://boost.org/libs/utility/base_from_member.html
http://boost.org/libs/utility/checked_delete.html
http://boost.org/libs/utility/utility.htm#functions_next_prior
http://boost.org/libs/utility/utility.htm#Class_noncopyable
http://boost.org/libs/utility/utility.htm#addressof
http://boost.org/libs/utility/utility.htm#result_of
http://en.wikipedia.org/wiki/Spirit%20parser%20framework
http://en.wikipedia.org/wiki/String%20%28computer%20science%29
http://boost.org/libs/conversion/lexical_cast.htm
http://boost.org/libs/format/index.html
http://boost.org/libs/iostreams/doc/index.html

Beyond the Standard

• REGEX119 - Support for regular expressions
• SPIRIT120 - An object-oriented recursive-descent parser generator framework
• STRING ALGORITHMS121 - A collection of various algorithms related to

strings
• TOKENIZER122 - Allows for the partitioning of a string or other character

sequence into TOKEN123s
• WAVE124 - Standards conformant implementation of the mandated C99125 /

C++ pre-processor functionality packed behind an easy to use interface
• TEMPLATE METAPROGRAMMING126

• MPL127 - A general purpose high-level metaprogramming framework of
compile-time algorithms, sequences and metafunctions

• STATIC ASSERT128 - Compile time assertion support
• TYPE TRAITS129 - Templates that define the fundamental properties of types

• Workarounds for broken compilers

The current Boost release contains 87 individual libraries, including the following
three:

6.5.2 noncopyable

The boost::noncopyable utility class that ENSURES THAT OBJECTS OF A

CLASS ARE NEVER COPIED130.

class C : boost::noncopyable
{
...

};

119 HTTP://WWW.BOOST.ORG/DOC/LIBS/1_44_0/LIBS/REGEX/DOC/HTML/
INDEX.HTML

120 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPIRIT%20PARSER%20FRAMEWORK
121 HTTP://BOOST.ORG/DOC/HTML/STRING_ALGO.HTML
122 HTTP://BOOST.ORG/LIBS/TOKENIZER/INDEX.HTML
123 HTTP://EN.WIKIPEDIA.ORG/WIKI/TOKEN%20%28PARSER%29
124 HTTP://BOOST.ORG/LIBS/WAVE/INDEX.HTML
125 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99
126 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING
127 HTTP://BOOST.ORG/LIBS/MPL/DOC/INDEX.HTML
128 HTTP://BOOST.ORG/DOC/HTML/BOOST_STATICASSERT.HTML
129 HTTP://BOOST.ORG/DOC/HTML/BOOST_TYPETRAITS.HTML
130 Chapter 4.3.1 on page 412

616

http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/index.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/index.html
http://en.wikipedia.org/wiki/Spirit%20Parser%20Framework
http://boost.org/doc/html/string_algo.html
http://boost.org/libs/tokenizer/index.html
http://en.wikipedia.org/wiki/token%20%28parser%29
http://boost.org/libs/wave/index.html
http://en.wikipedia.org/wiki/C99
http://en.wikipedia.org/wiki/Template%20metaprogramming
http://boost.org/libs/mpl/doc/index.html
http://boost.org/doc/html/boost_staticassert.html
http://boost.org/doc/html/boost_typetraits.html

Boost Library

6.5.3 Linear algebra – uBLAS

Boost includes the uBLAS LINEAR ALGEBRA131 library, with BLAS132 support
for vectors and matrices. uBlas supports a wide range of linear algebra
operations, and has bindings to some widely used numerics libraries, such as
ATLAS, BLAS and LAPACK.

• Example showing how to multiply a vector with a matrix:
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <iostream>

using namespace boost::numeric::ublas;

/* "y = Ax" example */
int main ()
{

vector<double> x(2);
x(0) = 1; x(1) = 2;

matrix<double> A(2,2);
A(0,0) = 0; A(0,1) = 1;
A(1,0) = 2; A(1,1) = 3;

vector<double> y = prod(A, x);

std::cout << y << std::endl;
return 0;

}

6.5.4 Generating random numbers – Boost.Random

Boost provides distribution-independent PSEUDORANDOM NUMBER

GENERATOR133s and PRNG-independent probability distributions, which are
combined to build a concrete generator.

• Example showing how to sample from a NORMAL DISTRIBUTION134 using the
MERSENNE TWISTER135 generator:

#include <boost/random.hpp>

131 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINEAR%20ALGEBRA
132 HTTP://EN.WIKIPEDIA.ORG/WIKI/BASIC%20LINEAR%20ALGEBRA%

20SUBPROGRAMS
133 HTTP://EN.WIKIPEDIA.ORG/WIKI/PSEUDORANDOM%20NUMBER%20GENERATOR
134 HTTP://EN.WIKIPEDIA.ORG/WIKI/NORMAL%20DISTRIBUTION
135 HTTP://EN.WIKIPEDIA.ORG/WIKI/MERSENNE%20TWISTER

617

http://en.wikipedia.org/wiki/linear%20algebra
http://en.wikipedia.org/wiki/Basic%20Linear%20Algebra%20Subprograms
http://en.wikipedia.org/wiki/Basic%20Linear%20Algebra%20Subprograms
http://en.wikipedia.org/wiki/pseudorandom%20number%20generator
http://en.wikipedia.org/wiki/normal%20distribution
http://en.wikipedia.org/wiki/Mersenne%20Twister

Beyond the Standard

#include <ctime>

using namespace boost;

double SampleNormal (double mean, double sigma)
{

// Create a Mersenne twister random number generator
// that is seeded once with #seconds since 1970
static mt19937 rng(static_cast<unsigned> (std::time(0)));

// select Gaussian probability distribution
normal_distribution<double> norm_dist(mean, sigma);

// bind random number generator to distribution, forming a function
variate_generator<mt19937&, normal_distribution<double> >

normal_sampler(rng, norm_dist);

// sample from the distribution
return normal_sampler();

}

See BOOST RANDOM NUMBER LIBRARY136 for more details.

6.5.5 Multi-threading – Boost.Thread

Example code that demonstrates creation of threads:

#include <boost/thread/thread.hpp>
#include <iostream>

using namespace std;

void hello_world()
{
cout << "Hello world, I’m a thread!" << endl;

}

int main(int argc, char* argv[])
{
// start two new threads that calls the "hello_world" function
boost::thread my_thread1(&hello_world);
boost::thread my_thread2(&hello_world);

// wait for both threads to finish
my_thread1.join();
my_thread2.join();

return 0;
}

136 HTTP://BOOST.ORG/LIBS/RANDOM/

618

http://boost.org/libs/random/

Boost Library

See also THREADING WITH BOOST - PART I: CREATING THREADS137

6.5.6 Thread locking

Example usage of a mutex to enforce exclusive access to a function:

#include <iostream>
#include <boost/thread.hpp>

void locked_function ()
{

// function access mutex
static boost::mutex m;
// wait for mutex lock
boost::mutex::scoped_lock lock(m);

// critical section
// TODO: Do something

// auto-unlock on return
}

int main (int argc, char* argv[])
{

locked_function();
return 0;

}

Example of read/write locking of a property:

#include <iostream>
#include <boost/thread.hpp>

/** General class for thread-safe properties of any type. */
template <class T>
class lock_prop : boost::noncopyable {
public:

lock_prop () {}

/** Set property value. */
void operator = (const T & v) {

// wait for exclusive write access
boost::unique_lock<boost::shared_mutex> lock(mutex);

value = v;
}

/** Get property value. */
T operator () () const {

// wait for shared read access

137 HTTP://ANTONYM.ORG/2009/05/THREADING-WITH-BOOST---PART-I-CREATING-THREADS.
HTML

619

http://antonym.org/2009/05/threading-with-boost---part-i-creating-threads.html
http://antonym.org/2009/05/threading-with-boost---part-i-creating-threads.html

Beyond the Standard

boost::shared_lock<boost::shared_mutex> lock(mutex);

return value;
}

private:
/// Property value.
T value;
/// Mutex to restrict access
mutable boost::shared_mutex mutex;

};

int main () {
// read/write locking property
lock_prop<int> p1;
p1 = 10;
int a = p1();

return 0;
}

• INTRODUCTION TO BOOST.THREADS138 in DR. DOBB’S JOURNAL139.
(2002)

• WHAT’S NEW IN BOOST THREADS?140 in DR. DOBB’S JOURNAL141. (2008)
• Boost.Threads API REFERENCE142.
• THREADPOOL LIBRARY143 based on Boost.Thread
144

6.6 Cross-Platform development

The section is to introduce programmer to programming with the aim of
portability across several OSs environments. In today’s world it does not seem
appropriate to constrain applications to a single operating system or computer
platform, and there is an increasing need to address programming in a cross
platform manner.
145

138 HTTP://WWW.DDJ.COM/DEPT/CPP/184401518
139 HTTP://EN.WIKIPEDIA.ORG/WIKI/DR.%20DOBB%27S%20JOURNAL
140 HTTP://WWW.DDJ.COM/CPP/211600441
141 HTTP://EN.WIKIPEDIA.ORG/WIKI/DR.%20DOBB%27S%20JOURNAL
142 HTTP://WWW.BOOST.ORG/DOC/HTML/THREAD.HTML
143 HTTP://THREADPOOL.SOURCEFORGE.NET
144 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
145 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

620

http://www.ddj.com/dept/cpp/184401518
http://en.wikipedia.org/wiki/Dr.%20Dobb%27s%20Journal
http://www.ddj.com/cpp/211600441
http://en.wikipedia.org/wiki/Dr.%20Dobb%27s%20Journal
http://www.boost.org/doc/html/thread.html
http://threadpool.sourceforge.net
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Cross-Platform development

6.6.1 The Windows 32 API

Win32 API is a set of functions defined in the Windows OS, in other words it is the
Windows API, this is the name given by Microsoft to the core set of
APPLICATION PROGRAMMING INTERFACE146s available in the MICROSOFT

WINDOWS147 OPERATING SYSTEMS148. It is designed for usage by C149/C++150

programs and is the most direct way to interact with a Windows system for
SOFTWARE APPLICATIONS151. Lower level access to a Windows system, mostly
required for DEVICE DRIVERS152, is provided by the WINDOWS DRIVER

MODEL153 in current versions of Windows.

One can get more information about the API and support from Microsoft itself,
using the MSDN Library (HTTP://MSDN.MICROSOFT.COM/154) essentially a
resource for developers using Microsoft tools, products, and technologies. It
contains a bounty of technical programming information, including sample code,
documentation, technical articles, and reference guides. You can also check out
Wikibooks WINDOWS PROGRAMMING155 book for some more detailed
information that goes beyond the scope of this book.

A SOFTWARE DEVELOPMENT KIT156 (SDK) is available for Windows, which
provides documentation and tools to enable developers to create software using
the Windows API and associated Windows technologies. (
HTTP://WWW.MICROSOFT.COM/DOWNLOADS/157)

History

The Windows API has always exposed a large part of the underlying structure of
the various Windows systems for which it has been built to the programmer. This
has had the advantage of giving Windows programmers a great deal of flexibility

146 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20PROGRAMMING%
20INTERFACE

147 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20WINDOWS
148 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEMS
149 HTTP://EN.WIKIPEDIA.ORG/WIKI/C
150 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%20PLUS%20PLUS
151 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20SOFTWARE
152 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEVICE%20DRIVERS
153 HTTP://EN.WIKIPEDIA.ORG/WIKI/WINDOWS%20DRIVER%20MODEL
154 HTTP://MSDN.MICROSOFT.COM/
155 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS%20PROGRAMMING
156 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20DEVELOPMENT%20KIT
157 HTTP://WWW.MICROSOFT.COM/DOWNLOADS/

621

http://en.wikipedia.org/wiki/application%20programming%20interface
http://en.wikipedia.org/wiki/application%20programming%20interface
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/operating%20systems
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/C%20Plus%20Plus
http://en.wikipedia.org/wiki/Application%20software
http://en.wikipedia.org/wiki/device%20drivers
http://en.wikipedia.org/wiki/Windows%20Driver%20Model
http://msdn.microsoft.com/
http://en.wikibooks.org/wiki/Windows%20Programming
http://en.wikipedia.org/wiki/software%20development%20kit
http://www.microsoft.com/downloads/

Beyond the Standard

and power over their applications. However, it also has given Windows
applications a great deal of responsibility in handling various low-level,
sometimes tedious, operations that are associated with a GRAPHICAL USER

INTERFACE158.

CHARLES PETZOLD159, writer of various well read Windows API books, has
said: "The original hello-world program in the Windows 1.0 SDK was a bit of a
scandal. HELLO.C was about 150 lines long, and the HELLO.RC resource script
had another 20 or so more lines. (...) Veteran C programmers often curled up in
horror or laughter when encountering the Windows hello-world program.". A
HELLO WORLD PROGRAM160 is a often used programming example, usually
designed to show the easiest possible application on a system that can actually do
something (i.e. print a line that says "Hello World").

Over the years, various changes and additions were made to the Windows
Operating System, and the Windows API changed and grew to reflect this. The
windows API for WINDOWS 1.0161 supported less than 450 FUNCTION

CALLS162, where in modern versions of the Windows API there are thousands. In
general, the interface has remained fairly consistent however, and a old Windows
1.0 application will still look familiar to a programmer who is used to the modern
Windows API.

A large emphasis has been put by MICROSOFT163 on maintaining software
BACKWARDS COMPATIBILITY164. To achieve this, Microsoft sometimes went as
far as supporting software that was using the API in a undocumented or even
(programmatically) illegal way. RAYMOND CHEN165, a Microsoft developer who
works on the Windows API, has said that he "could probably write for months
solely about bad things apps do and what we had to do to get them to work again
(often in spite of themselves). Which is why I get particularly furious when people
accuse Microsoft of maliciously breaking applications during OS upgrades. If
any application failed to run on Windows 95, I took it as a personal failure."

158 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRAPHICAL%20USER%20INTERFACE
159 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARLES%20PETZOLD
160 HTTP://EN.WIKIPEDIA.ORG/WIKI/HELLO%20WORLD%20PROGRAM
161 HTTP://EN.WIKIPEDIA.ORG/WIKI/WINDOWS%201.0
162 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE
163 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT
164 HTTP://EN.WIKIPEDIA.ORG/WIKI/BACKWARDS%20COMPATIBILITY
165 HTTP://EN.WIKIPEDIA.ORG/WIKI/RAYMOND%20CHEN

622

http://en.wikipedia.org/wiki/Graphical%20user%20interface
http://en.wikipedia.org/wiki/Charles%20Petzold
http://en.wikipedia.org/wiki/hello%20world%20program
http://en.wikipedia.org/wiki/Windows%201.0
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/backwards%20compatibility
http://en.wikipedia.org/wiki/Raymond%20Chen

Cross-Platform development

Variables and Win32

Win32 uses an extended set of data types, using C’s typedef mechanism These
include:

• BYTE - unsigned 8 bit integer.
• DWORD - 32 bit unsigned integer.
• LONG - 32 bit signed integer.
• LPDWORD - 32 bit pointer to DWORD.
• LPCSTR - 32 bit pointer to constant character string.
• LPSTR - 32 bit pointer to character string.
• UINT - 32 bit unsigned int.
• WORD - 16 bit unsigned int.
• HANDLE - opaque pointer to system data.

Of course standard data types are also available when programming with Win32
API.

Windows Libraries (DLLs)

In Windows, library code exists in a number of forms, and can be accessed in
various ways.

Normally, the only thing that is needed is to include in the appropriate header file
on the source code the information to the compiler, and linking to the .lib file will
occur during the linking phase.

This .lib file either contains code which is to be statically linked into compiled
object code or contains code to allow access to a dynamically link to a binary
library(.DLL) on the system.

It is also possible to generate a binary library .DLL within C++ by including
appropriate information such as an import/export table when compiling and
linking.

DLLs stand for Dynamic Link Libraries, the basic file of functions that are used in
some programs. Many newer C++ IDEs such as Dev-CPP support such libraries.

Common libraries on Windows include those provided by the Platform Software
Development Kit, Microsoft Foundation Class and a C++ interface to .Net
Framework assemblies.

623

Beyond the Standard

Although not strictly use as library code, the Platform SDK and other libraries
provide a set of standardized interfaces to objects accessible via the COMPONENT

OBJECT MODEL166 implemented as part of Windows.

API conventions and Win32 API Functions (by focus)

Time

Time measurement has to come from the OS in relation to the hardware it is run,
unfortunately most computers don’t have a standard high-accuracy,
high-precision time clock that is also quick to access.

MSDN Time Functions (
HTTP://MSDN.MICROSOFT.COM/LIBRARY/DEFAULT.ASP?URL=/LIBRARY/EN-
US/SYSINFO/BASE/TIME_FUNCTIONS.ASP167

)

Timer Function Performance (
HTTP://DEVELOPER.NVIDIA.COM/OBJECT/TIMER_FUNCTION_-
PERFORMANCE.HTML168

)

GetTickCount has a precision (dependent on your timer tick rate) of one
millisecond, its accuracy typically within a 10-55ms expected error, the best thing
is that it increments at a constant rate. (WaitForSingleObject uses the same timer).

GetSystemTimeAsFileTime has a precision of 100-nanoseconds, its accuracy is
similar to GetTickCount.

QueryPerformanceCounter can be slower to obtain but has higher accuracy,
uses the HAL (with some help from ACPI) a problem with it is that it can travel
back in time on over-clocked PCs due to garbage on the LSBs, note that the
functions fail unless the supplied LARGE_INTEGER is DWORD aligned.

Performance counter value may unexpectedly leap forward (
HTTP://SUPPORT.MICROSOFT.COM/DEFAULT.ASPX?SCID=KB;EN-

166 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPONENT%20OBJECT%20MODEL
167 HTTP://MSDN.MICROSOFT.COM/LIBRARY/DEFAULT.ASP?URL=/LIBRARY/

EN-US/SYSINFO/BASE/TIME_FUNCTIONS.ASP
168 HTTP://DEVELOPER.NVIDIA.COM/OBJECT/TIMER_FUNCTION_PERFORMANCE.

HTML

624

http://en.wikipedia.org/wiki/Component%20Object%20Model
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/time_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/time_functions.asp
http://developer.nvidia.com/object/timer_function_performance.html
http://developer.nvidia.com/object/timer_function_performance.html

Cross-Platform development

US;Q274323&169

)

timeGetTime (via winmm.dll) has a precision of ˜5ms.

File System

MakeSureDirectoryPathExists (via Image Help Library - IMAGHLP.DLL,
#pragma comment(lib, "imagehlp.lib"), #include <imagehlp.h>)
creates directories, only useful to create/force the existence of a given dir tree or
multiple directories, or if the linking is already present, note that it is single
threaded.

Resources

Resources are perhaps one of the most useful elements of the WIN32 API, they
are how we program menu’s, add icons, backgrounds, music and many more
aesthetically pleasing elements to our programs.

They are defined in a .rc file (resource c) and are included at the linking phase of
compile. Resource files work hand in hand with a header file (usually called
resource.h) which carries the definitions of each ID.

For example a simple RC file might contain a menu:

POPUP "&File"

BEGIN

MENUITEM "&About", ID_FILE_ABOUT

MENUITEM "E&xit", ID_FILE_EXIT

END

POPUP "&Edit"

BEGIN

// Insert menu here :p

END

POPUP "&Links"

BEGIN

169 HTTP://SUPPORT.MICROSOFT.COM/DEFAULT.ASPX?SCID=KB;EN-US;
Q274323&

625

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&

Beyond the Standard

MENUITEM "&Visit Lukem_95’s Website", ID_LINK_WEBSITE

MENUITEM "G&oogle.com", ID_LINK_GOOGLE

END

END

//////////////

And the corresponding H file:

#define IDR_MYMENU 9000

#define ID_FILE_EXIT 9001

#define ID_LINK_WEBSITE 9002

#define ID_LINK_GOOGLE 9003
#define ID_FILE_ABOUT 9004

Network

Network applications are often built in C++ on windows utilizing the WinSock
API functions.
170

Win32 API Wrappers

Since the Win32 API is C based and also a moving target and since some alter-
ations are done in each OS version some wrappers were created, in this section
you will find some of the approaches available to facilitate the use of the API in a

170 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

626

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Cross-Platform development

C++ setup and provide abstraction from the low level stuff with higher level imple-
mentations of common needed features, dealing with the GUI, complex controls
even communications and database access.

Microsoft Foundation Classes (MFC);

a C++ library for developing Windows applications and UI components. Created
by Microsoft for the C++ Windows programmer as an abstraction layer for the
Win32 API, the use of the new STL enabled capabilities is scarce on the MFC.
It’s also compatible with Windows CE (the pocket PC version of the OS). MFC
was designed to use the Document-View pattern a variant of the Model View
Controller (MVC) pattern.
More info about MFC can be obtained on the WINDOWS PROGRAMMING171

Wikibook.

Windows Template Library (WTL);

a C++ library for developing Windows applications and UI components. It ex-
tends ATL (Active Template Library) and provides a set of classes for controls,
dialogs, frame windows, GDI objects, and more. This library is not supported by
Microsoft Services (but is used internally at MS and available for download at
MSDN).

Win32 Foundation Classes (WFC);

(HTTP://WWW.SAMBLACKBURN.COM/WFC/)172 a library of C++ classes that
extend Microsoft Foundation Classes (MFC) to do NT specific things.

Borland Visual Component Library (VCL);

a Delphi/C++ library for developing Windows applications, UI components and
different kinds of service applications. Created by Borland as an abstraction layer
for the Win32 API, but also implementing many non-visual, and non windows-
specific objects, like AnsiString class for example.

Note:
There are more generic wrapper that do not focus exclusively on the Windows
API, like the Qt (framework) or WxWidgets these are covered on the GENERIC

WRAPPERS SECTIONa of the book.

a Chapter on page 628

171 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS%20PROGRAMMING%23SECTION_
3%3A_MICROSOFT_FOUNDATION_CLASSES_AND_COM

172 HTTP://WWW.SAMBLACKBURN.COM/WFC/)

627

http://en.wikibooks.org/wiki/Windows%20Programming%23Section_3%3A_Microsoft_Foundation_Classes_and_COM
http://en.wikibooks.org/wiki/Windows%20Programming%23Section_3%3A_Microsoft_Foundation_Classes_and_COM
http://www.samblackburn.com/wfc/)

Beyond the Standard

173

6.6.2 Generic wrappers

Generic GUI/API wrappers are programming libraries that provide a uniform plat-
form neutral interface (API) to the operating system regardless of underlying plat-
form. Such libraries greatly simplify development of cross-platform software.

Using a wrapper as a portability layer will offer applications some or all following
benefits:

• Independence from the hardware.
• Independence from the Operating System.

• Independence from changes made to specific releases.
• Independence from API styles and error codes.

Cross-platform programming is more than only GUI programming. Cross-
platform programming deals with the minimum requirements for the sections of
code that aren’t specified by the C++ Standard Language, so as programs can be
compiled and run across different hardware platforms.

Here is some cross-platform GUI toolkit:

• GTKMM174 - an interface for the C GUI library GTK+. It is not cross-platform
by design, but rather mutli-platform i.e. can be used on many platform.

• QT175 (HTTP://QT.NOKIA.COM)176 - a cross-platform (Qt is the basis for
the Linux KDE desktop environment and supports the X Window System
(Unix/X11), Apple Mac OS X, Microsoft Windows NT/9x/2000/XP/Vista/7 and
the Symbian OS), it is an object-oriented application development framework,
widely used for the development of GUI programs (in which case it is known as
a widget toolkit), and for developing non-GUI programs such as console tools
and servers. Used in numerous commercial applications such as Google Earth,
Skype for Linux and Adobe Photoshop Elements. Released under the LGPL or
a commercial license.

• WXWIDGETS177 (HTTP://WWW.WXWINDOWS.ORG/)178 - a widget toolkit for
creating graphical user interfaces (GUIs) for cross-platform applications on

173 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
174 HTTP://EN.WIKIPEDIA.ORG/WIKI/GTKMM
175 HTTP://EN.WIKIBOOKS.ORG/WIKI/QT
176 HTTP://QT.NOKIA.COM)
177 HTTP://EN.WIKIPEDIA.ORG/WIKI/WXWIDGETS
178 HTTP://WWW.WXWINDOWS.ORG/)

628

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Gtkmm
http://en.wikibooks.org/wiki/Qt
http://qt.nokia.com)
http://en.wikipedia.org/wiki/WxWidgets
http://www.wxwindows.org/)

Cross-Platform development

Win32, Mac OS X, GTK+, X11, Motif, WinCE, and more using one codebase.
It can be used from languages such as C++, Python, Perl, and C#/.NET. Unlike
other cross-platform toolkits, wxWidgets applications look and feel native. This
is because wxWidgets uses the platform’s own native controls rather than em-
ulating them. It’s also extensive, free, open-source, and mature. wxWidgets is
more than a GUI development toolkit it provides classes for files and streams,
application settings, multiple threads, interprocess communication, database ac-
cess and more.

• FLTK179 The "Fast, Light Toolkit"
180

6.6.3 Multi-tasking

MULTI-TASKING181 is a process by which multiple tasks (also known as PRO-
CESSES182), share common processing resources such as a CPU183.

A computer with a single CPU, will only run one process at a time. By running
it means that in a specific point in time, the CPU is actively executing instructions
for that process. With a single CPU, systems using SCHEDULING184 can achieve
multi-tasking, by which the time of the processor is time-shared by several pro-
cesses, permitting each to advance their computations, seemingly in parallel. A
process runs for some time and another waiting gets a turn.

The act of reassigning a CPU from one task to another one is called a CONTEXT

SWITCH185. When context switches occur frequently enough, the illusion of PAR-
ALLELISM186 is achieved.

Note:
Context switching has a cost; when deciding to use multi-tasks, a programmer
must be aware of trade-offs in performance.

179 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLTK
180 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
181 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20MULTITASKING
182 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PROCESSES
183 HTTP://EN.WIKIPEDIA.ORG/WIKI/CENTRAL%20PROCESSING%20UNIT
184 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCHEDULING%20%28COMPUTING%29
185 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONTEXT%20SWITCH
186 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARALLEL%20COMPUTING

629

http://en.wikipedia.org/wiki/Fltk
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Computer%20multitasking
http://en.wikibooks.org/wiki/%23Processes
http://en.wikipedia.org/wiki/Central%20processing%20unit
http://en.wikipedia.org/wiki/Scheduling%20%28computing%29
http://en.wikipedia.org/wiki/context%20switch
http://en.wikipedia.org/wiki/Parallel%20computing

Beyond the Standard

Even on computers with more than one CPU, MULTIPROCESSOR187 machines,
multi-tasking allows many more tasks to be run than there are CPUs.

Operating systems may adopt one of many different SCHEDULING STRATE-
GIES188, which generally fall into the following categories:

• In MULTIPROGRAMMING189 systems, the running task keeps running until it
performs an operation that requires waiting for an external event (e.g. reading
from a tape) or until the computer’s scheduler forcibly swaps the running task out
of the CPU. Multiprogramming systems are designed to maximize CPU usage.

• In TIME-SHARING190 systems, the running task is required to relinquish the
CPU, either voluntarily or by an external event such as a HARDWARE INTER-
RUPT191. Time sharing systems are designed to allow several programs to ex-
ecute apparently simultaneously. The term time-sharing used to define this be-
havior is no longer in use, having been replaced by the term multi-tasking.

• In REAL-TIME192 systems, some waiting tasks are guaranteed to be given the
CPU when an external event occurs. Real time systems are designed to control
mechanical devices such as industrial robots, which require timely processing.

Multi-tasking has already been successfully integrated into current Operating
Systems. Most computers in use today supports running several processes at
a time. This is required for systems using SYMMETRIC MULTIPROCESSOR

(SMP)193 in distributed computing and MULTI-CORE OR CHIP MULTIPROCES-
SORS (CMPS)194 computing, where processors have gone from dual-core to quad-
core and core number will continue to increase. Each technology has its specific
limitations and applicability, but all these technologies share the common objective
of performing concurrent processing.

Note:
Due to the general adoption of the new paradigm it becomes extremely important
to prepare your code for it (plan for scalability), understand guarantees regarding
parallelization, and select external libraries that provide the required support.

187 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPROCESSOR
188 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCHEDULING%20%28COMPUTING%29
189 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPROGRAMMING
190 HTTP://EN.WIKIPEDIA.ORG/WIKI/TIME-SHARING
191 HTTP://EN.WIKIPEDIA.ORG/WIKI/HARDWARE%20INTERRUPT
192 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL-TIME%20COMPUTING
193 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYMMETRIC%20MULTIPROCESSING
194 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTI-CORE%20PROCESSOR

630

http://en.wikipedia.org/wiki/multiprocessor
http://en.wikipedia.org/wiki/Scheduling%20%28computing%29
http://en.wikipedia.org/wiki/multiprogramming
http://en.wikipedia.org/wiki/time-sharing
http://en.wikipedia.org/wiki/hardware%20interrupt
http://en.wikipedia.org/wiki/Real-time%20computing
http://en.wikipedia.org/wiki/Symmetric%20multiprocessing
http://en.wikipedia.org/wiki/Multi-core%20processor

Cross-Platform development

6.6.4 Processes

PROCESS195es are independent execution units that contain their own state infor-
mation, use their own address spaces, and only interact with each other via INTER-
PROCESS COMMUNICATION196 (IPC) mechanisms . A process can be said to at
least contain one thread of execution (not to be confused to a complete thread con-
struct). Processes are managed by the hosting OS in a process data structure. The
maximum number of processes that can run concurrently, depend on the OS and
on the available resources of that system.

Child Process

A child process (also SPAWN PROCESS197), is a process that was created by an-
other process (the PARENT PROCESS198), inheriting most of the parent attributes,
such as opened files. Each process may create many child processes but will have
at most one parent process; if a process does not have a parent this usually indicates
that it was created directly by the KERNEL199.

In UNIX200, a child process is in fact created (using FORK201) as a copy of the
parent. The child process can then OVERLAY202 itself with a different program
(using EXEC203) as required. The very first process, called INIT204, is started by
the kernel at booting time and never terminates; other parentless processes may be
launched to carry out various DAEMON205 tasks in USERSPACE206. Another way
for a process to end up without a parent is, if its parent dies leaving an ORPHAN

PROCESS207; but in this case it will shortly be adopted by init.

195 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCESS%20%28COMPUTING%29
196 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTER-PROCESS_COMMUNICATION
197 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPAWN%20PROCESS
198 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARENT%20PROCESS
199 HTTP://EN.WIKIPEDIA.ORG/WIKI/KERNEL%20%28COMPUTER%20SCIENCE%29
200 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIX
201 HTTP://EN.WIKIPEDIA.ORG/WIKI/FORK%20%28OPERATING%20SYSTEM%29
202 HTTP://EN.WIKIPEDIA.ORG/WIKI/OVERLAY%20%28OPERATING%20SYSTEM%

29
203 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXEC%20%28OPERATING%20SYSTEM%29
204 HTTP://EN.WIKIPEDIA.ORG/WIKI/INIT
205 HTTP://EN.WIKIPEDIA.ORG/WIKI/DAEMON%20%28COMPUTING%29
206 HTTP://EN.WIKIPEDIA.ORG/WIKI/USERSPACE
207 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORPHAN%20PROCESS

631

http://en.wikipedia.org/wiki/process%20%28computing%29
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/spawn%20process
http://en.wikipedia.org/wiki/parent%20process
http://en.wikipedia.org/wiki/kernel%20%28computer%20science%29
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/fork%20%28operating%20system%29
http://en.wikipedia.org/wiki/overlay%20%28operating%20system%29
http://en.wikipedia.org/wiki/overlay%20%28operating%20system%29
http://en.wikipedia.org/wiki/Exec%20%28operating%20system%29
http://en.wikipedia.org/wiki/init
http://en.wikipedia.org/wiki/daemon%20%28computing%29
http://en.wikipedia.org/wiki/userspace
http://en.wikipedia.org/wiki/orphan%20process

Beyond the Standard

Inter-Process Communication (IPC)

IPC is generally managed by the operating system.

Shared Memory
Most of more recent OSs provide some sort of memory protection. In a Unix

system, each process is given its own virtual address space, and the system, in
turn, guarantees that no process can access the memory area of another. If an error
occurs on a process, only that process memory’s contents can be corrupted.

With shared memory, the need of enabling random-access to shared data between
different processes is addressed. But declaring a given section of memory as si-
multaneously accessible by several processes raises the need for control and syn-
chronization, since several processes might try to alter this memory area at the
same time.

6.6.5 Multi-Threading

Until recently, the C++ standard did not include any specification or built-in sup-
port for multi-threading. Therefore, THREADING208 had to be implemented using
special threading libraries, which are often platform dependent, as an extension to
the C++ standard.

Note:
The new C++0x standard supports multi-threading, reducing the need to know
multiple APIs and increasing the portability of code.

Some popular C++ threads libraries include:

(This list is not intended to be complete.)

• BOOST209 - This package includes several libraries, one of which is threads (con-
current programming). the boost threads library is not very full featured, but is
complete, portable, robust and in the flavor of the C++ standard. Uses the boost
license that is similar to the BSD license.

208 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
209 Chapter 6.4.3 on page 610

632

http://en.wikipedia.org/wiki/Thread%20%28computer%20science%29

Cross-Platform development

• INTEL® THREADING BUILDING BLOCKS210 (TBB)211 offers a rich approach
to expressing parallelism in a C++ program. The library helps you take ad-
vantage of multi-core processor performance without having to be a threading
expert. Threading Building Blocks is not just a threads-replacement library. It
represents a higher-level, task-based parallelism that abstracts platform details
and threading mechanism for performance and scalability and performance. It
is an open source project under the GNU General Public License version two
(GPLv2) with the runtime exception.

• ADAPTIVE COMMUNICATION ENVIRONMENT212 (often referred to as ACE) -
Another toolkit which includes a portable threads abstraction along with many
many other facilities, all rolled into one library. Open source released under a
nonstandard but nonrestrictive license.

• ZTHREADS213 - A portable thread abstraction library. This library is feature rich,
deals only with concurrency and is open source licensed under the MIT license.

Of course, you can access the full POSIX and the C language threads interface
from C++ and on Windows the API. So why bother with a library on top of that?

The reason is that things like locks are resources that are allocated, and C++
provides abstractions to make managing these things easier. For instance,
boost::scoped_lock<> uses object construction/destruction to insure that a mu-
tex is unlocked when leaving the lexical scope of the object. Classes like this can be
very helpful in preventing deadlock, race conditions, and other problems unique to
threaded programs. Also, these libraries enable you to write cross-platform multi-
threading code, while using platform-specific function cannot.

In any case when using threading methodology, dictates that you must identify
hotspots, the segments of code that take the most execution time. To determine
the best chance at achieving the maximum performance possible, the task can be
approached from bottom-up and top-down to determine those code segments that
can run in parallel.

In the bottom-up approach, one focus solely on the hotspots in the code. This
requires a deep analysis of the call stack of the application to determine the sections
of code that can be run in parallel and reduce hotspots. In hotspot sections that

210 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEL_THREADING_BUILDING_BLOCKS
211 HTTP://WWW.THREADINGBUILDINGBLOCKS.ORG
212 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADAPTIVE%20COMMUNICATION%

20ENVIRONMENT
213 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZTHREADS

633

http://en.wikipedia.org/wiki/Intel_Threading_Building_Blocks
http://www.threadingbuildingblocks.org
http://en.wikipedia.org/wiki/Adaptive%20Communication%20Environment
http://en.wikipedia.org/wiki/Adaptive%20Communication%20Environment
http://en.wikipedia.org/wiki/ZThreads

Beyond the Standard

employ concurrency, it is still required to move that concurrency at a point higher
up in the call stack as to increase the GRANULARITY214 of each thread execution.

Using the top-down approach, the focus is on all the parts of the application, in
determining what computations can be coded to run in parallel, at a higher level of
abstraction. Reducing the level of abstraction until the overall performance gains
are sufficient to reach the necessary goals, the benefit being speed of implemen-
tation and code re-usability. This is also the best method for archiving a optimal
level of GRANULARITY215 for all computations.

Threads vs. Processes

Both threads and processes are methods of parallelizing an application, its imple-
mentation may differ from one OPERATING SYSTEM216 to another. A process has
always one thread of execution, also known as the primary thread. In general, a
thread is contained inside a process (in the address space of the process) and dif-
ferent threads of the same process share some resources while different processes
do not.

Atomicity

Atomicity refers to atomic operations that are indivisible and/or uninterruptible.
Even on a single core, you cannot assume that an operation will be atomic. In that
regard only when using assembler can one guarantee the atomicity of an operation.
Therefore, the C++ standard provides some guarantees as do operating systems and
external libraries.

An atomic operation can also be seen as any given set of OPERATION217s that can
be combined so that they appear to the rest of the system to be a single operation
with only two possible outcomes: success or failure. This all depends on the level
of abstraction and underling guarantees.

All modern processors provide basic atomic primitives which are then used to
build more complex atomic objects. In addition to atomic read and write oper-
ations, most platforms provide an atomic read-and-update operation like TEST-

214 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COMPUTATION_GRANULARITY
215 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COMPUTATION_GRANULARITY
216 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM
217 HTTP://EN.WIKIPEDIA.ORG/WIKI/INSTRUCTION%20%28COMPUTER%

20SCIENCE%29

634

http://en.wikibooks.org/wiki/%23Computation_granularity
http://en.wikibooks.org/wiki/%23Computation_granularity
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/Instruction%20%28computer%20science%29
http://en.wikipedia.org/wiki/Instruction%20%28computer%20science%29

Cross-Platform development

AND-SET218 or COMPARE-AND-SWAP219, or a pair of operations like LOAD-
LINK/STORE-CONDITIONAL220 that only have an effect if they occur atomically
(that is, with no intervening, conflicting update). These can be used to implement
LOCKS221, a vital mechanism for multi-threaded programming, allowing invariants
and atomicity to be enforced across groups of operations.

Many PROCESSORS222, especially 32-BIT223 ones with 64-BIT224 FLOATING

POINT225 support, provide some read and write operations that are not atomic: one
THREAD226 reading a 64-bit register while another thread is writing to it may see
a combination of both "before" and "after" values, a combination that may never
actually have been written to the register. Further, only single operations are guar-
anteed to be atomic; threads arbitrarily performing groups of reads and writes will
also observe a mixture of "before" and "after" values. Clearly, invariants cannot be
relied on when such effects are possible.

If not dealing with known guaranteed atomic operations, one should rely on the
synchronization primitives at the level of abstraction that one is coding to.

Example - One process

For example, imagine a single process is running on a computer incrementing a
value in a given MEMORY LOCATION227. To increment the value in that memory
location:

1. the process reads the value in the memory location;
2. the process adds one to the value;
3. the process writes the new value back into the memory location.

Example - Two processes

218 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEST-AND-SET
219 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARE-AND-SWAP
220 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOAD-LINK%2FSTORE-CONDITIONAL
221 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOCK%20%28SOFTWARE%20ENGINEERING%

29
222 HTTP://EN.WIKIPEDIA.ORG/WIKI/CENTRAL%20PROCESSING%20UNIT
223 HTTP://EN.WIKIPEDIA.ORG/WIKI/32-BIT
224 HTTP://EN.WIKIPEDIA.ORG/WIKI/64-BIT
225 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLOATING%20POINT
226 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
227 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY%20LOCATION

635

http://en.wikipedia.org/wiki/test-and-set
http://en.wikipedia.org/wiki/compare-and-swap
http://en.wikipedia.org/wiki/Load-Link%2FStore-Conditional
http://en.wikipedia.org/wiki/Lock%20%28software%20engineering%29
http://en.wikipedia.org/wiki/Lock%20%28software%20engineering%29
http://en.wikipedia.org/wiki/central%20processing%20unit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/floating%20point
http://en.wikipedia.org/wiki/Thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/memory%20location

Beyond the Standard

Now, imagine two processes are running incrementing a single, shared memory
location:

1. the first process reads the value in memory location;
2. the first process adds one to the value;

but before it can write the new value back to the memory location it is suspended,
and the second process is allowed to run:

1. the second process reads the value in memory location, the same value that
the first process read;

2. the second process adds one to the value;
3. the second process writes the new value into the memory location.

The second process is suspended and the first process allowed to run again:

1. the first process writes a now-wrong value into the memory location, un-
aware that the other process has already updated the value in the memory
location.

This is a trivial example. In a real system, the operations can be more complex
and the errors introduced extremely subtle. For example, reading a 64-bit value
from memory may actually be implemented as two SEQUENTIAL228 reads of two
32-bit memory locations. If a process has only read the first 32-bits, and before it
reads the second 32-bits the value in memory gets changed, it will have neither the
original value nor the new value but a mixed-up GARBAGE229 value.

Furthermore, the specific order in which the processes run can change the results,
making such an error difficult to detect and debug.

OS and portability

Considerations are not only necessary with regard to the underling hardware but
also in dealing with the different OS APIs. When porting code across different
OSs one should consider what guarantees are provided. Similar considerations are
necessary when dealing with external libraries.

228 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEQUENCE
229 HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE%20%28COMPUTER%20SCIENCE%

29

636

http://en.wikipedia.org/wiki/sequence
http://en.wikipedia.org/wiki/garbage%20%28computer%20science%29
http://en.wikipedia.org/wiki/garbage%20%28computer%20science%29

Cross-Platform development

Note:
For instance on the Macintosh, the set file position call is atomic, whereas on
Windows, it’s a pair of calls.

Race condition

A RACE CONDITION230 (data race, or simply race), occurs when data is accessed
concurrently from multiple execution paths. It happens for instance when multiple
threads have shared access to the same resource such as a file or a block of memory,
and at least one of the accesses is a write. This can lead to interference with one
another.

Threaded programming is built around predicates and shared data. It is necessary
to identify all possible execution paths and identify truly independent computa-
tions. To avoid problems it is best to implement concurrency at the highest level
possible.

Most race conditions occur due to an erroneous assumption about the order in
which threads will run. When dealing with shared variables, never assume that
a threaded write operation will precede a threaded read operation. If you need
guarantees you should see if synchronization primitives are available, and if not,
you should implement your own.

Locking
LOCKING231 temporarily prevents un-shareable resources from being used simul-

taneously. Locking can be achieved by using a synchronization object.

One of the biggest problems with threading is that locking requires analysis and
understanding of the data and code relationships. This complicates software
development--especially when targeting multiple operating systems. This makes
multi-threaded programming more like art than science.

The number of locks (depending on the synchronization object) may be limited by
the OS. A lock can be set to protect more than one resource, if always accessed in
the same critical region.

230 HTTP://EN.WIKIPEDIA.ORG/WIKI/RACE_CONDITION%23COMPUTING
231 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOCK_%28COMPUTER_SCIENCE%29

637

http://en.wikipedia.org/wiki/Race_condition%23Computing
http://en.wikipedia.org/wiki/Lock_%28computer_science%29

Beyond the Standard

Critical section
A CRITICAL SECTION232 is a region defined as critical to the parallelization of

code execution. The term is used to define code sections that need to be executed
in isolation with respect to other code in the program.

This is a common fundamental concept. These sections of code need to be pro-
tected by a synchronization technique as they can create race conditions.

Deadlock
A DEADLOCK233 is said to happen whenever there is a lock operation that results

in a never-ending waiting cycle among concurrent threads.

Synchronization

Except when used to guarantee the correct execution of a parallel computation,
synchronization is an overhead. Attempt to keep it to a minimum by taking advan-
tage of the THREAD’S LOCAL STORAGE234 or by using exclusive memory loca-
tions.

Computation granularity
Computation granularity is loosely defined as the amount of computation per-

formed before any synchronization is needed. The longer the time between syn-
chronizations, the less granularity the computation will have. When dealing with
the requirements for parallelism, it will mean being easier to scale to an increased
number of threads and having lower overhead costs. A high level of granularity
can mean that any benefit from using threads will be lost due to the requirements
of synchronization and general thread overhead.

Mutex
MUTEX235 is an abbreviation for mutual exclusion. It relies on a synchronization

facility supplied by the operating system (not the CPU). Since this system objects
can only be owned by a single thread at any given time, the mutex object facilitates
protection against data races and allows for thread-safe synchronization of data

232 HTTP://EN.WIKIPEDIA.ORG/WIKI/CRITICAL_SECTION
233 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEADLOCK
234 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23THREAD%20LOCAL%20STORAGE%20%

28TLS%29
235 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION

638

http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Deadlock
http://en.wikibooks.org/wiki/%23Thread%20local%20storage%20%28TLS%29
http://en.wikibooks.org/wiki/%23Thread%20local%20storage%20%28TLS%29
http://en.wikipedia.org/wiki/Mutual%20exclusion

Cross-Platform development

between threads. By calling one of the lock functions, the thread obtains ownership
of a mutex object, it then relinquishes ownership by calling the corresponding
unlock function. Mutexes can be either recursive or non-recursive, and may grant
simultaneous ownership to one or many threads.

Semaphore
A SEMAPHORE236 is a yielding synchronization object that can be used to synchro-
nize several threads. This is the most commonly used method for synchronization

Spinlock
SPINLOCKS237 are busy-wait synchronization objects, used as a substitute for

Mutexes. They are an implementation of inter-thread locking using machine de-
pendent assembly instructions (such as test-and-set) where a thread simply waits
(spins) in a loop that repeatedly checks if the lock becomes available (busy wait).
This is why spinlocks perform better if locked for a short period of time. They are
never used on single-CPU machines.

Threads

Threads are by definition a coding construct and part of a PROGRAM238 that
enable it to FORK239 (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running TASK240s. Threads use PRE-EMPTIVE MULTI-
TASKING241.

The thread is the basic unit (the smallest piece of code) to which the operating
system can allocate a distinct processor time (schedule) for execution. This means
that, threads in reality, don’t run concurrently but in sequence on any single core
system. Threads often depend on the OS thread scheduler to preempt a busy thread
and resume another thread.

The thread today is not only a key concurrency model supported by most if not all
modern computers, programming languages, and operating systems but is itself at

236 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMAPHORE_%28PROGRAMMING%29
237 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPINLOCK
238 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM
239 HTTP://EN.WIKIPEDIA.ORG/WIKI/FORK_%28OPERATING_SYSTEM%29
240 HTTP://EN.WIKIPEDIA.ORG/WIKI/TASK%20%28COMPUTERS%29
241 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRE-EMPTIVE%20MULTITASKING

639

http://en.wikipedia.org/wiki/Semaphore_%28programming%29
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/computer%20program
http://en.wikipedia.org/wiki/Fork_%28operating_system%29
http://en.wikipedia.org/wiki/task%20%28computers%29
http://en.wikipedia.org/wiki/pre-emptive%20multitasking

Beyond the Standard

the core of hardware evolution, such as symmetric multi-processors, understanding
threads is now a necessity to all programmers.

The order of execution of the threads is controlled by the process scheduler of the
OS, it is non-deterministic. The only control available to the programmer is in
attributing a priority to the thread but never assume a particular order of execution.

User Interface Thread
This type of distinction is reserved to indicate that the particular thread implements
a message map to respond to events and messages generated by user inputs as he
interacts with the application. This is especially common when working with the
Windows platform (Win32 API) because of the way it implements message pumps.

Worker Thread
This distinction serves to specify threads that do not directly depend or are part of
the graphical user interface of the application, and run concurrently with the main
execution thread.

Thread local storage (TLS)
The residence of thread local variables, a thread dedicated section of the global

MEMORY242. Each thread (or fiber) will receive its own stack space, residing in a
different memory location. This will consist of both reserved and initially commit-
ted memory. That is freed when the thread exits but will not be freed if the thread
is terminated by other means.

Since all threads in a PROCESS243 share the same ADDRESS SPACE244, it makes
data in a static or GLOBAL VARIABLE245 to be normally located at the same mem-
ory location, when referred to by threads from the same process. It is important for
software to take in consideration hardware cache coherence. For instance in mul-
tiprocessor environments, each processor has a local cache. If threads on different
processors modify variables residing on the same cache line, this will invalidate
that cache line, forcing a cache update, hurting performance. This is referred to as
false sharing.

This type of storage is indicated for variables that store temporary or even par-
tial results, since condensing the needed synchronization of the partial results in

242 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20STORAGE
243 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCESS%20%28COMPUTING%29
244 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADDRESS%20SPACE
245 HTTP://EN.WIKIPEDIA.ORG/WIKI/GLOBAL%20VARIABLE

640

http://en.wikipedia.org/wiki/Computer%20storage
http://en.wikipedia.org/wiki/Process%20%28computing%29
http://en.wikipedia.org/wiki/address%20space
http://en.wikipedia.org/wiki/global%20variable

Cross-Platform development

as fewer and infrequent instances possible will contribute to the reduction of syn-
chronization overhead.

Thread Synchronization
The synchronization can be defined in several steps the first is the process lock,

where a process is made to halt execution due to find a protected resource locked,
there is a cost for locking especially if the lock lasts for too long.

Obviously there is a performance hit if any synchronization mechanism is heavily
used. Because they are an expensive operation, in certain cases, increasing the use
of TLSs instead of relying only on shared data structures will reduce the need for
synchronization.

Critical Section

Suspend and Resume

Synchronizing on Objects

Cooperative vs. Preemptive Threading

Thread pool

641

Beyond the Standard

Figure 30: A simple thread pool. The task queue has many waiting tasks (blue
circles). When a thread opens up in the queue (green box with dotted circle) a
task comes off the queue and the open thread executes it (red circles in green
boxes). The completed task then "leaves" the thread pool and joins the
completed tasks list (yellow circles)..

Fibers

A FIBER246 is a particularly lightweight THREAD OF EXECUTION247. Like threads,
fibers share ADDRESS SPACE248. However, fibers use CO-OPERATIVE MULTI-
TASKING249, fibers yield themselves to run another fiber while executing.

Operating system support

Less support from the OPERATING SYSTEM250 is needed for fibers than for threads.
They can be implemented in modern UNIX251 systems using the library functions

246 HTTP://EN.WIKIPEDIA.ORG/WIKI/FIBER_%28COMPUTER_SCIENCE%29
247 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20OF%20EXECUTION
248 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADDRESS%20SPACE
249 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20MULTITASKING%

23COOPERATIVE%20MULTITASKING%2FTIME-SHARING
250 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM
251 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIX

642

http://en.wikipedia.org/wiki/Fiber_%28computer_science%29
http://en.wikipedia.org/wiki/thread%20of%20execution
http://en.wikipedia.org/wiki/address%20space
http://en.wikipedia.org/wiki/Computer%20multitasking%23Cooperative%20multitasking%2Ftime-sharing
http://en.wikipedia.org/wiki/Computer%20multitasking%23Cooperative%20multitasking%2Ftime-sharing
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/Unix

Cross-Platform development

getcontext, setcontext AND swapcontext252 in ucontext.h, as in GNU PORTABLE

THREADS253.

On MICROSOFT WINDOWS254, fibers are created using the ConvertThreadToFiber
and CreateFiber calls; a fiber that is currently suspended may be resumed in any
thread. Fiber-local storage, analogous to THREAD-LOCAL STORAGE255, may be
used to create unique copies of variables.

SYMBIAN OS256 uses a similar concept to fibers in its Active Scheduler. An AC-
TIVE OBJECT (SYMBIAN OS)257 contains one fiber to be executed by the Active
Scheduler when one of several outstanding asynchronous calls complete. Several
Active objects can be waiting to execute (based on priority) and each one must
restrict is own execution time.

6.6.6 Exploiting parallelism

Most of the parallel architecture research was done in the 1960s and 1970s, provid-
ing solutions for problems that only today are reaching general awareness. As the
need of concurrent programming increases, mostly due to today’s hardware evolu-
tion, we as programmers are pressed to implement programming models that ease
the complicated process of dealing with the old thread model in a way it preserves
development time by abstracting the problem.

252 HTTP://EN.WIKIPEDIA.ORG/WIKI/SETCONTEXT
253 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20PORTABLE%20THREADS
254 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20WINDOWS
255 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD-LOCAL%20STORAGE
256 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYMBIAN%20OS
257 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACTIVE%20OBJECT%20%28SYMBIAN%

20OS%29

643

http://en.wikipedia.org/wiki/setcontext
http://en.wikipedia.org/wiki/GNU%20Portable%20Threads
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/thread-local%20storage
http://en.wikipedia.org/wiki/Symbian%20OS
http://en.wikipedia.org/wiki/Active%20object%20%28Symbian%20OS%29
http://en.wikipedia.org/wiki/Active%20object%20%28Symbian%20OS%29

Beyond the Standard

OpenMP

Figure 31: Chart of OpenMP constructs.

6.7 Software Internationalization

INTERNATIONALIZATION AND LOCALIZATION258 refer to how computer soft-
ware is adapted for other locations, nations or cultures. This means specifically
those that are non-native to the programmer(s) or the primary user group

In specific, internationalization deals with the process of designing a software ap-
plication in a way that it can be configured or adapted to work with various lan-
guages and regions without heavy changes to the code base. On the other hand
localization deals with the process of enabling the configuration or auto adaptation
of the software to a specific region, timezone or language by adding locale-specific
components and text translation.

6.7.1 Text encoding

Text, in particular the characters are used to generate readable text consists on the
use of a character encoding scheme that pairs a sequence of characters from a given
character set (sometimes referred to as code page) with something else, such as a

258 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERNATIONALIZATION%20AND%
20LOCALIZATION

644

http://en.wikipedia.org/wiki/Internationalization%20and%20localization
http://en.wikipedia.org/wiki/Internationalization%20and%20localization

Software Internationalization

sequence of natural numbers, octets or electrical pulses, in order to facilitate the
use of its digital representation.

A easy to understand example would be Morse code, which encodes letters of the
Latin alphabet as series of long and short depressions of a telegraph key; this is
similar to how ASCII, encodes letters, numerals, and other symbols, as integers.

Text and data

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values. To allow it to communicate with the rest of the world, the IBM
PC uses a variant of the ASCII character set. There are 128 defined codes in
the ASCII CHARACTER SET259. IBM uses the remaining 128 possible values for
extended character codes including European characters, graphic symbols, Greek
letters, and math symbols.

In earlier days of computing, the introduction of coded character sets such as
ASCII (1963) and EBCDIC (1964) began the process of standardization. The limi-
tations of such sets soon became apparent, and a number of ad-hoc methods devel-
oped to extend them. The need to support multiple writing systems (Languages),
including the CJK family of East Asian scripts, required support for a far larger
number of characters and demanded a systematic approach to character encoding
rather than the previous ad hoc approaches.

6.7.2 What’s this about UNICODE?

UNICODE260 is an industry standard whose goal is to provide the means by which
text of all forms and languages can be encoded for use by computers. Unicode 6.1
was released in January 2012 and is the current version. It currently comprises over
109,000 characters from 93 scripts. Since Unicode is just a standard that assigns
numbers to characters, there also needs to be methods for encoding these numbers
as bytes. The three most common character encodings are UTF-8, UTF-16, and
UTF-32, of which UTF-8 is by far the most frequently used.

In the Unicode standard, PLANES261 are groups of numerical values (code points)
that point to specific characters. Unicode code points are logically divided into 17

259 Chapter 4.8.1 on page 470
260 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE
261 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLANE%20%28UNICODE%29

645

http://en.wikibooks.org/wiki/Unicode
http://en.wikipedia.org/wiki/Plane%20%28Unicode%29

Beyond the Standard

planes, each with 65,536 (= 216) code points. Planes are identified by the numbers
0 to 16decimal, which corresponds with the possible values 00-10hexadecimal of the
first two positions in six position format (hh’hhhh). As of version 6.1, six of these
planes have assigned code points (characters), and are named.

Plane 0 - Basic Multilingual Plane (BMP)

Plane 1 - Supplementary Multilingual Plane (SMP)

Plane 2 - Supplementary Ideographic Plane (SIP)

Planes 3–13 - Unassigned

Plane 14 - Supplementary Special-purpose Plane (SSP)

Planes 15–16 - Supplementary Private Use Area (S PUA A/B)

0000–0FFF2628000–8FFF26310000–10FFF26418000-
18FFF

20000–20FFF26528000–28FFF266E0000–E0FFF267F0000–F0FFF268F8000–F8FFF269100000–100FFF270108000–108FFF271

262 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F0000-0FFF

263 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F8000-8FFF

264 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10000-10FFF

265 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F20000-20FFF

266 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F28000-28FFF

267 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FE0000-E0FFF

268 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF0000-F0FFF

269 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF8000-F8FFF

270 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F100000-100FFF

271 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F108000-108FFF

646

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F0000-0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F0000-0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F8000-8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F8000-8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10000-10FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10000-10FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F20000-20FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F20000-20FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F28000-28FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F28000-28FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE0000-E0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE0000-E0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF0000-F0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF0000-F0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF8000-F8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF8000-F8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F100000-100FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F100000-100FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F108000-108FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F108000-108FFF

Software Internationalization

Unicode characters
BMP SMP SIP SSP PUA
1000–1FFF2729000–9FFF27311000–11FFF27419000-

19FFF
21000–21FFF27529000–29FFF276F1000–F1FFF277F9000–F9FFF278101000–101FFF279109000–109FFF280

2000–2FFF281A000–AFFF28212000–12FFF2831A000-
1AFFF

22000–22FFF2842A000–2AFFF285F2000–F2FFF286FA000–FAFFF287102000–102FFF28810A000–10AFFF289

272 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F1000-1FFF

273 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F9000-9FFF

274 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F11000-11FFF

275 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F21000-21FFF

276 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F29000-29FFF

277 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF1000-F1FFF

278 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF9000-F9FFF

279 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F101000-101FFF

280 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F109000-109FFF

281 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F2000-2FFF

282 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FA000-AFFF

283 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F12000-12FFF

284 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F22000-22FFF

285 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F2A000-2AFFF

286 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF2000-F2FFF

287 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFA000-FAFFF

288 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F102000-102FFF

289 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10A000-10AFFF

647

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1000-1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1000-1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F9000-9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F9000-9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F11000-11FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F11000-11FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F21000-21FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F21000-21FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F29000-29FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F29000-29FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF1000-F1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF1000-F1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF9000-F9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF9000-F9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F101000-101FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F101000-101FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F109000-109FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F109000-109FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2000-2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2000-2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FA000-AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FA000-AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F12000-12FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F12000-12FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F22000-22FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F22000-22FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2A000-2AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2A000-2AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF2000-F2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF2000-F2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFA000-FAFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFA000-FAFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F102000-102FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F102000-102FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10A000-10AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10A000-10AFFF

Beyond the Standard

Unicode characters
BMP SMP SIP SSP PUA
3000–3FFF290B000–BFFF29113000–13FFF2921B000-

1BFFF293
23000–23FFF2942B000–2BFFF2951BFFF;F3000–F3FFF296FB000–FBFFF297103000–103FFF29810B000–10BFFF299

4000–4FFF300C000–CFFF30114000-
14FFF

1C000-
1CFFF

24000–24FFF302 F4000–F4FFF303FC000–FCFFF304104000–104FFF30510C000–10CFFF306

290 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F3000-3FFF

291 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FB000-BFFF

292 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F13000-13FFF

293 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F1B000-1BFFF

294 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F23000-23FFF

295 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F2B000-2BFFF

296 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF3000-F3FFF

297 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFB000-FBFFF

298 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F103000-103FFF

299 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10B000-10BFFF

300 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F4000-4FFF

301 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FC000-CFFF

302 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F24000-24FFF

303 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF4000-F4FFF

304 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFC000-FCFFF

305 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F104000-104FFF

306 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10C000-10CFFF

648

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F3000-3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F3000-3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FB000-BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FB000-BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F13000-13FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F13000-13FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1B000-1BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1B000-1BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F23000-23FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F23000-23FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2B000-2BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2B000-2BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF3000-F3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF3000-F3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFB000-FBFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFB000-FBFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F103000-103FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F103000-103FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10B000-10BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10B000-10BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F4000-4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F4000-4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FC000-CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FC000-CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F24000-24FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F24000-24FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF4000-F4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF4000-F4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFC000-FCFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFC000-FCFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F104000-104FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F104000-104FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10C000-10CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10C000-10CFFF

Software Internationalization

Unicode characters
BMP SMP SIP SSP PUA
5000–5FFF307D000–DFFF30815000-

15FFF;
1D000–1DFFF30925000–25FFF310 F5000–F5FFF311FD000–FDFFF312105000–105FFF31310D000–10DFFF314

6000–6FFF315E000–EFFF31616000–16FFF3171E000-
1EFFF

26000–26FFF318 F6000–F6FFF319FE000–FEFFF320106000–106FFF32110E000–10EFFF322

307 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F5000-5FFF

308 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FD000-DFFF

309 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F1D000-1DFFF

310 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F25000-25FFF

311 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF5000-F5FFF

312 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFD000-FDFFF

313 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F105000-105FFF

314 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10D000-10DFFF

315 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F6000-6FFF

316 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FE000-EFFF

317 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F16000-16FFF

318 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F26000-26FFF

319 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF6000-F6FFF

320 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFE000-FEFFF

321 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F106000-106FFF

322 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10E000-10EFFF

649

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F5000-5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F5000-5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FD000-DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FD000-DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1D000-1DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1D000-1DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F25000-25FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F25000-25FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF5000-F5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF5000-F5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFD000-FDFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFD000-FDFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F105000-105FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F105000-105FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10D000-10DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10D000-10DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F6000-6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F6000-6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE000-EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE000-EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F16000-16FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F16000-16FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F26000-26FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F26000-26FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF6000-F6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF6000-F6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFE000-FEFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFE000-FEFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F106000-106FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F106000-106FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10E000-10EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10E000-10EFFF

Beyond the Standard

Unicode characters
BMP SMP SIP SSP PUA
7000–7FFF323F000–FFFF32417000-

17FFF
1F000–1FFFF32527000–27FFF3262F000–2FFFF327F7000–F7FFF328FF000–FFFFF329107000–107FFF33010F000–10FFFF331

Currently, about ten percent of the potential space is used. Furthermore, ranges of
characters have been tentatively mapped out for every current and ancient writing
system (script) the Unicode consortium has been able to identify. While Unicode
may eventually need to use another of the spare 11 planes for ideographic charac-
ters, other planes remain. Even if previously unknown scripts with tens of thou-
sands of characters are discovered, the limit of 1,114,112 code points is unlikely
to be reached in the near future. The Unicode consortium has stated that limit will
never be changed.

The odd-looking limit (it is not a power of 2), is not due to UTF-8, which was
designed with a limit of 231 code points (32768 planes), and can encode 221 code
points (32 planes) even if limited to 4 bytes but is due to the design of UTF-16.
In UTF-16 a "surrogate pair" of two 16-bit WORDS332 is used to encode 220 code
points 1 to 16, in addition to the use of single words to encode plane 0.

323 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F7000-7FFF

324 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF000-FFFF

325 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F1F000-1FFFF

326 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F27000-27FFF

327 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F2F000-2FFFF

328 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FF7000-F7FFF

329 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2FFF000-FFFFF

330 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F107000-107FFF

331 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCE%
2F10F000-10FFFF

332 Chapter 3.3.1 on page 126

650

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F7000-7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F7000-7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF000-FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF000-FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1F000-1FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1F000-1FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F27000-27FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F27000-27FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2F000-2FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2F000-2FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF7000-F7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF7000-F7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFF000-FFFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFF000-FFFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F107000-107FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F107000-107FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10F000-10FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10F000-10FFFF

Optimizations

UTF-8

UTF-8333 is a variable-length encoding of Unicode, using from 1 to 4 bytes for
each character. It was designed for compatibility with ASCII, and as such, single-
byte values represent the same character in UTF-8 as they do in ASCII. Because a
UTF-8 stream doesn’t contain ’\0’s, you may use it directly in your existing C++
code without any porting (except when counting the ’actual’ number of character
in it).

UTF-16

UTF-16334 is also variable-length, but works in 16 bit units instead of 8, so each
character is represented by either 2 or 4 bytes. This means that it is not compatible
with ASCII.

UTF-32

Unlike the previous two encodings, UTF-32 is not variable-length: every character
is represented by exactly 32-bits. This makes encoding and decoding easier, be-
cause the 4-byte value maps directly to the Unicode code space. The disadvantage
is in space efficiency, as each character takes 4 bytes, no matter what it is.
335

6.8 Optimizations

Optimization can be regarded as a directed effort to increase the performance of
something, an important concept in engineering, in particular, the case of Software
engineering that we are covering. We will deal with specific computational tasks
and best practices to reduce resources utilizations, not only of system resources
but also of programmers and users, all based in optimal solutions evolved from the
empirical validating of hypothesis and logical steps.

All optimization steps taken should have as a goal the reduction of requirements
and the promotion of the program objectives. Any claims can only be substantiated

333 HTTP://EN.WIKIPEDIA.ORG/WIKI/UTF-8
334 HTTP://EN.WIKIPEDIA.ORG/WIKI/UTF-16
335 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

651

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

by PROFILING336 the given problem and the applied solution. Without profiling
any optimization is moot.

Optimization is often a topic of discussion among programmers and not all con-
clusions may be consensual, since they are very closely related to the goals, the
programmer experience, and dependent of specific setups. The level of optimiza-
tion will mostly depend directly from actions and decisions the programmer makes.
Those can be simple things, from basic coding practices to the selection of the tools
one choses to use to create the program. Even selecting the right compiler will have
an impact. A good optimizing compiler permits the programmer to define his aspi-
rations for the optimized outcome; how good the compiler is at optimizing depends
on the level of satisfaction the programmer gets from the resulting compilation.

6.8.1 Code

One of the safest ways of optimization is to reduce complexity, ease organization
and structure and at the same time evading code bloat. This requires the capacity to
plan without losing track of future needs, in fact it is a compromise the programmer
makes between a multitude of factors.

Code optimization techniques, fall into the categories of:

• High Level Optimization
• Algorithmic Optimization (Mathematical Analysis)
• Simplification

• Low Level Optimization
• Loop Unrolling
• Strength Reduction
• Duff’s Device
• Clean Loops

KISS

The "keep it simple, stupid" (KISS337) principle, calls for giving simplicity a high
priority in development. It is very similar to a maxim from Albert Einstein’s that
states, "everything should be made as simple as possible, but no simpler.", the
difficulty for many adopters have is to determine what level of simplicity should

336 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PROFILING
337 HTTP://EN.WIKIPEDIA.ORG/WIKI/%3AKISS%20PRINCIPLE

652

http://en.wikibooks.org/wiki/%23Profiling
http://en.wikipedia.org/wiki/%3AKISS%20principle

Optimizations

be maintained. In any case, analysis of basic and simpler system is always easier,
removing complexity will also open the door for code reutilization and a more
generic approach to tasks and problems.

"Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live."
—Martin Golding

Code cleanup

Most of the benefits of a code cleanup should be evident to the experienced pro-
grammer, they become a second nature due to the adoption of good programming
style guidelines. But as in any human activity, errors will occur and exceptions
made, so, in this section we will try to remember the small changes that can have
an impact on the optimization of your code.

the use of virtual member functions

Remember the cost on performance of virtual members functions (covered when
introducing the VIRTUAL KEYWORD338). At the time optimization becomes an
issue most project design change regarding optimization will not be possible, but
artifacts may remain to be cleaned up. Guaranteeing that no superfluous use of
virtual (like in the leaf nodes of your class/structure inheritance trees), will permit
other optimizations to occur (i.e.: compiler OPTIMIZED INLINE339).

The right data in the right container

One of the top bottleneck on today’s systems is dealing with memory CACHES340,
be it CPU CACHE341 or the physical memory resources, even if PAGING342 prob-
lems are becoming increasingly rare. Since the data (and the load level) a program
will handle is highly predictable at the design level, the better optimizations still
fall to the programmer.

One should store the appropriate data structure in the appropriate container, prefer
storing pointers to objects rather than the objects themselves, use "smart" pointers

338 Chapter 4.3.1 on page 412
339 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23AUTO%20INLINE
340 HTTP://EN.WIKIPEDIA.ORG/WIKI/CACHE
341 HTTP://EN.WIKIPEDIA.ORG/WIKI/CPU%20CACHE
342 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAGING

653

http://en.wikibooks.org/wiki/%23auto%20inline
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/CPU%20cache
http://en.wikipedia.org/wiki/Paging

Beyond the Standard

(see the Boost library) and don’t attempt to store auto_ptr<> in STL containers, it
is not allowed by the Standard, but some implementations are known to incorrectly
allow it.

Avoid removing and inserting elements in the middle of a container, doing it at the
end of the container has less overhead. Use STL containers when the number of
objects is unknown; use static array or buffer when it is known. This requires the
understanding of not only each container, but its O(x) guarantees.

Take as an example the STL containers on the issue of using
(myContainer.empty()) versus (myContainer.size() == 0), it is impor-
tant to understand that depending on the container type or its implementation, the
size member function might have to count the number of objects before comparing
it to zero. This is very common with list type containers.

While the STL attempts to provides optimal solutions to general cases, if perfor-
mance does not match your requirements think about writing your own optimal
solution for your case, maybe a custom container (probably based on vector) that
does not call individual object destructors and uses custom allocators that avoid
the delete time overhead.

Using pre-allocation of memory can provide some speed gains and be as simple
remember to use the STL vector<T>::reserve() if permitted. Optimize the use sys-
tem’s memory and the target hardware. In today’s systems, with virtual memory,
threads and multiple-cores (each with its own cache) where I/O operations on the
main memory and the amount of time spent moving it around, can slow things
down. This can become a performance bottleneck. Instead opt for array-based
data structures (cache-coherent data structures), like the STL vector, because data
is stored contiguously in memory, over pointer-linked data structures as in linked
lists. This will avoid "death by swapping", as the program needs to access highly
fragmented data, and will even help the memory pre-fetch that most modern pro-
cessors do today.

Whenever possible avoid returning containers by value, pass containers by refer-
ence.

Consider security costs

Security always has a cost, even in programming. For any algorithm, adding
checks, will result in increase the number of steps it takes to finish. As languages
get more complex and abstract, understanding all the finer details (and remember
them) increases the time needed to obtain the required experience. Sadly most of

654

Optimizations

the steps taken by some of the implementors of the C++ language lack visibility to
the programmer and since they are outside of the standard language, aren’t often
learned. Remember to familiarized yourself with any extensions or particularities
of the C++ implementation you are using.

As a language that puts the power of decision into the programmer’s hands, C++
provides several instances where the a similar result can be archived by similar but
distinct means. Understanding the sometimes subtle differences is important. For
instance, when deciding the needed requirements in ACCESSING MEMBERS OF A

STD::VECTOR343, you can chose [], at() and the an iterator, all have similar results
but with distinct performance costs and security considerations.

Code reutilization

Optimization is also reflected on the effectiveness of a code. If you can use an
already existing code base/framework that a considerable number of programmers
have access to, you can expect it to be less buggy and optimized to solve your
particular need.

Some of these code repositories are available to programmers as libraries. Be
careful to consider dependencies and check how implementation is done: if used
without considerations this can also lead to code bloat and increased memory foot-
print, as well as decrease the portability of the code. We will take a close look at
them in the LIBRARIES SECTION344 of the book.

To increase code reutilization you will probably fragment the code in smaller sec-
tions, files or code, remember to equate that more files and overall complexity also
increases compile time.

Function and algorithmic optimizations

When creating a function or a algorithm to address a specific problem sometimes
we are dealing with mathematical structures that are specifically indicated to be
optimized by established methods of mathematical minimization, this falls into the
specific field of ENGINEERING ANALYSIS FOR OPTIMIZATION345.

343 Chapter 5.2.2 on page 521
344 Chapter 6.3.3 on page 602
345 HTTP://EN.WIKIBOOKS.ORG/WIKI/ENGINEERING%20ANALYSIS%

2FOPTIMIZATION

655

http://en.wikibooks.org/wiki/Engineering%20Analysis%2FOptimization
http://en.wikibooks.org/wiki/Engineering%20Analysis%2FOptimization

Beyond the Standard

Use of inline
As seen before when examining the inline keyword, it allows the definition

of an inline type of function, that works similarly to LOOP UNWINDING346 for
increasing code performance. A non-inline function requires a call instruction,
several instructions to create a stack frame, and then several more instructions to
destroy the stack frame and return from the function. By copying the body of the
function instead of making a call, the size of the machine code increases, but the
execution time decreases.

In addition to using the inline keyword to declare an inline function, optimiz-
ing compilers may decide to make other functions inline as well (see COMPILER

OPTIMIZATIONS347 section).

ASM

If portability is not a problem and you are proficient with assembler you can use it
to optimize computational bottlenecks, even looking at the output of a disassembler
will often help looking for ways to improve it. Using ASM in your code brings
to the table some other problems (maintainability for instance) so use it at a last
resort in you optimization process, and if you use it be sure to document what you
have done well.

The X86 DISASSEMBLY348 Wikibook provides some OPTIMIZATION EXAM-
PLES349 using x86 ASM code.

Note:
If using the gcc compiler, the -S option will output the compilation generated as-
sembly.

6.8.2 Reduction of compile time

Some projects may take a long time to compile. To reduce the time it takes to finish
compiling the first step is to check if you have the any Hardware deficiencies. You

346 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY%2FCODE%
20OPTIMIZATION%23LOOP_UNWINDING

347 Chapter 6.8.3 on page 657
348 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY
349 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY%2FOPTIMIZATION%

20EXAMPLES

656

http://en.wikibooks.org/wiki/X86%20Disassembly%2FCode%20Optimization%23Loop_Unwinding
http://en.wikibooks.org/wiki/X86%20Disassembly%2FCode%20Optimization%23Loop_Unwinding
http://en.wikibooks.org/wiki/x86%20Disassembly
http://en.wikibooks.org/wiki/x86%20Disassembly%2FOptimization%20Examples
http://en.wikibooks.org/wiki/x86%20Disassembly%2FOptimization%20Examples

Optimizations

may be low in resources like memory or just have a slow CPU, even having your
HD with a high level of fragmentation can increase compile time.

On the other side, problems may not be due to hardware limitations but in the tools
you use, check if you are using the right tools for the job at hand, see if you have
the latest version, or if do, if that is what is causing trouble, some incompatibilities
may result from updates. In compilers new is always better, but you should check
first what has changed and if it serves your purposes.

Experience tells that most likely if you are suffering from slow compile times, the
program you are trying to compile was probably poorly designed, check the struc-
ture of object dependencies, the includes and take some the time to structure your
own code to minimize re-compilation after changes if the compile time justifies it.

Use pre-compiled headers and external header guards this will reduce the work
done by the compiler.

6.8.3 Compiler optimizations

COMPILER OPTIMIZATION350 is the process of tuning, mostly automatically, the
output of a compiler in an attempt to improve the operations the programmer has
requested, so to minimize or maximize some attribute of an compiled program
while ensuring the result is identical. By rilling in the compiler optimization
programmers can write more intuitive code, and still have them execute in a rea-
sonably fast way, for instance skipping the use of PRE-INCREMENT/DECREMENT

OPERATORS351.

Generally speaking, optimizations are not, and can not be, defined on the C++
standard. The standard sets rules and best practices that dictate a normalization of
inputs and outputs. The C++ standard itself permits some latitude on how compil-
ers perform their task since some sections are marked as implementation depen-
dent but generally a base line is established, even so some vendors/implementors
do creep in some singular characteristic apparently for security and optimization
benefits.

One notion that is good to keep in mind is that there is not a perfect C++ compiler,
but most recent compilers will do several simple optimizations by default, that
attempt to abstract and take advantage of existing deeper hardware optimizations
or specific characteristics of the target platform, most of these optimizations are

350 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER%20OPTIMIZATION
351 Chapter 3.4.3 on page 180

657

http://en.wikipedia.org/wiki/Compiler%20optimization

Beyond the Standard

almost always welcomed but it is up to the programmer still to have and idea
of what is going on and if indeed they are beneficial. As a result it is highly
recommended to examine your compiler documentation on how it operates and
what optimizations are under the programmer’s control, just because a compiler
can make some optimization in theory does not mean that it will or even that it will
result in an optimization.

The most common compiler optimizations options available to the programmer
fall into three categories:

• Speed; improving the runtime performance of the generated object code. This is
the most common optimization

• Space; reducing the size of the generated object code
• Safety; reducing the possibility of data structures becoming corrupted (for ex-

ample, ensuring that an illegal array element is not written to)

Unfortunately, many "speed" optimizations make the code larger, and many
"space" optimizations make the code slower -- this is known as the SPACE-TIME

TRADEOFF352.

auto-inline

Auto-inlining is similar to implicit inline. Inlining can be an optimization, or a
pessimization depending on the code and optimization options selected.

Making use of extended instructions sets

GPU

6.8.4 Run time

As we have seen before runtime is the duration of a program execution, from be-
ginning to termination. This is were all resources needed to run the compiled code
are allocated and hopefully released, this is the final objective of any program to
be executed, as such it should be the target for ultimate optimizations.

352 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPACE-TIME%20TRADEOFF

658

http://en.wikipedia.org/wiki/space-time%20tradeoff

Optimizations

6.8.5 Memory footprint

In the past computer memory has been expensive and technologically limited in
size, and scarce resource for programmers. Large amounts of ingenuity was spent
in implement complex programs and process huge amounts of data using as lit-
tle as possible of this resource. Today, modern systems contain enough memory
for most usages but capacity demands and expectations have increased as well; as
such, techniques to minimize memory usage may still be essential and in fact oper-
ational performance has gained a new momentum with the increasing importance
of mobile computing.

Measuring the memory usage of a program is difficult and time consuming, and the
more complex the program is the harder it becomes to get good metrics. One other
side of the problem is that there are no standard benchmarks (not all memory use
is equal) or practices to deal with the problem beyond the most basic and generic
considerations.

Note:
Take in consideration that performing memory tests in a debug compile will not,
in most circumstances, produce any valid insight on memory use, at best it can
provide you an indication of the expected ceiling for memory use in the tested
functions.

Remember to use swap() on std::vector (or deque).

When attempting to reduce reduce (or zero) the size of a vector or deque using the
swap(), on a standard container of that type, will guarantee that the memory is
released and no overhead buffer for growth is used. It will also avoid the fallacy of
using erase() or reserve() that will not reduce the memory footprint.

Lazy initialization

It is always needed to maintain the balance between the performance of the system
and the resource consumption. Lazy instantiation is one memory conservation
mechanism, by which the object initialization is deferred until it is required.

Look at the following example:

#include <iostream>

659

Beyond the Standard

class Wheel {
int speed;

public:
int getSpeed(){

return speed;
}
void setSpeed(int speed){

this->speed = speed;
}

};

class Car{
private:

Wheel wheel;
public:

int getCarSpeed(){
return wheel.getSpeed();

}
char *getName(){

return "My Car is a Super fast car";
}

};

int main(){
Car myCar;
std::cout << myCar.getName();

}

Instantiation of class Car by default instantiates the class Wheel. The purpose of
the whole class is to just print the name of the car. Since the instance wheel doesn’t
serve any purpose, initializing it is a complete resource waste.

It is better to defer the instantiation of the un-required class until it is needed.
Modify the above class Car as follows:

class Car{
private:

Wheel *wheel;
public:

Car() {
wheel=NULL; // a better place would be in the class constructor

initialization list
}
~Car() {

if (wheel) {
delete wheel;

}
}
int getCarSpeed(){

if(wheel == NULL){
wheel = new Wheel();

}
return wheel->getSpeed();

}
char *getName(){

660

Optimizations

return "My Car is a Super fast car";
}

};

Now the Wheel will be instantiated only when the member function getCarSpeed()
is called.

6.8.6 Parallelization

As seen when examining THREADS353, they can be a "simple" form of taking ad-
vantage of hardware resources and optimize the speed performance of a program.
When dealing with thread you should remember that it has a cost in complexity,
memory and if done wrong when synchronization is required it can even reduce
the speed performance, if the design permits it is best to allow threads to run as
unencumbered as possible.

6.8.7 I/O reads and writes

Figure 32: A Schematic of a Queue System

6.8.8 Profiling

Profiling is a form of DYNAMIC PROGRAM ANALYSIS354 (as opposed to STATIC

CODE ANALYSIS355), consists in the study of program’s behavior using informa-
tion gathered as the program executes. its purpose is usually to determine which
sections of a program to optimize. Mostly by determining which parts of a program

353 Chapter 6.6.2 on page 629
354 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20PROGRAM%20ANALYSIS
355 HTTP://EN.WIKIPEDIA.ORG/WIKI/STATIC%20CODE%20ANALYSIS

661

http://en.wikipedia.org/wiki/dynamic%20program%20analysis
http://en.wikipedia.org/wiki/static%20code%20analysis

Beyond the Standard

are taking most of the execution time, causing bottleneck on accessing resources
or the level of access to those resources.

Global clock execution time should be the bottom line when comparing applica-
tions performance. Select your algorithms by examining the asymptotic order of
executions, as in a parallel setup they will continue to give the best performance.
In the case you find an hotspot that can not be parallelized, even after examin-
ing higher levels on the call stack, then you should attempt to find a slower but
parallelizable algorithm.

branch-prediction profiler

call-graph generating cache profiler

line-by-line profiling

heap profiler

Profiler

Free Profiling tools

• Valgrind (HTTP://VALGRIND.ORG/356) an instrumentation framework for
building dynamic analysis tools. Includes a cache and branch-prediction pro-
filer, a call-graph generating cache profiler, and a heap profiler. It runs on the
following platforms: X86/Linux, AMD64/Linux, PPC32/Linux, PPC64/Linux,
and X86/Darwin (Mac OS X). Open Source under the GNU General Public Li-
cense, version 2.

• GNU gprof (HTTP://WWW.GNU.ORG/SOFTWARE/BINUTILS/357) a profiler
tool. The program was first was introduced on the SIGPLAN Symposium on
Compiler Construction in 1982, and is now part of the binutils that are available
in mostly all flavors of UNIX. It is capable of monitoring time spent in functions

356 HTTP://VALGRIND.ORG/
357 HTTP://WWW.GNU.ORG/SOFTWARE/BINUTILS/

662

http://valgrind.org/
http://www.gnu.org/software/binutils/

Further reading

(or even source code lines) and calls to/from them. Open Source under the GNU
General Public License.

6.9 Further reading

• OPTIMIZING C++358

359 W:UNIFIED MODELING LANGUAGE360

6.10 Modeling Tools

Long gone are the days when you had to do all software designing planing with
pencil and paper, it’s known that bad design can impact the quality and maintain-
ability of products, affecting time to market and long term profitability of a project.

The solution seems to be CASE and modeling tools which improve the design
quality and help to implement design patterns with ease that in turn help to improve
design quality, auto documentation and the shortening the development life cycles.

6.10.1 UML (Unified Modeling Language)

Since the late 80s and early 90s, the software engineering industry as a whole
was in need of standardization, with the emergence and proliferation of many
new competing software design methodologies, concepts, notations, terminolo-
gies, processes, and cultures associated with them, the need for unification was
self evident by the sheer number of parallel developments. A need for a common
ground on the representation of software design was badly needed and to archive
it a standardization of geometrical figures, colors, and descriptions.

The UML (Unified Modeling Language) was specifically created to serve this pur-
pose and integrates the concepts of BOOCH361 (Grady Booch is one of the orig-
inal developers of UML and is recognized for his innovative work on software

358 HTTP://EN.WIKIBOOKS.ORG/WIKI/OPTIMIZING%20C%2B%2B
359 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
360 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIFIED%20MODELING%20LANGUAGE
361 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRADY%20BOOCH

663

http://en.wikibooks.org/wiki/Optimizing%20C%2B%2B
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Unified%20Modeling%20Language
http://en.wikipedia.org/wiki/Grady%20Booch

Beyond the Standard

architecture, modeling, and software engineering processes), OMT362, OOSE363,
CLASS-RELATION364 and OORAM365and by fusing them into a single, common
and widely usable modeling language tried to be the unifying force, introducing a
standard notation that was designed to transcend programming languages, operat-
ing systems, application domains and the needed underlying semantics with which
programmers could describe and communicate. With its adoption in November
1997 by the OMG (OBJECT MANAGEMENT GROUP366) and its support it has be-
come an industry standard. Since then OMG has called for information on object-
oriented methodologies, that might create a rigorous software modeling language.
Many industry leaders had responded in earnest to help create the standard, the last
version of UML (v2.0) was released in 2004.

UML is still widely used by the software industry and engineering community. In
later days a new awareness has emerged (commonly called UML fever) that UML
per se has limitations and is not a good tool for all jobs. Careful study on how and
why it is used is needed to make it useful.
367

6.11 Chapter Summary

1. RESOURCE ACQUISITION IS INITIALIZATION (RAII)368

2. GARBAGE COLLECTION (GC)369

3. DESIGN PATTERNS370 - CREATIONAL371, STRUCTURAL372 and BEHAV-
IORAL373 patterns.

362 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-MODELING%20TECHNIQUE
363 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-ORIENTED%20SOFTWARE%

20ENGINEERING
364 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLASS-RELATION
365 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%20ORIENTED%20ROLE%

20ANALYSIS%20METHOD
366 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%20MANAGEMENT%20GROUP
367 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
368 Chapter 6 on page 555
369 Chapter 6.1 on page 558
370 Chapter 6.2 on page 559
371 Chapter 6.3 on page 561
372 Chapter 6.3.1 on page 577
373 Chapter 6.3.2 on page 582

664

http://en.wikipedia.org/wiki/Object-modeling%20technique
http://en.wikipedia.org/wiki/Object-oriented%20software%20engineering
http://en.wikipedia.org/wiki/Object-oriented%20software%20engineering
http://en.wikipedia.org/wiki/Class-Relation
http://en.wikipedia.org/wiki/Object%20Oriented%20Role%20Analysis%20Method
http://en.wikipedia.org/wiki/Object%20Oriented%20Role%20Analysis%20Method
http://en.wikipedia.org/wiki/Object%20Management%20Group
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Chapter Summary

4. LIBRARIES374 - APIS VS FRAMEWORKS375 and STATIC AND DYNAMIC

LIBRARIES376.
5. BOOST LIBRARY377

6. OPTIMIZING YOUR PROGRAMS378

7. CROSS-PLATFORM DEVELOPMENT379

a) WIN32 (AKA WINAPI)380 - including WIN32 WRAPPERS381.
b) CROSS-PLATFORM WRAPPERS382

c) MULTITASKING383

8. SOFTWARE INTERNATIONALIZATION384

a) TEXT ENCODING385

9. UNIFIED MODELING LANGUAGE (UML)386

5387

5388

374 Chapter 6.3.3 on page 602
375 Chapter 6.4 on page 603
376 Chapter 6.4.1 on page 605
377 Chapter 6.4.3 on page 610
378 Chapter 6.7.2 on page 651
379 Chapter 6.5.6 on page 620
380 Chapter 6.6 on page 620
381 Chapter on page 626
382 Chapter on page 628
383 Chapter 6.6.2 on page 629
384 Chapter 6.6.6 on page 644
385 Chapter 6.7 on page 644
386 Chapter 6.9 on page 663
387 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
388 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

665

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

666

7 Appendix A: Internal References

• List of Keywords

[included next to The Compiler]

• List of Standard Headers

[included in The preprocessor Chapter (next to the #include keyword)]

• Table of Preprocessors

[included in The preprocessor Chapter]

• Table of Operators

[included in the introduction to Operators]

• Table of Data Types

[included in the introduction to Variables]

To prevent duplication of content references are removed you may find them
on the given locations.

667

Appendix A: Internal References

668

8 Appendix B: External References

External links on how to learn C++ and more follow.

8.1 Online Books

• THINKING IN C++1, 2nd Edition by Bruce Eckel, Free Electronic Book, Vol-
ume 1 & Volume 2

• WINDOWS PROGRAMMING2, a Wikibook on Windows API (C and VB Classic),
MFC (C++), COM and creation of ActiveX modules.

• C++ IN ACTION3, by Bartosz Milewski
• TEACH YOURSELF C++ IN 21 DAYS, SECOND EDITION4, a broken link
• MORE C++5, by Tim Love, July 5, 2001
• INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING USING C++6, by

Peter Müller, 1997, a broken link
• C++ PROGRAMMING FOR SCIENTISTS7, by Roldan Pozo and Karin Reming-

ton
• C++ FOR UNIX8, a broken link, a quick reference, with C variations
• STL QUICK REFERENCE9, probably by Pablo Halpern,
• C++ A DIALOG10, by Steve Heller
• LEARNING C++: AN INDEX OF ENTRY POINTS11, a broken link

1 HTTP://WWW.MINDVIEW.NET/BOOKS/TICPP/THINKINGINCPP2E.HTML
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS%20PROGRAMMING
3 HTTP://WWW.RELISOFT.COM/BOOK/INDEX.HTM
4 HTTP://GUIDES.OERNII.SK/C++/INDEX.HTM
5 HTTP://WWW-H.ENG.CAM.AC.UK/HELP/TPL/LANGUAGES/C++/DOC/DOC.HTML
6 HTTP://WWW.ZIB.DE/VISUAL/PEOPLE/MUELLER/COURSE/TUTORIAL/

TUTORIAL.HTML
7 HTTP://MATH.NIST.GOV/~{}RPOZO/C++CLASS/
8 HTTP://WWW.CS.JCU.EDU.AU/~{}DAVID/C++SYNTAX.HTML
9 HTTP://WWW.HALPERNWIGHTSOFTWARE.COM/STDLIB-SCRATCH/QUICKREF.

HTML

10 HTTP://WWW.STEVEHELLER.COM/CPPAD/OUTPUT/DIALOGTOC.HTML
11 HTTP://CS.NMHU.EDU/PERSONAL/CURTIS/CS1HTMLFILES/CS1TEXT6-2001.

HTM

669

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://en.wikibooks.org/wiki/Windows%20Programming
http://www.relisoft.com/book/index.htm
http://guides.oernii.sk/c++/index.htm
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++/doc/doc.html
http://www.zib.de/Visual/people/mueller/Course/Tutorial/tutorial.html
http://www.zib.de/Visual/people/mueller/Course/Tutorial/tutorial.html
http://math.nist.gov/~{}RPozo/c++class/
http://www.cs.jcu.edu.au/~{}david/C++SYNTAX.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
http://www.steveheller.com/cppad/Output/dialogTOC.html
http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/CS1TEXT6-2001.HTM
http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/CS1TEXT6-2001.HTM

Appendix B: External References

• C++ PROGRAMMING HOW-TO12, a pdf, by Al Dev (Alavoor Vasudevan), 2001
• THINK LIKE A COMPUTER SCIENTIST: C++13, broken link

8.2 General Information

References to other locations/works or discussion areas that can be relevant to the
topic of the book:

• C++ AT DELICIO14, a community bookmark ranking and sharing web tool with
lots of related sites to the C++ topic

• KOHL ET AL. 2004: C/C++ REFERENCE15 at cppreference.com
• THE C++ ANNOTATIONS FOR C PROGRAMMERS16, by Frank B. Brokken
• C / C++ TUTORIALS17 at pickatutorial.com, a collection of online C / C++

tutorials
• CPLUSPLUS.COM18, an open resource with various web discussion groups
• A WEB SITE OF SCOTT MEYERS19, an expert on C++ software development.

He wrote the best-selling Effective C++ series (Effective C++, More Effective
C++, and Effective STL), wrote and designed Effective C++ CD

• CPROGRAMMING.COM20, a web site designed to help you learn C or C++ and
provide you with C and C++ programming resources.

• MISC. BOOKS, NEWS & ARTICLES ON C++21, by orelily.com
• FREQUENTLY ASKED QUESTIONS ABOUT WIN32 PROGRAMMING22, from

iseran.com
• CPPHERESY23 at c2.com, guidelines about how to keep the C++ bits simple
• C++ FAQ24 at parashift.com, sometimes also called C++ FAQ Lite.

12 HTTP://WWW.DIGILIFE.BE/QUICKREFERENCES/BOOKS/C++%
20PROGRAMMING%20HOW-TO.PDF

13 HTTP://IBIBLIO.ORG/OBP/THINKCS/CPP.PHP
14 HTTP://DELICIOUS.COM/TAG/CPLUSPLUS
15 HTTP://WWW.CPPREFERENCE.COM/
16 HTTP://WWW.ICCE.RUG.NL/DOCUMENTS/CPLUSPLUS/
17 HTTP://WWW.PICKATUTORIAL.COM/TUTORIALS/C_C_PLUSPLUS_1.HTM
18 HTTP://WWW.CPLUSPLUS.COM/MAIN.HTML
19 HTTP://WWW.ARISTEIA.COM/
20 HTTP://WWW.CPROGRAMMING.COM/
21 HTTP://CPROG.OREILLY.COM/
22 HTTP://WWW.ISERAN.COM/WIN32/FAQ/
23 HTTP://C2.COM/CGI/WIKI?CPPHERESY
24 HTTP://WWW.PARASHIFT.COM/C++-FAQ-LITE/

670

http://www.digilife.be/quickreferences/Books/C++%20Programming%20HOW-TO.pdf
http://www.digilife.be/quickreferences/Books/C++%20Programming%20HOW-TO.pdf
http://ibiblio.org/obp/thinkCS/cpp.php
http://delicious.com/tag/cplusplus
http://www.cppreference.com/
http://www.icce.rug.nl/documents/cplusplus/
http://www.pickatutorial.com/tutorials/c_c_plusplus_1.htm
http://www.cplusplus.com/main.html
http://www.aristeia.com/
http://www.cprogramming.com/
http://cprog.oreilly.com/
http://www.iseran.com/Win32/FAQ/
http://c2.com/cgi/wiki?CppHeresy
http://www.parashift.com/c++-faq-lite/

Reference Sites

• DEFECTIVE C++25: a 2009 summary by Yossi Kreinin of the major defects he
finds in the C++ programming language. (Related: PARTICULARITIES OF THE

C PROGRAMMING LANGUAGE26).

8.3 Reference Sites

• http://www.research.att.com/˜bs/C++.html

Bjarne Stroustrup’s C++ page.

• HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/DOCS/LIBRARY_-
TECHNICAL_REPORT.HTML27

C++ Standard Library Technical Report.

• http://www.open-std.org/jtc1/sc22/wg21/

C++ Standards Committee’s official website, previously at
HTTP://ANUBIS.DKUUG.DK/JTC1/SC22/WG21/28 , ISO/IEC JTC1/SC22/WG21
is the international standardization working group for the programming language
C++.

• http://www.sgi.com/tech/stl/index.html

The SGI Standard Template Library Programmer’s Guide.

25 HTTP://YOSEFK.COM/C++FQA/DEFECTIVE.HTML
26 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING%

2FPARTICULARITIES%20OF%20C
27 HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/DOCS/LIBRARY_TECHNICAL_

REPORT.HTML
28 HTTP://ANUBIS.DKUUG.DK/JTC1/SC22/WG21/

671

http://yosefk.com/c++fqa/defective.html
http://en.wikibooks.org/wiki/C%20Programming%2FParticularities%20of%20C
http://en.wikibooks.org/wiki/C%20Programming%2FParticularities%20of%20C
http://www.open-std.org/jtc1/sc22/wg21/docs/library_technical_report.html
http://www.open-std.org/jtc1/sc22/wg21/docs/library_technical_report.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/

Appendix B: External References

8.4 Compilers and IDEs

8.4.1 Free or with free versions

• http://gcc.gnu.org/

GCC , the GNU Compiler Collection, which includes a compiler for C++.

• http://www.mingw.org/

MinGW, a Win32 port of the GNU Compiler Collection and toolset designed for
compatibility with the host OS.

• http://sourceware.cygnus.com/cygwin

Cygwin, a Win32 port of GCC and GNU Utils designed to simulate a Unix-style
environment.

• http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-
cpp-express

The Microsoft Visual C++ 2010 Express Edition. It also allows you to build ap-
plications that target the Common Language Runtime (CLR). You should read
their license for yourself to make sure. MFC, ATL and the Windows header-
s/libraries are not included with this version. To create Windows programs, you
will need to DOWNLOAD THE MICROSOFT PLATFORM SDK29 as well (for the
Windows headers and import libraries).

• http://hpgcc.sourceforge.net/

HP-GCC comprises the GNU C compiler targeted at the ARM processor of
ARM-based HP calculators (like the HP49g+), HP specific libraries, a tool
(ELF2HP) that converts the gcc produced binary to the appropriate format for
the HP calculator, and an emulator (ARM Toolbox/ARM Launcher) that lets you

29 HTTP://WWW.MICROSOFT.COM/DOWNLOADS/DLX/EN-US/LISTDETAILSVIEW.
ASPX?FAMILYID=6B6C21D2-2006-4AFA-9702-529FA782D63B

672

http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b
http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b

Compilers and IDEs

execute ARM programs on your computer. At present, only a Windows version
is available, but the site says that Linux and Mac OS X versions are "on the way".

• http://www.ultimatepp.org/

Ultimate++ a C++ cross-platform and Open Source rapid application develop-
ment suite focused on programmers productivity. It includes a set of libraries
(GUI, SQL, etc..), and an integrated development environment.
The IDE can work with GCC, MinGW and Visual C++ 7.1 or 8.0 compilers (in-
cluding free Visual C++ Toolkit 2003 and Visual C++ 2005 Express Edition) and
contains a full featured debugger.

• http://www.codelite.org/

CodeLite, open-source under the terms of the GPL license, cross platform IDE
for the C/C++ programming languages (tested on Windows XP SP3, (K)Ubuntu
8.04, and Mac OSX 10.5.2).

• http://www.codeblocks.org/

Code::Blocks, C++ cross-platform and Open Source (GPL2) IDE, runs on Linux
or Windows (uses wxWidgets), supports GCC (MingW/Linux GCC), MSVC++,
Digital Mars, Borland C++ 5.5 and Open Watcom compilers. Offers syntax high-
lighting (customizable and extensible), code folding, tabbed interface, code com-
pletion, class browser, smart indent and a To-do list management with different
users and more.

• http://www.bloodshed.net/devcpp.html

Dev-C++, a free IDE including a distribution of MinGW. Delphi and C source
code available.

• http://wxdsgn.sourceforge.net/

wxDev-C++, an IDE/RAD tool resulting from extending Dev-C++. With all the
features of the previous plus others. Uses GCC for the compiler, and adds an IDE
and a form designer supporting wxWidgets.

• http://quincy.codecutter.org/

673

Appendix B: External References

Quincy 2005, a simple IDE for C and C++ under Windows. Installs the MinGW
compiler and GDB debugger. Designed as a friendly learning environment. Pub-
lic domain C++ source code.

• http://www.delorie.com/djgpp/

Djgpp, a free compiler for C, C++, Forth, Pascal and more including C sources.
Runs under DOS.

• http://www.digitalmars.com

Digital Mars, a free C and C++ Compiler for DOS, Win & NT by the author of
Zortech C++.

• http://developer.apple.com/tools/mpw-tools/

Macintosh Programmer’s Workshop (MPW). Same software and documentation
as the "Tool Chest:Development Kits:MPW etc." folder on the August 2001 De-
veloper CD.

• http://www.openwatcom.org/

OpenWatcom, the Open Watcom is a joint effort between SciTech Software,
Sybase®, and a select team of developers, which will bring the Sybase Watcom
C, C++ and Fortran compiler products to the Open Source community.

• http://msdn.microsoft.com/mobility/prodtechinfo/devtools/eVisualc/default.aspx

Microsoft eMbedded Visual C++ allows you to develop for Windows CE. It in-
cludes an IDE, which includes an integrated debugger.

• http://www.borland.com/products/downloads/download_cbuilder.html

Borland C++Builder v5.5

• http://www.eclipse.org/

674

LIBRARIES31

Eclipse, a multi-language IDE with support for C++ through the CDT plugin. It
requires a GCC backend. There is a download specifically for C++ developers
that does not include the Java libs.

8.4.2 Commercial

• http://www.intel.com/software/products/compilers/

Intel Compiler, a Intel® compilers. Compatible with the tools developers use,
Intel compilers plug into popular development environments and feature source
and binary compatibility with widely-used compilers. Every compiler purchase
includes one year of Intel® Premier Support, providing updates, technical support
and expertise for the Intel® architecture. [Intel CPUs ONLY]

• http://comeaucomputing.com/

Comeau C/C++ Compiler. It is closest to the C++ Standard. Available for pur-
chase Comeau C/C++ supports Core C++03 language enhancements for all major
and minor features of C++ and C, including export.

8.5 LIBRARIES30

8.5.1 Free or with free versions

• http://www.boost.org/

The Boost web site. Boost is a large collection of high-quality libraries for C++,
some of which are likely to be included in future C++ standards.

• http://www.samblackburn.com/wfc/index.html/

The WFC (Win32 Foundation Classes) site.

30 Chapter 6.3.3 on page 602

675

Appendix B: External References

• http://sourceforge.net/projects/wtl/

The WTL site.

• http://www.oonumerics.org/blitz/

Blitz++ is a C++ class library for scientific computing which provides perfor-
mance on par with Fortran 77/90. It uses template techniques to achieve high
performance. The current versions provide dense arrays and vectors, random
number generators, and small vectors and matrices. Blitz++ is distributed freely
under an open source LICENSE32, and contributions to the library are welcomed.

• http://www.bdsoft.com/tools/stlfilt.html

STLFilt is a STL Error Message Decryptor for C++. It simplifies and/or refor-
mats long-winded C++ error and warning messages, with a focus on STL-related
diagnostics.

• http://www.swox.com/gmp/

GMP is a free library for arbitrary precision arithmetic, operating on signed in-
tegers, rational numbers, and floating point numbers. There is no practical limit
to the precision except the ones implied by the available memory in the machine
GMP runs on.

• http://www.cryptopp.com/

Crypto++ Library is a free C++ class library of cryptographic schemes.

• http://alleg.sourceforge.net/

Allegro is a game programming library for C/C++ developers distributed
FREELY33, supporting the following platforms: DOS, Unix (Linux, FreeBSD,
Irix, Solaris, Darwin), Windows, QNX, BeOS and MacOS X. It provides many

32 HTTP://WWW.OONUMERICS.ORG/BLITZ/LEGAL/
33 HTTP://ALLEG.SOURCEFORGE.NET/LICENSE.HTML

676

http://www.oonumerics.org/blitz/legal/
http://alleg.sourceforge.net/license.html

LIBRARIES35

functions for graphics, sounds, player input (keyboard, mouse and joystick) and
timers. It also provides fixed and floating point mathematical functions, 3d func-
tions, file management functions, compressed datafile and a GUI.

• http://fltk.org/

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for
UNIX®/Linux® (X11), Microsoft® Windows®, and MacOS® X. FLTK pro-
vides modern GUI functionality without the bloat and supports 3D graphics via
OpenGL® and its built-in GLUT emulation. FLTK is designed to be small and
modular enough to be statically linked, but works fine as a shared library. FLTK
also includes an excellent UI builder called FLUID that can be used to create
applications in minutes.

• http://www.libsdl.org/

Simple DirectMedia Layer is a cross-platform multimedia library for C/C++. It
provides low-level acces to 2D frame-buffer and hardware accelerated 3D graph-
ics(using OpenGL), audio, threads, timers,user input and event handling. Other
features are available through "plug-in libraries". Linux, Windows, BeOS, Ma-
cOS Classic, MacOS X, FreeBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX
are supported and there’s some unofficial support for other platforms. SDL is
available under the GNU LGPL34 license.

• http://www.hpcfactor.com/developer/

SDKs for older platforms and from third parties. Includes a redistributable that
contains the MFC library’s for Windows CE 1, 2, HPC Pro, Palm-Size PC 1.2,
HPC2000 and a limited number from Windows CE 4.0.

• http://qt.nokia.com

Qt (pronounced "cute"), a multi-platform API that contains a UI toolkit as well
as a core library. It is extremely modular, but to use it effectively, you should use
at least UI+Core.

• http://loki-lib.sourceforge.net/

34 HTTP://WWW.GNU.ORG/COPYLEFT/LESSER.HTML

677

http://www.gnu.org/copyleft/lesser.html

Appendix B: External References

Loki is a C++ library which demonstrates and encourages the use of generic pro-
gramming and design patterns. It was written to accompany the book entitled
"Modern C++ Design." The library includes a parametrized smart pointer class,
generalized functors, a multi-threading abstraction, and some help for important
patterns. Open source released under the MIT license.

• http://tinythread.sourceforge.net/

TinyThread++, a light weight, portable C++ thread library that implements a sub-
set of the C++0x standard, including the thread, mutex and condition_variable
classes. Open source, released under the zlib/libpng License.

8.6 IRC

• #C at (irc://irc.tambov.ru)

C/C++ Channel (HTTP://SILVERSOFT.NET/)36 (Russian Channel)

• #C++ at (irc://hub.ptnet.org)

C++ Channel (Portuguese Channel)

• ##C++ at (irc://irc.freenode.net)

C++ Channel

• #c++newbie at (irc://irc.freenode.net)

Channel for those new to C++

• #c++ at (irc://irc.dynastynet.net)

36 HTTP://SILVERSOFT.NET/)

678

http://silversoft.net/)

User Groups

Channel on DynastyNet for discussing C++ topics.

8.7 User Groups

• http://www.accu.org/

ACCU, formerly the Association for C and C++ Users, ACCU is a non-profit
organization devoted to professionalism in programming at all levels. Although
primarily focused on C and C++, have now interests in Java, C# and Python also.

8.8 Newsgroups (NNTP)

• COMP.STD.C++37 - FAQ38

• COMP.LANG.C++.LEDA39

• COMP.LANG.C++.MODERATED40

• COMP.LANG.C++41

• MICROSOFT.PUBLIC.VC.MFC42

• MICROSOFT.PUBLIC.VC.STL43

8.9 Blogs and Wikis

• http://www.codepedia.com/1/Cpp

a Wikipedia-like page with much code examples.

• http://www.gnacademy.org/twiki/bin/view/CPP/TableOfContents%20GNAcademy.Org

37 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.STD.C++
38 HTTP://WWW.COMEAUCOMPUTING.COM/CSC/FAQ.HTML
39 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++.LEDA
40 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++.MODERATED
41 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++
42 HTTP://GROUPS.GOOGLE.COM/GROUP/MICROSOFT.PUBLIC.VC.MFC
43 HTTP://GROUPS.GOOGLE.COM/GROUP/MICROSOFT.PUBLIC.VC.STL

679

http://groups.google.com/group/comp.std.c++
http://www.comeaucomputing.com/csc/faq.html
http://groups.google.com/group/comp.lang.c++.leda
http://groups.google.com/group/comp.lang.c++.moderated
http://groups.google.com/group/comp.lang.c++
http://groups.google.com/group/microsoft.public.vc.mfc
http://groups.google.com/group/microsoft.public.vc.stl

Appendix B: External References

TWiki C++ Web is a C++ wiki with GNU Free Documentation License

• http://cpp.wikia.com/

Wikicities C++ is a multi-language C++ wiki (currently English and Polish).

8.10 Mailing Lists

• http://www.oonumerics.org/mailman/listinfo.cgi/oon-list/

Object-Oriented Numerics List, forum for discussing scientific computing in
object-oriented environments. An archive is AVAILABLE44.

8.11 Forums

• http://invisionfree.com/forums/CPPlearningcommunity/

C++ Learning Community, forum to discuss C++ related topics. Beginners made
especially welcomed.

• http://www.nystic.com

New to the C++ world? Go and ask any questions you may have.

8.12 Misc. C++ Tools

8.12.1 Free or with a free version

• http://www.stack.nl/˜dimitri/doxygen/

44 HTTP://WWW.OONUMERICS.ORG/MAILARCHIVES/OON-LIST/

680

http://www.oonumerics.org/MailArchives/oon-list/

C++ Coding Conventions

Doxygen is a documentation system for C++, C, and other programming lan-
guages.

• http://valgrind.kde.org/

Valgrind, a system for debugging and profiling applications at runtime. The sys-
tem runs on nearly any x86 linux (sorry, no amd64 yet). It can detect memory
leaks, illegal memory access, double deletes, cache misses, code coverage and
much, much more.

• http://msdn.microsoft.com/visualc/vctoolkit2003/

Microsoft Visual C++ Toolkit 2003, This is a free optimizing compiler provided
by Microsoft that developers can use to develop and compile applications in C or
C++. It is the same compiler that ships with the professional edition of Visual
Studio. It ships with the standard library and sample code.

• http://ccbuild.sourceforge.net/?page=home

ccbuild, a C++ source scanning build utility for code distributed over directories.
Like a dynamic Makefile, ccbuild finds all programs in the current directory (con-
taining "int main") and builds them. For this, it reads the C++ sources and looks
at all local and global includes. All C++ files surrounding local includes are con-
sidered objects for the main program. The global includes lead to extra compiler
arguments using a configuration file. Next to running g++ it can create simple
Makefiles, A-A-P files, and graph dependencies using DOT (Graphviz) graphs.
(Linux only)

8.13 C++ Coding Conventions

8.13.1 Source Code Formatting rules

• http://www.cs.usyd.edu.au/˜scilect/tpop/handouts/Style.htm

Kernighan and Ritchie (or K&R) style

• http://www.nongnu.org/style-guide/

681

Appendix B: External References

GNU Programmer’s Style Guide

• http://lxr.linux.no/source/Documentation/CodingStyle

Linux kernel coding style

8.13.2 Comprehensive Source Code Convention guidelines

• http://quantlib.org/style.shtml

QuantLib Programming Style Guidelines

• http://www.research.att.com/˜bs/bs_faq2.html

Bjarne Stroustrup’s C++ Style and Technique FAQ

• http://www.artima.com/intv/goldilocks.html

The C++ Style Sweet Spot A Conversation with Bjarne Stroustrup, Part I by Bill
Venners

• http://developer.kde.org/documentation/other/binarycompatibility.html

KDE Binary Compatibility Issues With C++

• http://www.mozilla.org/hacking/portable-cpp.html

C++ portability guide version 0.8 originally by David Williams, 27 March 1998

• http://www.chris-lott.org/resources/cstyle/Ellemtel-rules-mm.html

Programming in C++, Rules and Recommendations by FN/Mats Henricson and
Erik Nyquist

• http://www.chris-lott.org/resources/cstyle/Wildfire-C++Style.html

682

C++ Coding Conventions

Wildfire C++ Programming Style With Rationale by Keith Gabryelski

• http://www.kuro5hin.org/story/2002/5/9/205040/3918

Musings on Good C++ Style (Technology) by GoingWare

• http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Google C++ Style Guide

• https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637

CERT C++ Secure Coding Standard

• http://www.research.att.com/˜bs/JSF-AV-rules.pdf

Joint Strike Fighter air vehicle: C++ coding standards 2005

• http://www.chris-lott.org/resources/cstyle/

C and C++ Style Guides by Chris Lott, lists many popular C++ style guides.

• http://www.misra-cpp.org/

MISRA C++: Guidelines for the use of the C++ language in critical systems
published by The Motor Industry Software Reliability Association (MISRA45)
(based on a subset of C++).

• http://freeworld.thc.org/root/phun/unmaintain.html

A very funny satiric text that turns the tables on the issues concerning coding
style by Roedy Green.

45 HTTP://EN.WIKIPEDIA.ORG/WIKI/MISRA

683

http://en.wikipedia.org/wiki/MISRA

Appendix B: External References

46

8.14 Other (dead tree) books on C++

8.14.1 Introductory books

• Thinking in C++, Volume 1: Introduction to Standard C++ by Bruce Eckel,
ISBN 0139798099. (available for free download.)

8.14.2 Advanced topics

• Thinking in C++, Volume 2: Practical Programming by Bruce Eckel, ISBN
0130353132

• Effective C++ : 55 Specific Ways to Improve Your Programs and Designs, 3rd
ed. by Scott Meyers, ISBN 0321334876

8.14.3 Reference books

• C++ in a Nutshell by Ray Lischner, ISBN 059600298X

• C++ Pocket Reference by Kyle Loudon, ISBN 0596004966

• C++ FAQS47 by Marshall Cline, Greg Lomow, and Mike Girou, Addison-
Wesley, 1999, ISBN 0-201-30983-1

48

8.15 References

.}49

46 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
47 HTTP://PARASHIFT.COM/C++-FAQ-LITE/FAQ-BOOK.HTML
48 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
49 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

684

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://parashift.com/c++-faq-lite/faq-book.html
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

References

685

Appendix B: External References

686

9 Authors
Edits User

1 1EXEC11

4 32TO282

4 A.K.KARTHIKEYAN3

1 AK74

1 ADRILEY5

1 ADAM MAJEWSKI6

2 ADIKASHI7

2 ADMIRALH8

161 ADRIGNOLA9

1 AHY110

6 AJM120511

4 AKILAA12

2 ALANUS13

1 ALBERTCAHALAN14

1 ALCA ISILON15

1 ALEKSEV16

1 ALEXANDERSWANG17

1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:1EXEC1
2 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:32TO28
3 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:A.K.KARTHIKEYAN
4 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AK7
5 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRILEY
6 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADAM_MAJEWSKI
7 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADIKASHI
8 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADMIRALH
9 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA
10 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AHY1
11 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AJM1205
12 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AKILAA
13 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALANUS
14 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALBERTCAHALAN
15 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALCA_ISILON
16 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEKSEV
17 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEXANDERSWANG

687

http://en.wikibooks.org/w/index.php?title=User:1exec1
http://en.wikibooks.org/w/index.php?title=User:32to28
http://en.wikibooks.org/w/index.php?title=User:A.K.Karthikeyan
http://en.wikibooks.org/w/index.php?title=User:AK7
http://en.wikibooks.org/w/index.php?title=User:AdRiley
http://en.wikibooks.org/w/index.php?title=User:Adam_majewski
http://en.wikibooks.org/w/index.php?title=User:Adikashi
http://en.wikibooks.org/w/index.php?title=User:Admiralh
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Ahy1
http://en.wikibooks.org/w/index.php?title=User:Ajm1205
http://en.wikibooks.org/w/index.php?title=User:Akilaa
http://en.wikibooks.org/w/index.php?title=User:AlanUS
http://en.wikibooks.org/w/index.php?title=User:AlbertCahalan
http://en.wikibooks.org/w/index.php?title=User:Alca_Isilon
http://en.wikibooks.org/w/index.php?title=User:Aleksev
http://en.wikibooks.org/w/index.php?title=User:Alexanderswang

Authors

2 ALSOCAL18

3 AMIN.AJANI1719

1 ANDRE ENGELS20

1 ANUNNAKKI21

3 ARGENTO22

2 ARLEN2223

3 ASHUTOSH.UKEY24

4 ATHGORN25

2 ATRIUM26

7 AUTUMNFIELDS27

27 AVICENNASIS28

8 AZ156829

2 BCG99930

1 BAZKIE BOTSAUTO31

2 BENFRANTZDALE32

2 BEUC33

1 BILLYMAC0034

1 BOGGIE35

2 BOMBE36

1 BORB37

1 CARL TURNER38

18 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALSOCAL
19 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AMIN.AJANI17
20 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANDRE_ENGELS
21 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANUNNAKKI
22 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARGENTO
23 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARLEN22
24 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASHUTOSH.UKEY
25 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATHGORN
26 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ATRIUM
27 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AUTUMNFIELDS
28 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVICENNASIS
29 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AZ1568
30 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BCG999
31 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BAZKIE_BOTSAUTO
32 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BENFRANTZDALE
33 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BEUC
34 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BILLYMAC00
35 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOGGIE
36 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BOMBE
37 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BORB
38 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CARL_TURNER

688

http://en.wikibooks.org/w/index.php?title=User:Alsocal
http://en.wikibooks.org/w/index.php?title=User:Amin.ajani17
http://en.wikibooks.org/w/index.php?title=User:Andre_Engels
http://en.wikibooks.org/w/index.php?title=User:Anunnakki
http://en.wikibooks.org/w/index.php?title=User:Argento
http://en.wikibooks.org/w/index.php?title=User:Arlen22
http://en.wikibooks.org/w/index.php?title=User:Ashutosh.ukey
http://en.wikibooks.org/w/index.php?title=User:Athgorn
http://en.wikibooks.org/w/index.php?title=User:Atrium
http://en.wikibooks.org/w/index.php?title=User:Autumnfields
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:BCG999
http://en.wikibooks.org/w/index.php?title=User:Bazkie_botsauto
http://en.wikibooks.org/w/index.php?title=User:BenFrantzDale
http://en.wikibooks.org/w/index.php?title=User:Beuc
http://en.wikibooks.org/w/index.php?title=User:Billymac00
http://en.wikibooks.org/w/index.php?title=User:Boggie
http://en.wikibooks.org/w/index.php?title=User:Bombe
http://en.wikibooks.org/w/index.php?title=User:Borb
http://en.wikibooks.org/w/index.php?title=User:Carl_Turner

References

1 CATSARECOOL39

2 CHESEMONKYLOMA40

1 CHRICHO41

3 CHRIS.SEEDYK42

12 CLEOS43

1 CLOUDGUITAR44

1 COMMONSDELINKER45

14 COPPRO46

5 COSTANZO47

1 COWTUNG48

2 CYP49

4 DWARRIOR50

1 DALLAS127851

4 DAN POLANSKY52

2 DANILO.PIAZZALUNGA53

206 DARKLAMA54

49 DAVIDCARY55

1 DEMENTTED56

6 DERBETH57

3 DI GAMA58

1 DIRK HÜNNIGER59

39 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CATSARECOOL
40 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHESEMONKYLOMA
41 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRICHO
42 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRIS.SEEDYK
43 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLEOS
44 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLOUDGUITAR
45 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COMMONSDELINKER
46 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COPPRO
47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COSTANZO
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COWTUNG
49 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CYP
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DWARRIOR
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALLAS1278
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN_POLANSKY
53 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANILO.

PIAZZALUNGA
54 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
55 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDCARY
56 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEMENTTED
57 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DERBETH
58 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DI_GAMA
59 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_H%C3%

BCNNIGER

689

http://en.wikibooks.org/w/index.php?title=User:Catsarecool
http://en.wikibooks.org/w/index.php?title=User:Chesemonkyloma
http://en.wikibooks.org/w/index.php?title=User:Chricho
http://en.wikibooks.org/w/index.php?title=User:Chris.Seedyk
http://en.wikibooks.org/w/index.php?title=User:Cleos
http://en.wikibooks.org/w/index.php?title=User:Cloudguitar
http://en.wikibooks.org/w/index.php?title=User:CommonsDelinker
http://en.wikibooks.org/w/index.php?title=User:Coppro
http://en.wikibooks.org/w/index.php?title=User:Costanzo
http://en.wikibooks.org/w/index.php?title=User:Cowtung
http://en.wikibooks.org/w/index.php?title=User:Cyp
http://en.wikibooks.org/w/index.php?title=User:DWarrior
http://en.wikibooks.org/w/index.php?title=User:Dallas1278
http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
http://en.wikibooks.org/w/index.php?title=User:Danilo.Piazzalunga
http://en.wikibooks.org/w/index.php?title=User:Danilo.Piazzalunga
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:Dementted
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Di_Gama
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

Authors

13 DNAS60

1 DOPPLE61

2 DRESDNHOPE62

1 DUCKMAN2163

1 DUNCANPHILIPNORMAN64

1 DVIR.KAFRI65

2 DZAJTAI66

1 E JAMES67

1 EDUDOBAY68

1 ELIEDEBRAUWER69

5 EMPERORBMA70

2 EMRY71

1 ENCMSTR72

1 EPHEMERALJUN73

1 ESBEN74

1 EVERLONG75

5 FAULKNERCK276

4 FD0MAN77

55 FISHPI78

2 FRANCIS OCOMA79

5 FREDO80

60 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DNAS
61 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DOPPLE
62 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRESDNHOPE
63 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DUCKMAN21
64 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

DUNCANPHILIPNORMAN
65 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DVIR.KAFRI
66 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DZAJTAI
67 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:E_JAMES
68 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EDUDOBAY
69 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELIEDEBRAUWER
70 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EMPERORBMA
71 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EMRY
72 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ENCMSTR
73 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EPHEMERALJUN
74 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ESBEN
75 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EVERLONG
76 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FAULKNERCK2
77 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FD0MAN
78 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHPI
79 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRANCIS_OCOMA
80 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREDO

690

http://en.wikibooks.org/w/index.php?title=User:Dnas
http://en.wikibooks.org/w/index.php?title=User:Dopple
http://en.wikibooks.org/w/index.php?title=User:Dresdnhope
http://en.wikibooks.org/w/index.php?title=User:DuckMan21
http://en.wikibooks.org/w/index.php?title=User:Duncanphilipnorman
http://en.wikibooks.org/w/index.php?title=User:Duncanphilipnorman
http://en.wikibooks.org/w/index.php?title=User:Dvir.Kafri
http://en.wikibooks.org/w/index.php?title=User:Dzajtai
http://en.wikibooks.org/w/index.php?title=User:E_James
http://en.wikibooks.org/w/index.php?title=User:Edudobay
http://en.wikibooks.org/w/index.php?title=User:ElieDeBrauwer
http://en.wikibooks.org/w/index.php?title=User:Emperorbma
http://en.wikibooks.org/w/index.php?title=User:Emry
http://en.wikibooks.org/w/index.php?title=User:EncMstr
http://en.wikibooks.org/w/index.php?title=User:EphemeralJun
http://en.wikibooks.org/w/index.php?title=User:Esben
http://en.wikibooks.org/w/index.php?title=User:Everlong
http://en.wikibooks.org/w/index.php?title=User:Faulknerck2
http://en.wikibooks.org/w/index.php?title=User:Fd0man
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Francis_Ocoma
http://en.wikibooks.org/w/index.php?title=User:Fredo

References

1 FUNPIKA81

1 GALOUBET82

5 GARRETT83

2 GATESPLUSPLUS84

1 GENTGEEN85

1 GEORDIEMCBAIN86

1 GEORGE HERNANDEZ87

90 GHFJDK88

4 GHOSTZART89

5 GMCFOLEY90

2 GOTOMAN91

1 GOPALAKRISHNANS92

1 GRAEME93

1 GREEN CATERPILLAR94

2 GREENVOID95

11 GRONAU96

1 GRUMBEL97

1 GUANACO98

1 GURUPATHI99

1 GWYLIM A100

3 HAGINDAZ101

81 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FUNPIKA
82 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GALOUBET
83 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GARRETT
84 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GATESPLUSPLUS
85 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GENTGEEN
86 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEORDIEMCBAIN
87 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEORGE_

HERNANDEZ
88 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHFJDK
89 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHOSTZART
90 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GMCFOLEY
91 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOTOMAN
92 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOPALAKRISHNANS
93 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRAEME
94 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREEN_

CATERPILLAR

95 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREENVOID
96 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRONAU
97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRUMBEL
98 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUANACO
99 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GURUPATHI
100 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GWYLIM_A
101 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAGINDAZ

691

http://en.wikibooks.org/w/index.php?title=User:FunPika
http://en.wikibooks.org/w/index.php?title=User:Galoubet
http://en.wikibooks.org/w/index.php?title=User:Garrett
http://en.wikibooks.org/w/index.php?title=User:GatesPlusPlus
http://en.wikibooks.org/w/index.php?title=User:Gentgeen
http://en.wikibooks.org/w/index.php?title=User:GeordieMcBain
http://en.wikibooks.org/w/index.php?title=User:George_Hernandez
http://en.wikibooks.org/w/index.php?title=User:George_Hernandez
http://en.wikibooks.org/w/index.php?title=User:Ghfjdk
http://en.wikibooks.org/w/index.php?title=User:Ghostzart
http://en.wikibooks.org/w/index.php?title=User:Gmcfoley
http://en.wikibooks.org/w/index.php?title=User:GoToMan
http://en.wikibooks.org/w/index.php?title=User:Gopalakrishnans
http://en.wikibooks.org/w/index.php?title=User:Graeme
http://en.wikibooks.org/w/index.php?title=User:Green_caterpillar
http://en.wikibooks.org/w/index.php?title=User:Green_caterpillar
http://en.wikibooks.org/w/index.php?title=User:GreenVoid
http://en.wikibooks.org/w/index.php?title=User:Gronau
http://en.wikibooks.org/w/index.php?title=User:Grumbel
http://en.wikibooks.org/w/index.php?title=User:Guanaco
http://en.wikibooks.org/w/index.php?title=User:Gurupathi
http://en.wikibooks.org/w/index.php?title=User:Gwylim_a
http://en.wikibooks.org/w/index.php?title=User:Hagindaz

Authors

1 HAMMERJW102

1 HAO2LIAN103

58 HERBYTHYME104

10 HERETOHELP105

2 HETHRIRBOT106

1 HYBRIDPRO107

1 IAMUNKNOWN108

40 IKARSIK109

2 ILYAHAYKINSON110

7 INVADER02111

1 IXTLI112

1 J36MILES113

3 JAMES BROWN114

174 JAMES DENNETT115

1 JAMESCROOK116

1 JAMESOFUR117

2 JAYARAM GANAPATHY118

1 JAYDEEPMEHTAWIKI119

3 JEFFSCHWAB1120

1 JEREMYROMAN121

13 JFMANTIS122

102 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAMMERJW
103 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAO2LIAN
104 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERBYTHYME
105 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERETOHELP
106 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HETHRIRBOT
107 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HYBRIDPRO
108 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IAMUNKNOWN
109 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IKARSIK
110 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ILYAHAYKINSON
111 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:INVADER02
112 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IXTLI
113 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:J36MILES
114 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES_BROWN
115 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES_DENNETT
116 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMESCROOK
117 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMESOFUR
118 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAYARAM_

GANAPATHY
119 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

JAYDEEPMEHTAWIKI
120 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JEFFSCHWAB1
121 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JEREMYROMAN
122 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JFMANTIS

692

http://en.wikibooks.org/w/index.php?title=User:Hammerjw
http://en.wikibooks.org/w/index.php?title=User:Hao2lian
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:HereToHelp
http://en.wikibooks.org/w/index.php?title=User:HethrirBot
http://en.wikibooks.org/w/index.php?title=User:Hybridpro
http://en.wikibooks.org/w/index.php?title=User:Iamunknown
http://en.wikibooks.org/w/index.php?title=User:Ikarsik
http://en.wikibooks.org/w/index.php?title=User:IlyaHaykinson
http://en.wikibooks.org/w/index.php?title=User:Invader02
http://en.wikibooks.org/w/index.php?title=User:Ixtli
http://en.wikibooks.org/w/index.php?title=User:J36miles
http://en.wikibooks.org/w/index.php?title=User:James_Brown
http://en.wikibooks.org/w/index.php?title=User:James_Dennett
http://en.wikibooks.org/w/index.php?title=User:JamesCrook
http://en.wikibooks.org/w/index.php?title=User:Jamesofur
http://en.wikibooks.org/w/index.php?title=User:Jayaram_Ganapathy
http://en.wikibooks.org/w/index.php?title=User:Jayaram_Ganapathy
http://en.wikibooks.org/w/index.php?title=User:Jaydeepmehtawiki
http://en.wikibooks.org/w/index.php?title=User:Jaydeepmehtawiki
http://en.wikibooks.org/w/index.php?title=User:JeffSchwab1
http://en.wikibooks.org/w/index.php?title=User:Jeremyroman
http://en.wikibooks.org/w/index.php?title=User:Jfmantis

References

59 JGUK123

1 JKL124

1 JLEEDEV125

2 JLENTHE126

1 JOECOOL94127

1 JOHNOWENS128

1 JOHNRUBLE129

1 JOKES FREE4ME130

6 JOMEGAT131

1 JORGENEV132

1 JOÃO JERÓNIMO133

17 JUXE134

1 K1MGY135

5 KTC136

1 KAKURADY137

4 KAYAU138

1 KJETIL R139

9 KRISCHIK140

15 LEANDROGOE141

3 LEMMIO142

1 LINUXFREAK143

123 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
124 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JKL
125 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JLEEDEV
126 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JLENTHE
127 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOECOOL94
128 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNOWENS
129 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNRUBLE
130 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOKES_FREE4ME
131 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOMEGAT
132 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JORGENEV
133 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JO%C3%A3O_JER%

C3%B3NIMO
134 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JUXE
135 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:K1MGY
136 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KTC
137 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAKURADY
138 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAYAU
139 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KJETIL_R
140 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRISCHIK
141 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEANDROGOE
142 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEMMIO
143 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LINUXFREAK

693

http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jkl
http://en.wikibooks.org/w/index.php?title=User:Jleedev
http://en.wikibooks.org/w/index.php?title=User:Jlenthe
http://en.wikibooks.org/w/index.php?title=User:Joecool94
http://en.wikibooks.org/w/index.php?title=User:JohnOwens
http://en.wikibooks.org/w/index.php?title=User:Johnruble
http://en.wikibooks.org/w/index.php?title=User:Jokes_Free4Me
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jorgenev
http://en.wikibooks.org/w/index.php?title=User:Jo%C3%A3o_Jer%C3%B3nimo
http://en.wikibooks.org/w/index.php?title=User:Jo%C3%A3o_Jer%C3%B3nimo
http://en.wikibooks.org/w/index.php?title=User:Juxe
http://en.wikibooks.org/w/index.php?title=User:K1mgy
http://en.wikibooks.org/w/index.php?title=User:KTC
http://en.wikibooks.org/w/index.php?title=User:Kakurady
http://en.wikibooks.org/w/index.php?title=User:Kayau
http://en.wikibooks.org/w/index.php?title=User:Kjetil_r
http://en.wikibooks.org/w/index.php?title=User:Krischik
http://en.wikibooks.org/w/index.php?title=User:Leandrogoe
http://en.wikibooks.org/w/index.php?title=User:Lemmio
http://en.wikibooks.org/w/index.php?title=User:Linuxfreak

Authors

1 MRPROGRAMMER144

5 MVHOKIES145

4 MAHANGA146

3 MARCELO PINTO147

1 MARCUS256148

1 MARKHUDSON149

1 MARTNYM150

2 MASLEN151

19 MATHWIZARD1232152

1 MATTIEUGA153

34 MAXBERGER154

1 MCINTOSH NATURA155

45 MERRHEIM156

1 MICHAELDADMUM157

1 MIKE.LIFEGUARD158

1 MIKEL159

5 MIKLCCT160

1 MITAL D VORA161

34 MJCHAEL162

1 MRAJCOK163

16 MSHONLE164

144 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MRPROGRAMMER
145 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MVHOKIES
146 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAHANGA
147 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARCELO_PINTO
148 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARCUS256
149 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARKHUDSON
150 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MARTNYM
151 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MASLEN
152 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATHWIZARD1232
153 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTIEUGA
154 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAXBERGER
155 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MCINTOSH_NATURA
156 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MERRHEIM
157 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MICHAELDADMUM
158 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKE.LIFEGUARD
159 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKEL
160 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKLCCT
161 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MITAL_D_VORA
162 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MJCHAEL
163 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MRAJCOK
164 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSHONLE

694

http://en.wikibooks.org/w/index.php?title=User:MRProgrammer
http://en.wikibooks.org/w/index.php?title=User:MVhokies
http://en.wikibooks.org/w/index.php?title=User:Mahanga
http://en.wikibooks.org/w/index.php?title=User:Marcelo_Pinto
http://en.wikibooks.org/w/index.php?title=User:Marcus256
http://en.wikibooks.org/w/index.php?title=User:MarkHudson
http://en.wikibooks.org/w/index.php?title=User:Martnym
http://en.wikibooks.org/w/index.php?title=User:Maslen
http://en.wikibooks.org/w/index.php?title=User:Mathwizard1232
http://en.wikibooks.org/w/index.php?title=User:MattieuGA
http://en.wikibooks.org/w/index.php?title=User:Maxberger
http://en.wikibooks.org/w/index.php?title=User:McIntosh_Natura
http://en.wikibooks.org/w/index.php?title=User:Merrheim
http://en.wikibooks.org/w/index.php?title=User:Michaeldadmum
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
http://en.wikibooks.org/w/index.php?title=User:Mikel
http://en.wikibooks.org/w/index.php?title=User:Miklcct
http://en.wikibooks.org/w/index.php?title=User:Mital_d_vora
http://en.wikibooks.org/w/index.php?title=User:Mjchael
http://en.wikibooks.org/w/index.php?title=User:Mrajcok
http://en.wikibooks.org/w/index.php?title=User:Mshonle

References

1 MSILADIN165

1 MSKONLINE166

5 N.HARIHARAN 1988167

8 NEUVIEMEP168

2 NICKWHALEYISSEXY169

2 NIKIRIY170

2 NIPPLESMECOOL171

5 NITHINBEKAL172

1 NMRTIAN173

1 NRCARBALLO174

5 OJAN175

7 OMAIR.MAJID176

51 ORDERUD177

15 PADDU178

5189 PANIC2K4179

3 PHATENCY180

1 PHIL.A181

4 PHOSGRAM182

3 PIE21183

13 POETICJUSTICE712182184

165 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSILADIN
166 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSKONLINE
167 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:N.HARIHARAN_

1988
168 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NEUVIEMEP
169 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

NICKWHALEYISSEXY
170 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NIKIRIY
171 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NIPPLESMECOOL
172 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NITHINBEKAL
173 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NMRTIAN
174 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NRCARBALLO
175 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OJAN
176 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OMAIR.MAJID
177 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORDERUD
178 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PADDU
179 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
180 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHATENCY
181 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHIL.A
182 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHOSGRAM
183 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIE21
184 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

POETICJUSTICE712182

695

http://en.wikibooks.org/w/index.php?title=User:Msiladin
http://en.wikibooks.org/w/index.php?title=User:Mskonline
http://en.wikibooks.org/w/index.php?title=User:N.hariharan_1988
http://en.wikibooks.org/w/index.php?title=User:N.hariharan_1988
http://en.wikibooks.org/w/index.php?title=User:Neuviemep
http://en.wikibooks.org/w/index.php?title=User:NickWhaleyIsSexy
http://en.wikibooks.org/w/index.php?title=User:NickWhaleyIsSexy
http://en.wikibooks.org/w/index.php?title=User:Nikiriy
http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool
http://en.wikibooks.org/w/index.php?title=User:NithinBekal
http://en.wikibooks.org/w/index.php?title=User:Nmrtian
http://en.wikibooks.org/w/index.php?title=User:Nrcarballo
http://en.wikibooks.org/w/index.php?title=User:Ojan
http://en.wikibooks.org/w/index.php?title=User:Omair.majid
http://en.wikibooks.org/w/index.php?title=User:Orderud
http://en.wikibooks.org/w/index.php?title=User:Paddu
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Phatency
http://en.wikibooks.org/w/index.php?title=User:Phil.a
http://en.wikibooks.org/w/index.php?title=User:Phosgram
http://en.wikibooks.org/w/index.php?title=User:Pie21
http://en.wikibooks.org/w/index.php?title=User:Poeticjustice712182
http://en.wikibooks.org/w/index.php?title=User:Poeticjustice712182

Authors

1 PRADEEP REDDY185

1 PRASANNJIT.GONDCHAWAR186

1 PRIME187

25 PUMBAA80188

5 PURPLEPIEMAN189

2 QUBOT190

2 QAZSEDCFT191

7 QUITEUNUSUAL192

1 RAMAC193

3 RAVENSKY194

3 RECENT RUNES195

19 REMI0O196

3 RENICH197

1 RES1233198

2 REVOLUS199

1 RFROHARDT200

6 RIZVN201

5 RMCCUE202

1 RODASMITH203

2 ROHITVIPIN204

34 RONYCLAU205

185 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRADEEP_REDDY
186 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRASANNJIT.

GONDCHAWAR

187 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRIME
188 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PUMBAA80
189 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PURPLEPIEMAN
190 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUBOT
191 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QAZSEDCFT
192 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUITEUNUSUAL
193 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAMAC
194 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVENSKY
195 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
196 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMI0O
197 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RENICH
198 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RES1233
199 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REVOLUS
200 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RFROHARDT
201 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RIZVN
202 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RMCCUE
203 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RODASMITH
204 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROHITVIPIN
205 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RONYCLAU

696

http://en.wikibooks.org/w/index.php?title=User:Pradeep_reddy
http://en.wikibooks.org/w/index.php?title=User:Prasannjit.gondchawar
http://en.wikibooks.org/w/index.php?title=User:Prasannjit.gondchawar
http://en.wikibooks.org/w/index.php?title=User:Prime
http://en.wikibooks.org/w/index.php?title=User:Pumbaa80
http://en.wikibooks.org/w/index.php?title=User:PurplePieman
http://en.wikibooks.org/w/index.php?title=User:QUBot
http://en.wikibooks.org/w/index.php?title=User:Qazsedcft
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Ramac
http://en.wikibooks.org/w/index.php?title=User:Ravensky
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Remi0o
http://en.wikibooks.org/w/index.php?title=User:Renich
http://en.wikibooks.org/w/index.php?title=User:Res1233
http://en.wikibooks.org/w/index.php?title=User:Revolus
http://en.wikibooks.org/w/index.php?title=User:Rfrohardt
http://en.wikibooks.org/w/index.php?title=User:Rizvn
http://en.wikibooks.org/w/index.php?title=User:Rmccue
http://en.wikibooks.org/w/index.php?title=User:Rodasmith
http://en.wikibooks.org/w/index.php?title=User:Rohitvipin
http://en.wikibooks.org/w/index.php?title=User:Ronyclau

References

7 RWDOUGLA206

10 SBJOHNNY207

5 SAE1962208

4 SAFEDOCTOR209

1 SAMEEN210

1 SARANG211

7 SCHWARZBICHLER212

5 SCR213

3 SDDOC214

1 SERAPHIMBLADE215

1 SHAKESPEAREFAN00216

3 SHOKUKU217

102 SIGMA 7218

5 SIKANDARAMIN219

1 SISINGH220

1 SLPOSEY221

3 SPARTACUS3D222

1 SPAZ MAN223

1 SPIZZER2224

15 SPOON!225

1 SRIDARSHAN23226

206 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RWDOUGLA
207 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SBJOHNNY
208 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAE1962
209 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAFEDOCTOR
210 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAMEEN
211 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SARANG
212 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCHWARZBICHLER
213 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SCR
214 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SDDOC
215 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SERAPHIMBLADE
216 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

SHAKESPEAREFAN00
217 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHOKUKU
218 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGMA_7
219 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIKANDARAMIN
220 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SISINGH
221 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SLPOSEY
222 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPARTACUS3D
223 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPAZ_MAN
224 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPIZZER2
225 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPOON%21
226 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SRIDARSHAN23

697

http://en.wikibooks.org/w/index.php?title=User:Rwdougla
http://en.wikibooks.org/w/index.php?title=User:SBJohnny
http://en.wikibooks.org/w/index.php?title=User:Sae1962
http://en.wikibooks.org/w/index.php?title=User:Safedoctor
http://en.wikibooks.org/w/index.php?title=User:Sameen
http://en.wikibooks.org/w/index.php?title=User:Sarang
http://en.wikibooks.org/w/index.php?title=User:Schwarzbichler
http://en.wikibooks.org/w/index.php?title=User:Scr
http://en.wikibooks.org/w/index.php?title=User:Sddoc
http://en.wikibooks.org/w/index.php?title=User:Seraphimblade
http://en.wikibooks.org/w/index.php?title=User:ShakespeareFan00
http://en.wikibooks.org/w/index.php?title=User:ShakespeareFan00
http://en.wikibooks.org/w/index.php?title=User:Shokuku
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Sikandaramin
http://en.wikibooks.org/w/index.php?title=User:Sisingh
http://en.wikibooks.org/w/index.php?title=User:Slposey
http://en.wikibooks.org/w/index.php?title=User:Spartacus3d
http://en.wikibooks.org/w/index.php?title=User:Spaz_man
http://en.wikibooks.org/w/index.php?title=User:Spizzer2
http://en.wikibooks.org/w/index.php?title=User:Spoon%21
http://en.wikibooks.org/w/index.php?title=User:Sridarshan23

Authors

2 STEPHENMORRISSON227

1 SUTAMBE228

2 SWIFT229

1 SYGMN230

1 TAIKO231

1 TAJENDRA232

1 TALLY SOLLENI233

1 TARDIS234

4 TEKTONIK235

1 TEWY236

6 THE MASTER237

51 THENUB314238

1 THREEE239

1 TOPSFIELD99240

22 TREVOR ANDERSEN241

1 UNFORGETTABLEID242

3 VAN DER HOORN243

2 VIXFEAR244

1 VOXHUMANA245

2 WEBAWARE246

4 WEEVIL247

227 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:
STEPHENMORRISSON

228 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUTAMBE
229 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWIFT
230 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SYGMN
231 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAIKO
232 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAJENDRA
233 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TALLY_SOLLENI
234 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TARDIS
235 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEKTONIK
236 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TEWY
237 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THE_MASTER
238 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THENUB314
239 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THREEE
240 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TOPSFIELD99
241 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TREVOR_ANDERSEN
242 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UNFORGETTABLEID
243 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VAN_DER_HOORN
244 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VIXFEAR
245 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VOXHUMANA
246 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEBAWARE
247 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEEVIL

698

http://en.wikibooks.org/w/index.php?title=User:StephenMorrisson
http://en.wikibooks.org/w/index.php?title=User:StephenMorrisson
http://en.wikibooks.org/w/index.php?title=User:Sutambe
http://en.wikibooks.org/w/index.php?title=User:Swift
http://en.wikibooks.org/w/index.php?title=User:Sygmn
http://en.wikibooks.org/w/index.php?title=User:Taiko
http://en.wikibooks.org/w/index.php?title=User:Tajendra
http://en.wikibooks.org/w/index.php?title=User:Tally_Solleni
http://en.wikibooks.org/w/index.php?title=User:Tardis
http://en.wikibooks.org/w/index.php?title=User:Tektonik
http://en.wikibooks.org/w/index.php?title=User:Tewy
http://en.wikibooks.org/w/index.php?title=User:The_Master
http://en.wikibooks.org/w/index.php?title=User:Thenub314
http://en.wikibooks.org/w/index.php?title=User:ThreeE
http://en.wikibooks.org/w/index.php?title=User:Topsfield99
http://en.wikibooks.org/w/index.php?title=User:Trevor_Andersen
http://en.wikibooks.org/w/index.php?title=User:Unforgettableid
http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn
http://en.wikibooks.org/w/index.php?title=User:Vixfear
http://en.wikibooks.org/w/index.php?title=User:Voxhumana
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Weevil

References

2 WHITEKNIGHT248

1 WIKIWIZARD249

8 WILLOWTT250

1 WITHINFOCUS251

1 WORMSTONE252

7 XIONG CHIAMIOV253

10 XIXTAS254

3 XRCHZ255

1 YAFINE256

1 YVH11A257

1 ZORBATHUT258

1 259

248 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WHITEKNIGHT
249 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIWIZARD
250 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILLOWTT
251 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WITHINFOCUS
252 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WORMSTONE
253 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XIONG_CHIAMIOV
254 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XIXTAS
255 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:XRCHZ
256 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YAFINE
257 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YVH11A
258 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZORBATHUT
259 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:%D0%9F%D0%B8%

D0%BA%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0

699

http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:WikiWizard
http://en.wikibooks.org/w/index.php?title=User:Willowtt
http://en.wikibooks.org/w/index.php?title=User:Withinfocus
http://en.wikibooks.org/w/index.php?title=User:Wormstone
http://en.wikibooks.org/w/index.php?title=User:Xiong_Chiamiov
http://en.wikibooks.org/w/index.php?title=User:Xixtas
http://en.wikibooks.org/w/index.php?title=User:Xrchz
http://en.wikibooks.org/w/index.php?title=User:Yafine
http://en.wikibooks.org/w/index.php?title=User:Yvh11a
http://en.wikibooks.org/w/index.php?title=User:ZorbaTHut
http://en.wikibooks.org/w/index.php?title=User:%D0%9F%D0%B8%D0%BA%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0
http://en.wikibooks.org/w/index.php?title=User:%D0%9F%D0%B8%D0%BA%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0

Authors

700

List of Figures

• GFDL: Gnu Free Documentation License.
http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
http://creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License.
http://creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
http://creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License.
http://creativecommons.org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any pur-
pose, provided that the copyright holder is properly attributed. Redistribu-
tion, derivative work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on
the design of the common face of the euro coins belongs to the European

701

List of Figures

Commission. Authorised is reproduction in a format without relief (draw-
ings, paintings, films) provided they are not detrimental to the image of the
euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-
v10.php

702

List of Figures

1 JTojnar PD
2 - GFDL
3 JOHNMANUEL260 GFDL
4
5
6
7 Original uploader was EHAMBERG261 at

EN.WIKIPEDIA262 Later version(s) were uploaded by
WAPCAPLET263, AZATOTH264, HEPTITE265, MINER-
ALÃ¨266, PROCUS THE MAD267, BYONDLIMITS268,
JVIHAVAINEN269 at EN.WIKIPEDIA270.

GPL

8 PD
9 PD
10 PD
11 Panic2k7 PD
12 PD
13 PD
14 PD
15 PD
16 PD
17 PD
18 PD
19 DANIEL B271 GFDL
20 PANIC2K7272 GFDL
21 PANIC2K7273 GFDL
22 USER:TUUKKAH274 PD
23 USER:TUUKKAH275 PD

260 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJOHNMANUEL
261 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AEHAMBERG
262 HTTP://EN.WIKIPEDIA.ORG
263 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AWAPCAPLET
264 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AAZATOTH
265 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AHEPTITE
266 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AMINERAL%C3%A8
267 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3APROCUS%20THE%20MAD
268 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3ABYONDLIMITS
269 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AJVIHAVAINEN
270 HTTP://EN.WIKIPEDIA.ORG
271 HTTP://DE.WIKIBOOKS.ORG/WIKI/BENUTZER%3ADANIEL%20B
272 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APANIC2K7
273 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APANIC2K7
274 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATUUKKAH
275 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATUUKKAH

703

http://de.wikibooks.org/wiki/File:C%20plus%20plus.svg
http://de.wikibooks.org/wiki/File:BjarneStroustrup.jpg
http://de.wikibooks.org/wiki/File:TaxonomyofProgrammingLanguages.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20cpp.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20h.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20h.png
http://de.wikibooks.org/wiki/File:Vim.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte256.png
http://de.wikibooks.org/wiki/File:PrimitiveTypes.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte45flip.png
http://de.wikibooks.org/wiki/File:byte45flip1.png
http://de.wikibooks.org/wiki/File:byte228.png
http://de.wikibooks.org/wiki/File:byte228flip.png
http://de.wikibooks.org/wiki/File:byte228flip1.png
http://de.wikibooks.org/wiki/File:byte5.png
http://de.wikibooks.org/wiki/File:Zeiger.PNG
http://de.wikibooks.org/wiki/File:Ficondforless10.png
http://de.wikibooks.org/wiki/File:Elseifage.png
http://de.wikibooks.org/wiki/File:Callback-notitle.svg
http://de.wikibooks.org/wiki/File:Callback-async-notitle.svg
http://en.wikibooks.org/wiki/User%3AJohnManuel
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AEhamberg
http://en.wikipedia.org
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AWapcaplet
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AAzaToth
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AHeptite
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AMineral%C3%A8
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AProcus%20the%20Mad
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AByondlimits
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AJvihavainen
http://en.wikipedia.org
http://de.wikibooks.org/wiki/Benutzer%3ADaniel%20B
http://en.wikibooks.org/wiki/User%3APanic2k7
http://en.wikibooks.org/wiki/User%3APanic2k7
http://en.wikibooks.org/wiki/User%3ATuukkaH
http://en.wikibooks.org/wiki/User%3ATuukkaH

List of Figures

24 ILYA VOYAGER276 GFDL
25 Paul R. McJones GFDL
26
27
28
29
30 :EN:USER:CBURNETT277 GFDL
31 :EN:USER:KHAZADUM278, USER:STANNERED279 PD
32 ADAMD280 PD

276 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AILYA%20VOYAGER
277 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3ACBURNETT
278 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AKHAZADUM
279 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASTANNERED
280 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AADAMD

704

http://de.wikibooks.org/wiki/File:Herman-ring-1.png
http://de.wikibooks.org/wiki/File:Alexander%20Stepanov.jpg
http://de.wikibooks.org/wiki/File:Visual_studio_includedirectories.png
http://de.wikibooks.org/wiki/File:Visual_studio_librarydirectories.png
http://de.wikibooks.org/wiki/File:Visual_studio_additionaldependencies.png
http://de.wikibooks.org/wiki/File:Visual%20studio%20runtimelibrary.png
http://de.wikibooks.org/wiki/File:Thread%20pool.svg
http://de.wikibooks.org/wiki/File:OpenMP%20language%20extensions.svg
http://de.wikibooks.org/wiki/File:%20Queue_System.PNG
http://en.wikibooks.org/wiki/User%3AIlya%20Voyager
http://en.wikibooks.org/wiki/%3Aen%3AUser%3ACburnett
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AKhazadum
http://en.wikibooks.org/wiki/User%3AStannered
http://en.wikibooks.org/wiki/User%3AAdamD

List of Figures

705

List of Figures

706

	1 About the book
	1.1 Foreword
	1.2 Guide to readers
	1.3 Reader comments

	2 C++ a multi-paradigm language
	2.1 Introducing C++
	2.2 What is a programming language?
	2.3 Programming paradigms
	2.4 Chapter summary

	3 Fundamentals for getting started
	3.1 The code
	3.2 The Compiler
	3.3 Variables
	3.4 Operators
	3.5 Type Conversion
	3.6 Control flow statements
	3.7 Functions
	3.8 Debugging
	3.9 Chapter Summary

	4 Object Oriented Programming
	4.1 Structures
	4.2 union
	4.3 Classes
	4.4 Copy Constructor
	4.5 Equality Operator
	4.6 Inequality Operator
	4.7 Operator overloading
	4.8 I/O
	4.9 Chapter Summary

	5 Advanced Features
	5.1 Templates
	5.2 Standard Template Library (STL)
	5.3 Smart Pointers
	5.4 Semantics
	5.5 Exception Handling
	5.6 Run-Time Type Information (RTTI)
	5.7 Chapter Summary

	6 Beyond the Standard
	6.1 Resource Acquisition Is Initialization (RAII)
	6.2 Garbage collection
	6.3 Programming Patterns
	6.4 Libraries
	6.5 Boost Library
	6.6 Cross-Platform development
	6.7 Software Internationalization
	6.8 Optimizations
	6.9 Further reading
	6.10 Modeling Tools
	6.11 Chapter Summary

	7 Appendix A: Internal References
	8 Appendix B: External References
	8.1 Online Books
	8.2 General Information
	8.3 Reference Sites
	8.4 Compilers and IDEs
	8.5 LibrariesChapter 6.3.3 on page 602
	8.6 IRC
	8.7 User Groups
	8.8 Newsgroups (NNTP)
	8.9 Blogs and Wikis
	8.10 Mailing Lists
	8.11 Forums
	8.12 Misc. C++ Tools
	8.13 C++ Coding Conventions
	8.14 Other (dead tree) books on C++
	8.15 References

	9 Authors
	List of Figures

