
Java Programming/Print version

Wikibooks.org

March 19, 2011.

Contents

1 ABOUT THIS BOOK 1
1.1 WHO SHOULD READ THIS BOOK . 1
1.2 HOW THIS BOOK IS EVOLVING . 2

2 HISTORY 3
2.1 THE GREEN TEAM . 4
2.2 RESHAPING THOUGHT . 5
2.3 THE DEMISE OF AN IDEA, BIRTH OF ANOTHER . 7
2.4 RECENT HISTORY . 8
2.5 VERSIONS . 8
2.6 CITATIONS . 11

3 THE JAVA PLATFORM 13
3.1 JAVA TECHNOLOGIES . 13
3.2 JAVA RUNTIME ENVIRONMENT . 14
3.3 LANGUAGES . 15
3.4 SIMILAR PLATFORMS . 15

4 JAVA PROGRAMMING ENVIRONMENT 17
4.1 THE JAVA COMPILER . 17
4.2 THE JAVA RUNTIME ENVIRONMENT . 19
4.3 OTHER JDK TOOLS . 20

5 INSTALLATION 25
5.1 WINDOWS . 25
5.2 UBUNTU LINUX . 26
5.3 EXTERNAL LINKS . 26

6 COMPILATION 27
6.1 COMPILING TO BYTECODE . 27
6.2 AUTOMATIC COMPILATION OF DEPENDENT CLASSES 27
6.3 PACKAGES, SUBDIRECTORIES, AND RESOURCES . 28
6.4 FILENAME CASE . 29
6.5 COMPILER OPTIONS . 29
6.6 ADDITIONAL TOOLS . 29
6.7 JBUILDER . 29
6.8 JCREATOR . 30
6.9 ECLIPSE . 30
6.10 NETBEANS . 31
6.11 BLUEJ . 31
6.12 KAWA . 31

III

Contents

6.13 ANT . 31
6.14 THE JIT COMPILER . 34

7 EXECUTION 35
7.1 JSE CODE EXECUTION . 35
7.2 J2EE CODE EXECUTION . 38
7.3 JINI . 42

8 FIRST JAVA PROGRAM 43
8.1 HELLO WORLD . 43
8.2 MODIFYING THE PROGRAM . 44
8.3 COMMON PROBLEMS . 45
8.4 THE NEXT STEP . 45

9 UNDERSTANDING A JAVA PROGRAM 47
9.1 THE DISTANCE CLASS: INTENT, SOURCE, AND USE 47
9.2 DETAILED PROGRAM STRUCTURE AND OVERVIEW 48
9.3 COMMENTS IN JAVA PROGRAMS . 56

10 SYNTAX 57
10.1 UNICODE . 58
10.2 LITERALS . 59
10.3 BLOCKS . 60
10.4 WHITESPACES . 60
10.5 REQUIRED WHITESPACE . 61
10.6 INDENTATION . 61

11 STATEMENTS 63
11.1 WHAT EXACTLY ARE STATEMENTS? . 63
11.2 WHERE DO YOU FIND STATEMENTS . 63
11.3 VARIABLES . 64
11.4 DATA TYPES . 64
11.5 WHOLE NUMBERS AND FLOATING POINT NUMBERS 64
11.6 ASSIGNMENT STATEMENTS . 65
11.7 PROGRAM CONTROL FLOW . 67
11.8 STATEMENT BLOCKS . 67
11.9 BRANCHING STATEMENTS . 67
11.10 ITERATION STATEMENTS . 71
11.11 THE CONTINUE AND BREAK STATEMENTS . 74

12 CLASSES, OBJECTS AND TYPES 75
12.1 OBJECTS AND CLASSES . 75
12.2 INSTANTIATION AND CONSTRUCTORS . 75
12.3 TYPE . 76
12.4 MULTIPLE CLASSES IN A JAVA FILE . 77
12.5 EXTERNAL LINKS . 78

13 PACKAGES 79
13.1 JAVA PACKAGE / NAME SPACE . 79
13.2 WILDCARD IMPORTS . 80

IV

Contents

13.3 IMPORTING PACKAGES FROM .JAR FILES . 80
13.4 CLASS LOADING / NAME SPACE . 81

14 NESTED CLASSES 83
14.1 NEST A CLASS INSIDE A CLASS . 83
14.2 NEST A CLASS INSIDE A METHOD . 84
14.3 ANONYMOUS CLASSES . 84

15 ACCESS MODIFIERS 87
15.1 ACCESS MODIFIERS . 87

16 METHODS 89
16.1 METHOD DEFINITION . 89
16.2 METHOD OVERLOADING . 89
16.3 METHOD OVERRIDING . 91
16.4 PARAMETER PASSING . 92
16.5 FUNCTIONS . 93
16.6 RETURN PARAMETER . 93
16.7 SPECIAL METHOD, THE CONSTRUCTOR . 95
16.8 STATIC METHOD . 96
16.9 EXTERNAL LINKS . 97

17 PRIMITIVE TYPES 99

18 TYPES 101
18.1 DATA TYPES IN JAVA . 101
18.2 ABOUT JAVA TYPES . 102
18.3 EXAMPLES OF TYPES . 102
18.4 ARRAY TYPES . 104
18.5 PRIMITIVE DATA TYPES . 104
18.6 DATA CONVERSION (CASTING) . 105
18.7 AUTOBOXING/UNBOXING . 106

19 JAVA.LANG.STRING 107
19.1 JAVA.LANG.STRING . 107
19.2 USING STRINGBUFFER/STRINGBUILDER TO CONCATENATE STRINGS 108
19.3 COMPARING STRINGS . 109
19.4 SPLITTING A STRING . 110
19.5 CREATING SUBSTRINGS . 111
19.6 MODIFYING STRING CASES . 111
19.7 SEE ALSO . 112

20 ARRAYS 113
20.1 INTRO TO ARRAYS . 113
20.2 ARRAY FUNDAMENTALS . 114
20.3 TWO-DIMENSIONAL ARRAYS . 114
20.4 MULTIDIMENSIONAL ARRAY . 115

21 DATA AND VARIABLES 117
21.1 STRONG TYPING . 118

V

Contents

21.2 CASE CONVENTIONS . 118
21.3 SCOPE . 118

22 GENERICS 121
22.1 WHAT ARE GENERICS? . 121
22.2 INTRODUCTION . 122
22.3 NOTE FOR C++ PROGRAMMERS . 123
22.4 CLASS<T> . 124
22.5 VARIABLE ARGUMENT . 125
22.6 WILDCARD TYPES . 126

23 DEFINING CLASSES 129
23.1 FUNDAMENTALS . 129

24 CREATING OBJECTS 133
24.1 INTRODUCTION . 133
24.2 CREATING OBJECT WITH THE new KEYWORD . 133
24.3 CREATING OBJECT BY CLONING AN OBJECT . 134
24.4 CREATING OBJECT RECEIVING FROM A REMOTE SOURCE 136

25 INTERFACES 139
25.1 INTERFACES . 139
25.2 EXTERNAL LINKS . 140

26 USING STATIC MEMBERS 141
26.1 WHAT DOES STATIC MEAN? . 141
26.2 WHAT CAN IT BE USED FOR? . 141
26.3 DANGER OF STATIC VARIABLES . 142
26.4 EXTERNAL LINKS . 142

27 DESTROYING OBJECTS 143
27.1 FINALIZE() . 143

28 OVERLOADING METHODS AND CONSTRUCTORS 145

29 ARRAYS 147
29.1 INTRO TO ARRAYS . 147
29.2 ARRAY FUNDAMENTALS . 148
29.3 TWO-DIMENSIONAL ARRAYS . 148
29.4 MULTIDIMENSIONAL ARRAY . 149

30 COLLECTION CLASSES 151
30.1 INTRODUCTION TO COLLECTIONS . 151
30.2 GENERICS . 152
30.3 COLLECTION OR MAP . 153
30.4 SET OR LIST OR QUEUE . 155
30.5 MAP CLASSES . 162
30.6 THREAD SAFE COLLECTIONS . 163
30.7 CLASSES DIAGRAM (UML) . 164
30.8 EXTERNAL LINKS . 165

VI

Contents

31 THROWING AND CATCHING EXCEPTIONS 167
31.1 CATCHING MATCHING RULES . 167
31.2 EXAMPLE OF HANDLING EXCEPTIONS . 171
31.3 APPLICATION EXCEPTIONS . 172
31.4 RUNTIME EXCEPTIONS . 173
31.5 MAIN EXCEPTION CLASSES . 174
31.6 SEE ALSO . 176
31.7 MINIMIZE THE USE OF THE KEYWORD ’NULL’ IN ASSIGNMENT STATEMENTS 176
31.8 MINIMIZE THE USE OF THE NEW TYPE[INT] SYNTAX FOR CREATING ARRAYS OF OB-

JECTS . 177
31.9 CHECK ALL REFERENCES OBTAINED FROM ’UNTRUSTED’ METHODS 177
31.10 COMPARING STRING VARIABLE WITH A STRING LITERAL 177
31.11 SEE ALSO . 178

32 LINKS 179
32.1 EXTERNAL REFERENCES . 179
32.2 EXTERNAL LINKS . 179

33 LICENSE 183

34 GNU FREE DOCUMENTATION LICENSE 185

35 AUTHORS 187

LIST OF FIGURES 193

VII

Contents

VIII

1 About This Book

Java has gained a considerable foothold in the world of programming since its inception in 1995.
Since then, the way people code has been gradually evolving into a more standardized manner,
rendering Java programming as a pivotal first step into the realm of software code that is OBJECT

ORIENTED PROGRAMMING1.

In an effort to enable software enthusiasts to program in Java as their first language, this book
finds itself a mission: to deliver as much information as is possible using Java as a primary pro-
gramming language. Because of that this book can be considered as a reference book of Java and
its related technologies. Hosting the book on WIKIBOOKS2 means that this book will constantly
be evolving into a more comprehensive text as time goes by.

1.1 Who Should Read This Book

This book is for programmers who wish to learn how to program with Java.

This book does not teach general programming constructs: we assume you know what variables
are, what assignment is, etc. We also assume you know the basics of Object Oriented program-
ming.

If you need to brush up on these topics, a suggested place to start is SUBJECT:COMPUTER PRO-
GRAMMING CONCEPTS3 which has a book on OBJECT ORIENTED PROGRAMMING4.

Also there are many good commercial books that can be used to learn Java (see the external
links). This book does not intend to replace them. Rather this book can be used to supplement
them, during the learning of Java. It always helps the learning process to hear the same informa-
tion in different ways, and this book represents one of the ways. And when the Java language is
mastered, this book can be used as a reference. When you want to look something up quickly,
instead of searching in a printed book, you can look it up in this book.

This book can also be used by advanced Java programmers either by contributing or using this
book as a reference. Also there is an Advanced Topics section for advanced Java programmers.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/OBJECTORIENTEDPROGRAMMING
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAINPAGE
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT:COMPUTERPROGRAMMINGCONCEPTS
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/OBJECTORIENTEDPROGRAMMING

1

http://en.wikibooks.org/wiki/Object Oriented Programming
http://en.wikibooks.org/wiki/Main Page
http://en.wikibooks.org/wiki/Subject:Computer programming concepts
http://en.wikibooks.org/wiki/Object Oriented Programming

About This Book

1.2 How this book is evolving

Any Wikibooks user can edit or modify this book. With readily available information on the
internet, this book is expected to include all aspects of the Java Programming language albeit
it is taken into consideration that not everything is crammed into the book.

2

2 History

On 23 MAY1 19952, JOHN GAGE3, the director of the Science Office of the SUN MICROSYS-
TEMS4 along with MARC ANDREESEN5, co-founder and executive vice president at NETSCAPE6

announced to an audience of SunWorldTM that Java technology wasn’t a myth and that it was a
reality and that it was going to be incorporated into NETSCAPE NAVIGATOR7.8

At the time the total number of people working on Java were less than 30 people.<ref
name="CITEREFEarlyYearsSun1"/> This team would shape the future in the next decade and
no one had any idea as to what was in store. From being the mind of an unmanned vehicle on
MARS10 to the operating environment on most of the consumer electronics, e.g., cable set-top
boxes,VCR’s, toasters, and also for PERSONAL DATA ASSISTANTS11 (PDAs).12 Java has come a long
way from its inception. Let’s see how it all began.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/23MAY
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/1995
3 HTTP://EN.WIKIPEDIA.ORG/WIKI/JOHNGAGE
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUNMICROSYSTEMS
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/MARCANDREESEN
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETSCAPE
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETSCAPENAVIGATOR
8 JAVA TECHNOLOGY: THE EARLY YEARS 9. SUN MICROSYSTEMS ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/

SUNMICROSYSTEMS} . Retrieved 9 MAY ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/9MAY} 2008 ˆ{HTTP:
//EN.WIKIPEDIA.ORG/WIKI/2008}

10 HTTP://EN.WIKIPEDIA.ORG/WIKI/MARS
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/PERSONALDATAASSISTANTS
12 HISTORY OF JAVA 13. Lindsey, Clark S. . Retrieved 7 MAY ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/7MAY} 2008

ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/2008}

3

http://en.wikipedia.org/wiki/23 May
http://en.wikipedia.org/wiki/1995
http://en.wikipedia.org/wiki/John Gage
http://en.wikipedia.org/wiki/Sun Microsystems
http://en.wikipedia.org/wiki/Marc Andreesen
http://en.wikipedia.org/wiki/Netscape
http://en.wikipedia.org/wiki/Netscape Navigator
http://en.wikipedia.org/wiki/Sun Microsystems
http://en.wikipedia.org/wiki/Sun Microsystems
http://en.wikipedia.org/wiki/9 May
http://en.wikipedia.org/wiki/2008
http://en.wikipedia.org/wiki/2008
http://en.wikipedia.org/wiki/Mars
http://en.wikipedia.org/wiki/Personal data assistants
http://en.wikipedia.org/wiki/7 May
http://en.wikipedia.org/wiki/2008

History

2.1 The Green team

Abb. 1: James Gosling, architect and designer of the compiler for the Java technology

Behind closed doors, a project was initiated in December of 199014, whose aim was to create a
programming tool that could render obsolete the C and C++ programming languages. Engineer
Patrick Naughton had become extremely frustrated with the state of Sun’s C++ and C APIs (appli-
cation programming interfaces) and tools. While he was considering to move towards NEXT15,
he was offered a chance to work on new technology and the "Stealth Project" was started, a secret
nobody but he knew.

This Stealth Project was later named the "Green Project" when JAMES GOSLING16 and MIKE

SHERIDAN17 joined Patrick.<ref name="CITEREFEarlyYearsSun1"/> Over the period of time that
the Green Project teethed, the prospects of the project started becoming clearer to the engineers
working on it. No longer was it’s aim to create a new language far superior to the present ones,
but it aimed to target the language to devices other than the computer.

Staffed at 13 people, they began work in a small office on SAND HILL ROAD18 in MENLO PARK,
CALIFORNIA19. This team would be called "Green Team" henceforth in time. The project they
underwent was chartered by Sun Microsystems to anticipate and plan for the "next-wave" in
computing. For the team, this meant at least one significant trend, that of the convergence of
digitally controlled consumer devices and computers.<ref name="CITEREFEarlyYearsSun1"/>

14 HTTP://EN.WIKIPEDIA.ORG/WIKI/1990
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/NEXT
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAMESGOSLING
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/MIKESHERIDAN
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/SANDHILLROAD
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/MENLOPARK,CALIFORNIA

4

http://en.wikipedia.org/wiki/1990
http://en.wikipedia.org/wiki/NeXT
http://en.wikipedia.org/wiki/James Gosling
http://en.wikipedia.org/wiki/Mike Sheridan
http://en.wikipedia.org/wiki/Sand Hill Road
http://en.wikipedia.org/wiki/Menlo Park, California

Reshaping thought

2.2 Reshaping thought

The team started thinking of replacing C++ with a better version, a faster version, a responsive
version. But the one thing they hadn’t thought of, as of yet, was that the language they were aim-
ing for, had to be developed for an EMBEDDED SYSTEM20 with limited resources. An embedded
system is a computer system scaled to a minimalistic interface demanding only a few functions
from its design. For such a system, C++ or any successor would seem too large as all the lan-
guages at the time demanded a larger footprint than what was desired. And, other than this, the
language lacked some other important features as well. The team thus had to think in a different
way to go about solving all these problems.

Co-founder of Sun Microsystems, Bill Joy, envisioned a language combining the power of MESA21

and C in a paper he wrote for the engineers at Sun named Further. Gathering ideas, Gosling be-
gan work on enhancing C++ and named it "C++ ++ --", a pun on the evolutionary structure of the
language’s name. The ++ and -- meant, putting in and taking out stuff. He soon abandoned the
name and called it Oak<ref name="CITEREFEarlyYearsSun1"/> after the tree that stood outside
his office.

Table 1: Who’s
who of the
Java tech-
nology<ref
name="CITEREFEarlyYearsSun1"/>
Has worked
for GT (Green
Team), FP
(FirstPer-
son) and JP
(Java Products
Group) Name

GT FP JP Details

Lisa Friendly XYes XYes FirstPerson
employee and
member of the
Java Products
Group

John Gage Science Office
(Director), Sun
Microsystems

JAMES

GOSLING22
XYes XYes XYes Lead engineer

and key archi-
tect of the Java
technology

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDEDSYSTEM
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/MESA(PROGRAMMINGLANGUAGE)
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAMESGOSLING

5

http://en.wikipedia.org/wiki/embedded system
http://en.wikipedia.org/wiki/Mesa (programming language)
http://en.wikipedia.org/wiki/James Gosling

History

Table 1: Who’s
who of the
Java tech-
nology<ref
name="CITEREFEarlyYearsSun1"/>
Has worked
for GT (Green
Team), FP
(FirstPer-
son) and JP
(Java Products
Group) Name

GT FP JP Details

Bill Joy Co-founder
and VP, Sun
Microsystems;
Principal de-
signer of the
UC Berkeley,
version of the
UNIX® OS

Jonni Kanerva XYes Java Products
Group em-
ployee, author
of The Java
FAQ1

Tim Lindholm XYes XYes FirstPerson
employee
and member
Java Products
Group

Scott McNealy Chairman,
President, and
CEO of Sun
Microsystems

Patrick
Naughton

XYes XYes Green Team
member, First-
Person co-
founder

George Paolini Corporate
Marketing (Di-
rector), Sun’s
Java Software
Division

Kim Polese XYes FirstPerson
product mar-
keting

6

The demise of an idea, birth of another

Table 1: Who’s
who of the
Java tech-
nology<ref
name="CITEREFEarlyYearsSun1"/>
Has worked
for GT (Green
Team), FP
(FirstPer-
son) and JP
(Java Products
Group) Name

GT FP JP Details

Lisa Poulson Original direc-
tor of public
relations for
Java technol-
ogy (Burson-
Marsteller)

Wayne Rosing XYes FirstPerson
President

Eric Schmidt Former Sun
Microsystems
Chief Technol-
ogy Officer

Mike Sheridan XYes Green Team
member

2.3 The demise of an idea, birth of another

By now, the work on Oak had been significant but come the year 199323, people saw the demise
of set-top boxes, interactive TV and the PDAs. A failure that completely ushered the inventors’
thoughts to be reinvented. Only a miracle could make the project a success now. And such a
miracle awaited anticipation.

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS24 (NCSA) had just unveiled its new
commercial web browser for the internet the previous year. The focus of the team, now diverted
towards where they thought the "next-wave" of computing would be − the internet. The team
then divulged into the realms of creating the same embeddable technology to be used in the
web browser space calling it AN APPLET25 − a small application. The team now needed a proper
identity and they decided on naming the new technology they created Java ushering a new gen-
eration of products for the internet boom. A by-product of the project was a cartoon named
"DUKE26" created by Joe Parlang which became its identity then.

23 HTTP://EN.WIKIPEDIA.ORG/WIKI/1993
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/NATIONALCENTERFORSUPERCOMPUTINGAPPLICATIONS
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLET
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/DUKE(MASCOT)

7

http://en.wikipedia.org/wiki/1993
http://en.wikipedia.org/wiki/National Center for Supercomputing Applications
http://en.wikipedia.org/wiki/Applet
http://en.wikipedia.org/wiki/Duke (mascot)

History

Finally at the SunWorldTM conference, Andreesen unveiled the new technology to the masses.
Riding along with the explosion of interest and publicity in the Internet, Java quickly received
widespread recognition and expectations grew for it to become the dominant software for
browser and consumer applications.<ref name="CITEREFClarkLindseyHistory1"/>

2.4 Recent history

Initially Java was owned by Sun Microsystems, but later it was released to open source; the term
Java was a trademark of Sun Microsystems. Sun released the source code for its HotSpot Virtual
Machine and compiler in November 2006, and the most of the source code of the class library
in May 2007. Some parts were missing because they were owned by third parties, not by Sun
Microsystems. The released parts were published under the terms of the GNU GENERAL PUBLIC

LICENSE27, a free software license.

2.5 Versions

Unlike C and C++, Java’s growth is pretty recent. Here, we’d quickly go through the development
paths that Java took with age.

Abb. 2: Development of Java over the years. From version 1.0 to version 1.7, Java has displayed a
steady growth.

2.5.1 Initial Release (versions 1.0 and 1.1)

Introduced in 1996 for the SOLARIS28, WINDOWS29, MAC OS30 Classic and LINUX31, Java was
initially released as the Java Development Kit 1.0 (JDK 1.0). This included the Java runtime (the
virtual machine and the class libraries), and the development tools (e.g., the Javac compiler).
Later, Sun also provided a runtime-only package, called the Java Runtime Environment (JRE).
The first name stuck, however, so usually people refer to a particular version of Java by its JDK
version (e.g., JDK 1.0).

27 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNUGENERALPUBLICLICENSE
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOLARISOPERATINGENVIRONMENT
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFTWINDOWS
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACOS
31 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINUX

8

http://en.wikipedia.org/wiki/GNU General Public License
http://en.wikipedia.org/wiki/Solaris Operating Environment
http://en.wikipedia.org/wiki/Microsoft Windows
http://en.wikipedia.org/wiki/Mac OS
http://en.wikipedia.org/wiki/Linux

Versions

2.5.2 Java 2 (version 1.2)

Introduced in 1998 as a quick fix to the former versions, version 1.2 was the start of a new be-
ginning for Java. The JDKs of version 1.2 and later versions are often called Java 2 as well. For
example, the official name of JDK 1.4 is The Java(TM) 2 Platform, Standard Edition version 1.4.

Major changes include:

• Rewrite the event handling (Add Event Listeners)
• Change Thread synchronizations
• Introduction of the JIT-Just in time compilers

2.5.3 Kestrel (Java 1.3)

2.5.4 Merlin (Java 1.4)

Java 1.4 has improved programmer productivity by expanding language features and available
APIs

• Assertion
• Regular Expression
• XML processing
• Cryptography and Secure Socket Layer (SSL)
• Non-blocking I/O(NIO)
• Logging

2.5.5 Tiger (version 1.5.0; Java SE 5)

Released in September 2004

Major changes include:

• GENERICS32 - Provides compile-time type safety for collections :and eliminates the
drudgery of casting.

• AUTOBOXING/UNBOXING33 - Eliminates the drudgery of manual conversion be-
tween primitive types (such as int) and wrapper types (such as Integer).

• Enhanced for - Shorten the for loop with Collections use.
• Static imports - Lets you import all the static part of a class.
• ANNOTATION34/Metadata - Enabling tools to generate code and deployment de-

scriptors from annotations in the source code. This leads to a "declarative" pro-
gramming style where the programmer says what should be done and tools emit
the code to do it. Annotations can be inspected through source parsing or by using
the additional reflection APIs added in Java 5.

32 Chapter 22 on page 121
33 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/PRIMITIVETYPES#AUTOBOXING/

UNBOXING

34 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/ANNOTATION

9

http://en.wikibooks.org/wiki/Java Programming/Primitive Types##Autoboxing/unboxing
http://en.wikibooks.org/wiki/Java Programming/Primitive Types##Autoboxing/unboxing
http://en.wikibooks.org/wiki/Java Programming/Annotation

History

• JVM Improvements - Most of the run time library is now mapped into memory
as a memory image, as opposed to being loaded from a series of class files. Large
portion of the runtime libraries will now be shared among multiple JVM instances.

(from HTTP://JAVA.SUN.COM/FEATURES/2003/05/BLOCH_QA.HTML35)

2.5.6 Mustang (version 1.6.0; Java SE 6)

Released on 11 December 2006.36

What’s New in Java SE 6:

• Web Services - First-class support for writing XML web service client applications.

• Scripting - You can now mix in JavaScript technology source code, useful for prototyping. Also
useful when you have teams with a variety of skill sets. More advanced developers can plug in
their own scripting engines and mix their favorite scripting language in with Java code as they
see fit.

• Database - No more need to find and configure your own JDBC database when developing
a database application! Developers will also get the updated JDBC 4.0, a well-used API with
many important improvements, such as special support for XML as an SQL datatype and bet-
ter integration of Binary Large OBjects (BLOBs) and Character Large OBjects (CLOBs) into the
APIs.

• More Desktop APIs - GUI developers get a large number of new tricks to play like the ever
popular yet newly incorporated SwingWorker utility to help you with threading in GUI apps,
JTable sorting and filtering, and a new facility for quick splash screens to quiet impatient users.

• Monitoring and Management - The really big deal here is that you don’t need do anything spe-
cial to the startup to be able to attach on demand with any of the monitoring and management
tools in the Java SE platform.

• Compiler Access - Really aimed at people who create tools for Java development and for frame-
works like JavaServer Pages (JSP) or Personal Home Page construction kit (PHP) engines that
need to generate a bunch of classes on demand, the compiler API opens up programmatic
access to javac for in-process compilation of dynamically generated Java code. The compiler
API is not directly intended for the everyday developer, but for those of you deafened by your
screaming inner geek, roll up your sleeves and give it a try. And the rest of us will happily
benefit from the tools and the improved Java frameworks that use this.

• Pluggable Annotations allows programmer to write annotation processor so that it can analyse
your code semantically before javac compiles. For example, you could write an annotation
processor that verifies whether your program obeys naming conventions.

• Desktop Deployment - At long last, Java SE 6 unifies the Java Plug-in technology and Java Web-
Start engines, which just makes sense. Installation of the Java WebStart application got a much
needed makeover.

35 HTTP://JAVA.SUN.COM/FEATURES/2003/05/BLOCH_QA.HTML
36 JAVA PLATFORM STANDARD EDITION 6 37. Sun Microsystems . Retrieved 9 MAY ˆ{HTTP://EN.WIKIPEDIA.

ORG/WIKI/9MAY} 2008 ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/2008}

10

http://java.sun.com/features/2003/05/bloch_qa.html
http://en.wikipedia.org/wiki/9 May
http://en.wikipedia.org/wiki/9 May
http://en.wikipedia.org/wiki/2008

Citations

• Security - Java SE 6 has simplified the job of its security administrators by providing various
new ways to access platform-native security services, such as native Public Key Infrastructure
(PKI) and cryptographic services on Microsoft Windows for secure authentication and com-
munication, Java Generic Security Services (Java GSS) and Kerberos services for authentica-
tion, and access to LDAP servers for authenticating users.

• The -lities: Quality, Compatibility, Stability - Bug fixes ...

2.5.7 Dolphin (version 1.7.0; Java SE 7)

Anticipated for 2010

2.6 Citations

CATEGORY:JAVA PROGRAMMING38

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

11

http://en.wikibooks.org/wiki/Category:Java Programming

History

12

3 The Java Platform

Points to ponder:
The newer versions of Java, i.e., version 6.0 and 7.0 are being developed and are known by their
code-names MUSTANG1 and DOLPHIN2 respectively.
You can test-ride their nightly builds, available online via the given links.

The Java platform is the name for a computing environment, or PLATFORM3, from SUN MI-
CROSYSTEMS4 which can run applications developed using the JAVA PROGRAMMING LANGUAGE5

and set of development tools. In this case, the platform is not a specific hardware or operat-
ing system, but rather an execution engine called a VIRTUAL MACHINE6, and a set of standard
libraries which provide common functionality.

The platform is properly called the Java 2 Platform (although the "2" is to be dropped
HTTP://JAVA.SUN.COM/DEVELOPER/TECHNICALARTICLES/JAVAONE2005/NAMING.HTML7), and
includes a Standard Edition or J2SE8 (now Java SE), an ENTERPRISE9 Edition or J2EE10 (now
Java EE), and a Micro Edition or J2ME11 (now Java ME). The current version of the Java 2 plat-
form is alternatively specified as version 1.6 or version 6 (both refer to the same version). A good
overview of the myriad of technologies that makes up the Java 2 Platform can be found on the
JDK DOCUMENTATION PAGE12.

3.1 Java technologies

The Java platform consists of a wide array of technologies, each of which provides a distinct por-
tion of the overall development or runtime environment. For example, end-users typically inter-
face with the JAVA VIRTUAL MACHINE13 and the standard set of class libraries. In addition, there
are numerous ways for Java applications to be deployed, including being embedded into a web
page. Lastly, developers who are creating applications for the platform use a set of development
tools called the JAVA DEVELOPMENT KIT14.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLATFORM(COMPUTING)
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUNMICROSYSTEMS
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAPROGRAMMINGLANGUAGE
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/VIRTUALMACHINE
7 HTTP://JAVA.SUN.COM/DEVELOPER/TECHNICALARTICLES/JAVAONE2005/NAMING.HTML
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/J2SE
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ENTERPRISE
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/J2EE
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/J2ME
12 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/INDEX.HTML
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAVIRTUALMACHINE
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVADEVELOPMENTKIT

13

http://en.wikipedia.org/wiki/platform (computing)
http://en.wikipedia.org/wiki/Sun Microsystems
http://en.wikipedia.org/wiki/Java programming language
http://en.wikipedia.org/wiki/virtual machine
http://java.sun.com/developer/technicalArticles/javaone2005/naming.html
http://en.wikipedia.org/wiki/J2SE
http://en.wikipedia.org/wiki/Enterprise
http://en.wikipedia.org/wiki/J2EE
http://en.wikipedia.org/wiki/J2ME
http://java.sun.com/j2se/1.5.0/docs/index.html
http://en.wikipedia.org/wiki/Java virtual machine
http://en.wikipedia.org/wiki/Java Development Kit

The Java Platform

3.2 Java Runtime Environment

A program targeting the Java platform needs two components to be present on its host: a Java
virtual machine, and a set of class libraries providing any services on which it depends. Sun’s
distribution of their JVM and their implementation of the standard classes is known as the Java
Runtime Environment (JRE).

3.2.1 Java Virtual Machine

The heart of the Java platform is the concept of a common "virtual" processor that executes JAVA

BYTECODE15 programs. This bytecode is the same no matter what hardware or operating system
the program is running under. The Java platform provides an INTERPRETER16 called the JAVA

VIRTUAL MACHINE17 (JVM), which translates the Java bytecode into native processor instructions
at run-time. This permits the same application to be run on any platform that has a virtual
machine available.

Since JRE version 1.2, Sun’s JVM implementation has also included a JUST-IN-TIME COMPILER18.
Instead of interpreting the bytecode one instruction at a time, this converts the bytecode for a
program into equivalent native machine code as the program is loaded into the virtual machine,
allowing it to execute much faster at the cost of a small delay whenever new bytecode is loaded.
This allows the JIT compiler to target a specific host platform and hardware, even potentially
optimizing the output code in different ways based on observations of the program’s behaviour.

This is not to say that one can truly compile Java code to its fullest extent (in order to reap the
benefits of speedy native machine code). Yes, there are "compilers" available that will attempt
this feat, but not all Java libraries have a machine code equivalent. For instance, the "reflect"
library, which allows Java programmers to delve into instructions only available at runtime, is
not well represented (if at all) by machine code.

Java was not the first virtual-machine-based platform, though it is by far the most successful
and well-known. Previous uses for virtual machine technology primarily involved EMULATORS19

to aid development for not-yet-developed hardware or operating systems, but the JVM was de-
signed to be implemented entirely in software, while making it easy to efficiently port an imple-
mentation to hardware of all kinds.

3.2.2 Class libraries

In most modern operating systems, a large body of reusable code is provided to simplify the pro-
grammer’s job. This code is typically provided as a set of DYNAMICALLY LOADABLE LIBRARIES20

that applications can call at runtime. Because the Java platform is not dependent on any spe-
cific operating system, applications cannot rely on any of the existing libraries. Instead, the Java

15 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVABYTECODE
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER(COMPUTING)
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAVIRTUALMACHINE
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/JUST-IN-TIMECOMPILATION
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMULATORS
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIBRARY(COMPUTERSCIENCE)#DYNAMICLINKING

14

http://en.wikipedia.org/wiki/Java bytecode
http://en.wikipedia.org/wiki/interpreter (computing)
http://en.wikipedia.org/wiki/Java virtual machine
http://en.wikipedia.org/wiki/just-in-time compilation
http://en.wikipedia.org/wiki/emulators
http://en.wikipedia.org/wiki/Library (computer science)##Dynamic linking

Languages

platform provides a comprehensive set of standard class libraries, containing much of the same
reusable functions commonly found in modern operating systems.

The Java class libraries serve three purposes within the Java platform. Like other standard code
libraries, they provide the programmer with a well-known set of functions to perform common
tasks, such as maintaining lists of items or performing complex string parsing. In addition, the
class libraries provide an abstract interface to tasks that would normally depend heavily on the
hardware and operating system. Tasks such as network access and file access are often heav-
ily dependent on the native capabilities of the platform. The Java java.net and java.io libraries
implement the required native code internally, then provide a standard interface for the Java ap-
plications to perform those tasks. Finally, some underlying platforms may not support all of the
features a Java application expects. In these cases, the class libraries can either emulate those
features using whatever is available, or provide a consistent way to check for the presence of a
specific feature.

3.3 Languages

The word Java, by itself, usually refers to the Java programming language which was designed
for use with the Java platform. Programming languages are typically outside of the scope of the
phrase "platform". However, Sun does not encourage the use of any other languages with the
platform, and lists the Java programming language as a core part of the Java 2 platform. The
language and runtime are therefore commonly considered a single unit.

Nevertheless, third parties have produced a number of compilers which target the JVM. Some of
these are for existing languages, while others are for extensions to the Java language itself. These
include:

• GROOVY21

• PIZZA22

• GJ23 (Generic Java), which was incorporated into official Java as of Sun’s version 1.5.
• NETREXX24

Another option is to use a more interface approach like the JYTHON25.

3.4 Similar Platforms

The success of Java and its WRITE ONCE, RUN ANYWHERE26 concept has also led to other similar
efforts. The most notable of these is the MICROSOFT .NET27 platform, which borrows many of
the concepts and innovations of Java; in fact, it has an implementation of a Java-like language

21 HTTP://EN.WIKIPEDIA.ORG/WIKI/GROOVYPROGRAMMINGLANGUAGE
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/PIZZAPROGRAMMINGLANGUAGE
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERICJAVA(PROGRAMMINGLANGUAGE)
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETREXX
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/JYTHON
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/WRITEONCE,RUNANYWHERE
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT.NET

15

http://en.wikipedia.org/wiki/Groovy programming language
http://en.wikipedia.org/wiki/Pizza programming language
http://en.wikipedia.org/wiki/Generic Java (programming language)
http://en.wikipedia.org/wiki/NetREXX
http://en.wikipedia.org/wiki/Jython
http://en.wikipedia.org/wiki/write once, run anywhere
http://en.wikipedia.org/wiki/Microsoft .NET

The Java Platform

called VISUAL J#28 (formerly known as J++29). (It is Java-like in that J# is not the Java language.
Instead, J# contains non-standard extensions of the language.)

Later Microsoft stopped, withdrew its J# support, and created a new language called C#. C# is
very similar to J# and Java, but not compatible with them. The differences between Java and C#
can be read at COMPARISON OF C SHARP AND JAVA30.

CATEGORY:JAVA PROGRAMMING31

28 HTTP://EN.WIKIPEDIA.ORG/WIKI/JSHARPPROGRAMMINGLANGUAGE
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/JPLUSPLUS
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISONOFCSHARPANDJAVA
31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

16

http://en.wikipedia.org/wiki/J Sharp programming language
http://en.wikipedia.org/wiki/J plus plus
http://en.wikipedia.org/wiki/Comparison of C Sharp and Java
http://en.wikibooks.org/wiki/Category:Java Programming

4 Java Programming Environment

To compile Java programs, you will need to download and install the Java Development Kit (JDK).
This is available from SUN’S WEBSITE1. Other hardware and operating system vendors also sup-
ply Java Development Kits for their platforms, although they may change the name of the kit.
Sun produces JDKs for Windows, Linux, and Solaris.

There are numerous environments you can use to develop your Java programs. You can choose
to write your programs in a text editor and then compile them using the command line, or you
can use an integrated development environment (IDE). IDEs like NETBEANS2 and ECLIPSE3

provide many useful functions such as syntax error checking, code completion, automatic com-
pilation and debugging, which you may find useful, especially if this is your first foray into pro-
gramming.

4.1 The Java Compiler

The JDK consists of a set of tools necessary to construct Java programs. The most notable tool in
the JDK is the Java compiler, also known as javac.

javac compiles Java source files into executable Java class files. Source files are text files with
a .java file name extension. You can create such files with a text editor, like NOTEPAD4, or an
IDE. javac then compiles these files into loadable and executable class files, using the .class
extension. For example, if you create a Java class org/wikibooks/util/PrintDate.java

package org.wikibooks.util;
import java.util.Date;
public class PrintDate
{

public static void main(String[] args)
{

System.out.println(new Date());
}

}

you can compile it by entering the following command in a command shell:

1 HTTP://JAVA.SUN.COM/
2 HTTP://WWW.NETBEANS.ORG
3 HTTP://WWW.ECLIPSE.ORG
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/NOTEPAD

17

http://java.sun.com/
http://www.netbeans.org
http://www.eclipse.org
http://en.wikipedia.org/wiki/Notepad

Java Programming Environment

javac org/wikibooks/util/PrintDate.java

You would normally invoke this in a shell whose working directory is the root directory contain-
ing all of your source files resides. (The Java package statement, package org.wikibooks.util,
corresponds to the directory structure org/wikibooks/util see JAVA PACKAGES5.)

javacwill create the file PrintDate.class in the same directory where the source file is located.
If there are syntax errors, javac will print those to the shell. The PrintDate.class file contains
the byte code, that will run under all hardware where the Java runtime is installed. Even if the
PrintDate.class file was created in Windows operating system, you can copy this file to unix
and it will be executed fine.

Usually there is more than one class file created and those files are packaged to a application_-
name.jar file to distribute to run in any hardware.

IDEs may manage this process automatically. For example, Eclipse contains its own Java com-
piler and thus does not use javac directly. It automatically compiles the Java source files when
you save them. The use of IDE’s such as Eclipse are beyond the scope of this module, however, so
consult the IDE’s tutorials and help to see how they provide a Java programming environment.

4.1.1 The bytecode

It should be clear from the above paragraph that the Java compiler compiles source code text files
with the extension .java into executable code usually confined into a class file with the .class
extension. Such code is called BYTECODE6.

In many languages prior to Java, the source code would generally compile into the machine-
code for the particular machine the program was compiled upon. Therefore, if a program was
compiled on an X86 MACHINE7, it would run only on an X86 machine and no other. Java, on
the other hand, produces a bytecode - an intermediate binary form of code that is a portable
representation of the Java class. Any Java Virtual Machine on any hardware/operating system
platform can then execute this same bytecode. There are some restrictions to this portability. For
example, a Java ME system cannot execute all programs compiled for the Java SE environment
because Java ME is pared down to small devices. But in general, a Java SE program can run
unmodified on any Java SE virtual machine.

4.1.2 The JIT compiler

Being compiled halfway through, it is the job of the Java Virtual Machine to compile the rest of
the program to native code at the time of its execution making Java code follow the "Write Once,
Run Anywhere" (WORA) policy. The compiler used to compile bytecode into machine-code at
runtime is called the Just-In-Time or JIT compiler. Once a piece of code is compiled by the JVM
to execution code, the code is used and re-used again and again, to speed up execution.

5 Chapter 13 on page 79
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/BYTECODE
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/X86ARCHITECTURE

18

http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/X86 architecture

The Java Runtime Environment

4.2 The Java Runtime Environment

The Java Runtime Environment, or JRE, is responsible for the execution of Java programs. The
Sun JDK also includes the JRE. The JRE however can also be installed and used without installing
the JDK which is useful if you wish to execute Java programs but not build them. The JRE helps
load Java programs into the memory and executes them.

4.2.1 Main entry point

In Java programming, CLASSES8 are used to define objects and entities that hold particular data.
To execute a Java program, a special class is required to assist in loading the program into the
computer’s memory. Such a class contains a METHOD9 with the following signature.

public static void main(String[] args) {...}

The class is hence said to have a main entry point defined and is usually called a Java program.
The method described above as the main entry point is usually nicknamed the main method.
Java classes without main methods are simply classes, although they may be part of a program.

Each Java class can have a main method, as opposed to C, and C++ where there can only be one,
for the whole program. This feature is good in a sense that the main method can be implemented
to do some testing on the class. The program must define one class’s main method as the entry
point for the program.

4.2.2 Executing a command-line Java program

If a class which you compile with javac has a main entry point, you can execute the class by
specifying the class name as an argument to the java program.

java org.wikibooks.util.PrintDate

This will run the main method in the PrintDate class in the org.wikibooks.util package.
(Packages provide a convenient way to provide NAMESPACES10 and organization of Java classes.
We’ll use org.wikibooks.util as a parent package in this module. MORE ON PACKAGES11.)

Your program will begin execution in the shell window. Inputs and outputs will be gathered from
and to your shell window. On a Windows platform, you can use a DOS12 command window as
the command shell program for the execution of Java programs. The JRE is normally called java
because the java program is the most widely used program to execute Java programs.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/JAVAFOUNDATIONS#
OBJECTSANDCLASSES

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/JAVAFOUNDATIONS#METHODS
10 Chapter 13 on page 79
11 Chapter 13 on page 79
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/MSDOS

19

http://en.wikibooks.org/wiki/Java Programming/Java Foundations##Objects and Classes
http://en.wikibooks.org/wiki/Java Programming/Java Foundations##Objects and Classes
http://en.wikibooks.org/wiki/Java Programming/Java Foundations##Methods
http://en.wikipedia.org/wiki/MSDOS

Java Programming Environment

4.2.3 Executing a Graphical User Interface Java program

On the Windows platform, there is an alternate JRE executable called javaw.exe or javaw which
runs Java programs as a Windows native application - that is, with no console for standard input
or output.

javaw org.wikibooks.util.ViewDate

Rather than executing in the console, the Java program would be executed in a separate Win-
dows native process. This is typically done for Java applications which create their own graphi-
cal user interface (GUI) windows. The above-mentioned org.wikibooks.util.PrintDate pro-
gram, which prints output to the standard output stream, is not appropriate for use with javaw
as there is no console output. Instead, org.wikibooks.util.ViewDate would be a program
which creates its own windows to display the date.

As with java, IDE’s also manage the execution of Java programs in slightly different ways. They
may provide shortcuts for running programs and windows for capturing the output.

On UNIX/Linux this does not matter. If the program is launched graphically (by file association
in a file manager) a console is not shown. GUI programs will have the titlebars following the look
and feel of your desktop (KDE, GNOME, Fluxbox, XFCE) theme.

4.3 Other JDK tools

Apart from the tools specified above in detail, the JDK has matured over the years and has in-
cluded in itself several other tools. Where some of these tools are no longer used, others offer
a far greater deal of capability to the Java Development Kit. Below is a list of some of the tools
available for the JDK.

4.3.1 The apt tool

In Java 1.5 (alias Java 5.0) Sun added a mechanism called annotations. Annotations allow the
addition of meta-data to Java source code, and even provide mechanisms to carry that meta-
data forth into a compiled class files.

Also starting with Java 1.5 Sun added the apt tool to the JDK. apt works on Java source code. It
is an annotation processing tool which digs through source code, finds annotation statements in
the source code and executes actions if it finds known annotations. The most common task is to
generate some particular source code.

The actions apt performs when finding annotations in the source code are not hard-coded into
apt. Instead, one has to code particular annotation handlers (in Java). These handlers are called
annotation processors.

The most difficult thing with apt is that Sun decided to use a whole set of new terminology. apt
can simply be seen as a source code preprocessor framework, and annotation processors are
typically just code generators.

20

Other JDK tools

See also: GETTING STARTED WITH THE ANNOTATION PROCESSING TOOL (APT)13

4.3.2 The appletviewer tool

Java applets require a particular environment to execute. Typically, this environment is provided
by a browser with a Java plug-in, and a web server serving the applet. However, during develop-
ment and testing of an applet it might be more convenient to start an applet without the need to
fiddle with a browser and a web server. In such a case, Sun’s appletviewer from the JDK can be
used to run an applet.

4.3.3 The javah tool

A Java class can call native, or non-Java, code that has been prepared to be called from Java. The
details and procedures are specified in the JNI (Java Native Interface). Commonly, native code is
written in C (or C++). The JDK tool javah helps to write the necessary C code, by generating C
header files and C stub code.

4.3.4 The extcheck tool

extcheck also appeared first with Java 1.5. It can be used prior to the installation of a Java exten-
sion into the JDK or JRE environment. It checks if a particular Jar file conflicts with an already
installed extension.

4.3.5 Security Tools

The JDK comes with a large number of tools related to the security features of Java. Usage of
these tools first requires study of the particular security mechanisms.

The tools are:

keytool: To manage keys and certificates

jarsigner: To generate and verify digital signatures of JARs (Java ARchives)

policytool: To edit policy files

kinit: To obtain Kerberos v5 tickets

klist: To manage Kerberos credential cache and key table

ktab: To manage entries in a key table

13 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/GUIDE/APT/GETTINGSTARTED.HTML

21

http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html

Java Programming Environment

4.3.6 The native2ascii tool

native2ascii is an important, though underappreciated, tool for writing properties files -- files
containing configuration data -- or resource bundles -- files containing language translations of
text.

Such files can contain only ASCII and Latin-1 characters, but international programmers need
a full range of character sets. Text using these characters can appear in properties files and re-
source bundles only if the non-ASCII and non-Latin-ˆ1 characters are converted into Unicode
escape sequences (\uXXXX notation).

The task of writing such escape sequences is handled by native2ascii. You can write the interna-
tional text in an editor using the appropriate character encoding, then use native2ascii to gen-
erate the necessary ASCII text with embedded Unicode escape sequences. Despite the name,
native2ascii can also convert from ASCII to native, so it is useful for converting an existing prop-
erties file or resource bundle back to some other encoding.

native2ascii makes most sense when integrated into a build system to automate the conversion.

4.3.7 RMI Tools

4.3.8 Java IDL and RMI-IIOP Tools

4.3.9 Deployment & Web Start Tools

4.3.10 Browser Plug-In Tools

4.3.11 Monitoring and Management Tools / Troubleshooting Tools

With Java 1.5 a set of monitoring and management tools have been added to the JDK, in addition
to a set of troubleshooting tools.

The monitoring and management tools are intended for monitoring and managing the virtual
machine and the execution environment. They allow, for example, monitoring memory usage
during the execution of a Java program.

The troubleshooting tools provide rather esoteric insight into aspects of the virtual machine.
(Interestingly, the Java debugger is not categorized as a troubleshooting tool.)

All the monitoring and management and troubleshooting tools are currently marked as "experi-
mental" (which does not affect jdb). So they might disappear in future JDKs.

4.3.12 The Jar tool

Jar is short for Java archive. It is a tool for creating Java archives or jar files - a file with .jar as
the extension. A Java archive is a collection of compiled Java classes and other resources which

22

Other JDK tools

those classes may require (such as text files, configuration files, images) at runtime. Internally, a
jar file is really a .zip FILE14.

4.3.13 The jdb tool

Jdb is short for Java debugger. The Java debugger is a command-line console that provides a DE-
BUGGING15 environment for Java programs. Although you can use this command line console,
IDE’s normally provide easier to use debugging environments. <!--To learn more about debug-
ging in Java, refer to DEBUGGING IN JAVA16.-->

4.3.14 The Javadoc tool

As programs grow large and complex, programmers need ways to track changes and to under-
stand the code better at each step of its evolution. For decades, programmer have been employ-
ing the use of special programming constructs called COMMENTS17 - regions that help declare
user definitions for a code snippet within the source code. But comments are prone to be ver-
bose and incomprehensible, let alone be difficult to read in applications having hundreds of lines
of code.

Java provides the user with a way to easily publish documentation about the code using a special
commenting system and the javadoc tool. The javadoc tool generates documentation about
the APPLICATION PROGRAMMING INTERFACE18 (API) of a set of user-created Java classes. javadoc
reads source file comments from the .java source files and generates HTML documents that are
easier to read and understand without looking at the code itself.

4.3.15 The javap tool

Where Javadoc provide a detailed view into the API and documentation of a Java class, the javap
tool prints information regarding members (constructors, methods and variables) in a class. In
other words, it lists the class’ API and/or the compiled instructions of the class. javap is a for-
matting disassembler for Java bytecode.

See OTHER TOOLS19 for all the tools that are bundled with Sun’s JDK.

CATEGORY:JAVA PROGRAMMING20

14 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZIP(FILEFORMAT)
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGING
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING:JAVA:DEBUGGINGINJAVA
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING:JAVA_COMMENTS
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATIONPROGRAMMINGINTERFACE
19 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/TOOLDOCS/INDEX.HTML
20 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

23

http://en.wikipedia.org/wiki/ZIP (file format)
http://en.wikipedia.org/wiki/Debugging
http://en.wikibooks.org/wiki/Programming:Java:Debugging in Java
http://en.wikibooks.org/wiki/Programming:Java_Comments
http://en.wikipedia.org/wiki/Application programming interface
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html
http://en.wikibooks.org/wiki/Category:Java Programming

Java Programming Environment

24

5 Installation

To formally begin programming in Java, you would need to obtain the Java software necessary
and install it on your system. This section will help you set up any system with the latest Java
software. There are two things you need to have on your computer to develop Java programs:
a way to make the programs, and a way to write those programs. The following sections will
describe both.

5.1 Windows

5.1.1 Download/Install

Downloading the program involves navigating to the website
HTTP://JAVA.SUN.COM/JAVASE/DOWNLOADS/INDEX.JSP1. Here you are presented by a wide
array of choices. Don’t fret. For the moment, all you need is the JDK, so click on the red button
with "Download JDK" inside. If you want to add something like Netbeans to your system, it’s
easy enough to do that at a later period.

Once downloaded, go through the install process, reading and agreeing to the terms and condi-
tions. I recommend you keep everything at their default settings to keep things simple.

5.1.2 Editor

With your system set up you’ll want a method of writing your java files. Later on, you might want
to think about getting an IDE such as Netbeans. IDE’s make it convenient if you work as part of
a large team in an industrial environment. They do a lot of work for you, but if you don’t fully
understand the Java code itself, an IDE can do more harm than good.

So it’s recommended for the starting chapter that you use a text editor. You can use
notepad, which is default on all Windows operating systems. However, there is a free and
open source program called Notepad++, which you can download from HTTP://NOTEPAD-
PLUS.SOURCEFORGE.NET2. This program is designed to be used as a programmer’s notepad, with
what’s called syntax highlighting, which is a way of colouring text based on various keywords.
This makes the code more readable, and it can be easier to spot errors in code.

1 HTTP://JAVA.SUN.COM/JAVASE/DOWNLOADS/INDEX.JSP
2 HTTP://NOTEPAD-{}PLUS.SOURCEFORGE.NET

25

http://java.sun.com/javase/downloads/index.jsp
http://notepad-{}plus.sourceforge.net

Installation

5.2 Ubuntu Linux

5.2.1 Download/Install

Downloading and installing the Java Development Kit on Ubuntu (and most other linux distribu-
tions) is incredibly simple, open up terminal (press ALT+F2 and type xterm or gnome-terminal)
and type or copy the following (to copy, select and press middle button on the terminal window):

sudo apt-get install openjdk-6-jdk openjdk-6-jre openjdk-6-doc

And everything is set.

5.2.2 Editor

Gedit is the default program provided when Ubuntu is installed. Think of it like the windows
notepad, but much better. Because Linux is made by hackers and programmers, the default
notepad provided has all the things you’d expect a programmers writer to have.

The Notepad++ equivalent for Linux is Scite, if you feel like installing it you can use the com-
mand:

sudo apt-get install scite

5.3 External Links

• SUN’S WEBSITE3

• JAVA.NET JDK REPOSITORY4

CATEGORY:JAVA PROGRAMMING5

3 HTTP://JAVA.SUN.COM
4 HTTPS://JDK.DEV.JAVA.NET
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

26

http://java.sun.com
https://jdk.dev.java.net
http://en.wikibooks.org/wiki/Category:Java Programming

6 Compilation

We have already discussed COMPILATION BASICS 1. Here’s a recap of the concepts we’d seen earlier
and some additional details.

6.1 Compiling to bytecode

In Java, programs are not compiled into executable files; they are compiled into BYTECODE2 (as
discussed EARLIER3), which the JVM then executes at runtime. Java source code is compiled into
bytecode when we use the javac compiler. The bytecode gets saved on the disk with the file
extension .class. When the program is to be run, the bytecode is converted, using the JUST-
IN-TIME(JIT) COMPILER4. The result is machine code which is then fed to the memory and is
executed.

So Java has two step compilation:

• Step one to create byte-code
• Step two to create machine level code

The Java classes/Byte Codes are compiled to machine code and loaded into memory by the JVM
when needed the first time. This is different than other languages like C/C++ where the whole
program had to be compiled to machine code and linked to create an executable file, before the
program could start.

JIT compilers compile byte-code once and the compiled machine code are re-used again and
again, to speed up execution. Early Java compilers compiled the byte-code to machine code
each time it was used, but more modern compilers cache this machine code for reuse on the
machine. Even then, java’s JIT compiling was still faster than an "interpreter-language", where
code is compiled from high level language, instead of from byte-code each time it was used.

6.2 Automatic Compilation of Dependent Classes

In Java, if you have used any reference to any other java object, then the class for that object will
be automatically compiled, if that was not compiled already. These automatic compilations are
nested, and this continues until all classes are compiled that are needed to run the program. It

1 Chapter 4 on page 17
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/BYTECODE
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/JAVAPROGRAMMINGENVIRONMENT#

THEBYTECODE
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/JAVAPROGRAMMINGENVIRONMENT#

THEJITCOMPILER

27

http://en.wikipedia.org/wiki/Bytecode
http://en.wikibooks.org/wiki/Java Programming/Java Programming Environment##The bytecode
http://en.wikibooks.org/wiki/Java Programming/Java Programming Environment##The bytecode
http://en.wikibooks.org/wiki/Java Programming/Java Programming Environment##The JIT compiler
http://en.wikibooks.org/wiki/Java Programming/Java Programming Environment##The JIT compiler

Compilation

is usually enough to compile only the high level class, since all the dependent classes will be
automatically compiled.

javac ... MainClass.java

However, you can’t rely on this feature if your program is using reflection to create objects, or
you are compiling for servlets or a "jar" package. In these cases you should list these classes for
explicit compilation.

javac ... MainClass.java, ServletOne.java, ...

The best way is to use a build tool to build your application. The build tool would check all
the needed dependencies and compile only the needed class for the build. The ANT5 tool is
the best and the most popular build tool currently available. Using ANT6 you would build your
application from the command line by typing:

ant build.xml

The xml file contains all the information needed to build the application.

Note: In rare cases, your code may appear to compile correctly but the program behaves as if you
were using an old copy of the source code (or otherwise reports errors during runtime.) When
this occurrs, you may need to clean your compilation folder by either deleting the class files or
using the Clean command from the IDE.

The next most popular way to build applications are using an IDE. IDE stands for Integrated
Development Environment, examples of which are listed below.

6.3 Packages, Subdirectories, and Resources

Each Java top level class belongs to a package (covered in the chapter about PACKAGES7). This
may be declared in a package statement at the beginning of the file; if that is missing, the class
belongs to the unnamed package.

For compilation, the file must be in the right directory structure. A file containing a class in the
unnamed package must be in the current/root directory; if the class belongs to a package, it must
be in a directory with the same name as the package.

The convention is that package names and directory names corresponding to the package con-
sist of only lower case letters.

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/COMPILATION#ANT
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/COMPILATION#ANT
7 Chapter 13 on page 79

28

http://en.wikibooks.org/wiki/Java Programming/Compilation##Ant
http://en.wikibooks.org/wiki/Java Programming/Compilation##Ant

Filename Case

Example:
Top level package. A class with this package declaration package example; has to be in a direc-
tory named example

Example:
Subpackages. A class with this package declaration package org.wikibooks.en; has to be in
the org/wikibooks/en directory.

Java programs often contain non-code files such as images and properties files. These are re-
ferred to generally as ’resources’ and stored in directories local to the classes in which they’re
used. For example, if the class com.example.ExampleApp uses the icon.png file, this file could
be stored as /com/example/resources/icon.png. These resources present a problem when a
program is complied, because javac does not copy them to wherever the .class files are being
complied to (see above); it is up to the programmer to move the resource files and directories.
See also the section on how to automate this using ant8, below.

6.4 Filename Case

The Java source file name must be the same as the public class name, the file contains. There can
be only one public class defined per file. The Java class name is case sensitive, as is the source
file name.

The naming convention for the class name is for it to start with a capital letter.

6.5 Compiler Options

6.5.1 Debugging and Symbolic Information

6.6 Additional Tools

6.6.1 IDEs

This section contains a little about the different IDEs available and their strengths and weak-
nesses.

6.7 JBuilder

JBuilder is a IDE with proprietary source code, sold by BORLAND9. One of the advantages in
integration with together, a modeling tool.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA_PROGRAMMING/COMPILATION#ANT
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/BORLAND

29

http://en.wikibooks.org/wiki/Java_Programming/Compilation##Ant
http://en.wikibooks.org/wiki/Borland

Compilation

6.8 JCreator

There’s info at: http://www.apcomputerscience.com/ide/jcreator/index.htm

6.9 Eclipse

Eclipse is a free IDE, plus a developer tool framework that can be extended for a particular de-
velopment need. IBM was behind this free software development and it replaced IBM Visual Age
tool. The idea was to create a standard look and feel that can be extended. The extendibility has
distinguished Eclipse from other IDE tools. Eclipse also meant to compete with Microsoft Vi-
sual Studio tools. Microsoft tools give a standard way of developing code in the Microsoft world.
Eclipse gives a similar standard way of developing code in the Java world, with big success so
far. With the online error checking only, coding can be speed up by at least 50%(coding does not
include programming).

The goal for Eclipse are twofold:

• Give a standard IDE for developing code
• Give a starting point, and the same look and feel for all other more sophisticated tools built on

Eclipse

IBM’s WSAD, and later IBM Rational Software Development Platform are built on Eclipse.

Standard Eclipse features:

• Standard window management (perspectives, views, browsers, explorers, ...)
• As you type error checking (immediate error indications, ...)
• As you type help window (type ., or <ctrl> space, ...)
• Automatic build (changed source code automatically compiled, ...)
• Built in debugger (full featured GUI debugger)
• Source code generation (getters and setters, ...)
• Searches (for implementation, for references, ...)
• Code refactoring (global reference update, ...)
• Plug-in-based architecture (be able to build tools that integrate seamlessly with the environ-

ment and other tools)
• ...

For more information see;

• ECLIPSE 10.
• PLUGINCENTRAL11

10 HTTP://WWW.ECLIPSE.ORG/
11 HTTP://WWW.ECLIPSEPLUGINCENTRAL.COM/

30

http://www.eclipse.org/
http://www.eclipseplugincentral.com/

NetBeans

6.10 NetBeans

The NetBeans IDE is a free, open-source Integrated Development Environment for software de-
velopers. The IDE runs on many platforms including Windows, Linux, Solaris, and the MacOS.
It is easy to install and use straight out of the box. The NetBeans IDE provides developers with
all the tools they need to create professional cross-platform desktop, enterprise, web and mobile
applications.

More info can be found at http://www.netbeans.org/products/ide/

6.11 BlueJ

BlueJ is an IDE that includes templates and will compile and run the applications for you.
BlueJ is often used by classes because it is not necessary to set classpaths. BlueJ has it’s own
sets of Library’s and you can add your own under preferences. That sets the classpath for all
compilations that come out of it to include those you have added and the BlueJ libraries.

BlueJ offers an interesting GUI for the creation of packages and programs. Classes are repre-
sented as boxes with arrows running between them to represent inheritance/implementation
or if one is constructed in another. BlueJ adds all those classes (the project) into the classpath at
compile time.

BLUEJ HOMESITE12

6.12 Kawa

Kawa was developed by Tek-Tools. It is basically a Java editor which does not include wizards,
and GUI tools. It is best suited to experienced Java programmers in small and midsized develop-
ment teams.

The latest version is 4.0, you can DOWNLOAD IT.13 For more info. see KAWA FROM TEK-TOOLS14.
See a JAVAWORLD ARTICLE15

It looks that there is no new development for Kawa.

6.13 Ant

For comprehensive information about all aspects of Ant, please see the ANT WIKIBOOK16.

12 HTTP://WWW.BLUEJ.ORG
13 HTTP://WWW.OLABS.COM/KAWA/
14 HTTP://WWW.TEK-{}TOOLS.COM/KAWA/
15 HTTP://WWW.JAVAWORLD.COM/JAVAWORLD/JW-{}06-{}2000/JW-{}0602-{}IW-{}KAWA.HTML
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING:APACHEANT

31

http://www.bluej.org
http://www.olabs.com/kawa/
http://www.tek-{}tools.com/kawa/
http://www.javaworld.com/javaworld/jw-{}06-{}2000/jw-{}0602-{}iw-{}kawa.html
http://en.wikibooks.org/wiki/Programming:Apache Ant

Compilation

Ant is a build management tool designed to replace make as the tool for automated builds of large
Java applications. Like Java, and unlike make, Ant is designed to be platform independent.

Building a Java application requires certain tasks to be performed. Those tasks may include not
only compiling the code, but also copying files, packaging the program into a jar file, running
tests and so on. Some of these tasks may depend upon others having been done previously (not
creating a jar unless the program has been complied, for instance). It might also be a good
idea to not execute all tasks every time the program is complied -- e.g. to only compile changed
source files. Ant makes all of these things easy.

The tasks and their dependencies are defined in a build.xml file, generally kept in the root di-
rectory of the java project. Ant parses this file and executes the tasks therein. Below we give an
example build.xml file.

Ant tool is written in Java and is open source, so it can be extended if there is a task you’d like to
be done during the build that is not in the pre-defined tasks list. It is very easy to hook your ant
task code to the other tasks: your code only needs to be in the classpath, and the Ant tool will
load it at runtime. For more information about writing your own Ant tasks, please see the project
website at http://ant.apache.org/.

Example build.xml file.

xml Source

<?xml version="1.0"?>
<project name="ExampleApp" basedir="." default="main">

<property name="source.dir" value="source" />
<property name="libraries.dir" value="libraries" />
<property name="build.dir" value="build" />
<property name="classes.dir" value="${build.dir}/classes" />
<property name="dist.dir" value="${build.dir}/dist" />
<property name="main-class" value="com.example.ExampleApp"/>

<path id="classpath">
<fileset dir="${libraries.dir}" includes="**/*.jar"/>

</path>

<target name="clean">
<delete dir="${build.dir}"/>

</target>

32

Ant

<target name="compile">
<mkdir dir="${classes.dir}"/>
<javac srcdir="${source.dir}" destdir="${classes.dir}"

classpathref="classpath" />
<!-- Copy all resources to the build directory (all non-java

files); see the
section ’Packages, Subdirectories, and Resources’ above

for more information. -->
<copy todir="${classes.dir}">

<fileset dir="${src.dir}" excludes="**/*.java" />
</copy>

</target>

<target name="build" depends="compile">
<mkdir dir="${dist.dir}"/>
<copy todir="${dist.dir}/lib" flatten="true">

<path refid="classpath" />
</copy>
<path id="dist.classpath">

<fileset dir="${dist.dir}/lib" includes="*.jar" />
</path>
<manifestclasspath property="dist.manifest.classpath"

jarfile="${dist.dir}/${ant.project.name}.jar">
<classpath refid="dist.classpath" />

</manifestclasspath>
<jar destfile="${dist.dir}/${ant.project.name}.jar" >

<zipfileset dir="${classes.dir}" />
<manifest>

<attribute name="Class-Path"
value="${dist.manifest.classpath}"/>

<attribute name="Main-Class" value="${main-class}" />
</manifest>

</jar>
</target>

<target name="run-build" depends="build">
<java jar="${dist.dir}/${ant.project.name}.jar" fork="true">

<classpath>
<path refid="classpath"/>
<path location="${dist.dir}/${ant.project.name}.jar"/>

</classpath>
</java>

</target>

<target name="run" depends="compile">
<java classname="${main-class}" >

<classpath>
<path refid="classpath"/>
<pathelement location="${classes.dir}" />

</classpath>
</java>

</target>

33

Compilation

<target name="clean-build" depends="clean,build"/>

<target name="main" depends="clean,run"/>

</project>

6.14 The JIT compiler

The standard JIT compiler runs on demand. When a method is called repeatedly, the JIT compiler
analyzes the bytecode and produces highly efficient machine code, which runs very fast. The
JIT compiler is smart enough to recognize when the code has already been compiled, so as the
application runs, compilation happens only as needed. As Java applications run, they tend to
become faster and faster, because the JIT can perform runtime profiling and optimization to
the code to meet the execution environment. Methods or code blocks which do not run often
receive less optimization; those which run often (so called hotspots) receive more profiling and
optimization.

34

7 Execution

There are various ways in which Java code can be executed. A complex Java application usually
uses third party APIs or services. In this section we list the most popular ways a piece of Java
code may be packed together and/or executed.

7.1 JSE code execution

Java language first edition came out in the client-server era. Thick clients were developed with
rich GUI interfaces. Java first edition, JSE (Java Standard Edition) had/has the following in its
belt:

• GUI capabilities (AWT, Swing)
• Network computing capabilities (RMI1)
• Multi-tasking capabilities (Threads)

With JSE the following Java code executions are possible:

Abb. 5: Figure 1: Stand alone execution

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAREMOTEMETHODINVOCATION

35

http://en.wikipedia.org/wiki/Java remote method invocation

Execution

Stand alone Java application : (Figure 1) Stand alone application refers to a Java program where
both the user interface and business modules are running on the same computer. The
application may or may not use a database to persist data. The user interface could be
either AWT or Swing.

The application would start with a main() method of a Class. The application stops
when the main() method exits, or if an exception is thrown from the application to
the JVM. Classes are loaded to memory and compiled as needed, either from the file
system or from a *.jar file, by the JVM.
Invocation of Java programs distributed in this manner requires usage of the com-
mand line. Once the user has all the class files, he needs to launch the application
by the following command line (where Main is the name of the class containing the
main() method.)

java Main

Java ’jar’ class libraries : Utility classes, framework classes, and/or third party classes are usu-
ally packaged and distributed in Java ’ *.jar’ files. These ’jar’ files need to be put in the
CLASSPATH of the java program from which these classes are going to be used.

If a jar file is executable, it can be run from the command line:

java -jar Application.jar

Abb. 6: Figure 2: Applet Execution

Java Applet code : (Figure 2) Java Applets are Java code referenced from HTML2 pages, by the
<APPLET> tag. The Java code is downloaded from a server and runs in the client browser
JVM. Java has built-in support to render applets in the browser window.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/HTML

36

http://en.wikipedia.org/wiki/HTML

JSE code execution

Sophisticated GUI clients were found hard to develop, mostly because of the down-
load time, incompatibilities between browser’s JVM, and its communication require-
ments back to the server. Applets are rarely used today, and are most commonly used
as small, separate graphic-like animation applets. The popularity of Java declined
when Microsoft withdrew its Java support from INTERNET EXPLORER3 default con-
figuration, however, the plugin is still available as a free download from JAVA.COM4.

More information can be found about applets at the APPLET CHAPTER5, in this book.
Also, Wikipedia has an article about JAVA APPLETS6.

Client Server applications : The client server applications consist of a front-end, and a back-
end part, both running on a separate computer. The idea is that the business logic would
be on the back-end part of the program, which would be reused by all the clients. Here
the challenge is to achieve a separation between front-end user interface code, and the
back-end business logic code.

The communication between the front-end and the back-end can be achieved by
two ways.

• One way is to define a data communication PROTOCOL7 between the
two tiers. The back-end part would listen for an incoming request.
Based on the PROTOCOL8 it interprets the request and sends back the
result in data form.

• The other way is to use JAVA REMOTE INVOCATION9 (RMI). With the use
of RMI, a remote object can be created and used by the client. In this
case Java objects are transmitted across the network.

More information can be found about client-server programming, with sample
code, at the CLIENT SERVER CHAPTER10 in this book.

Web Applications : For applications needed by lots of client installations, the client-server
model did not work. Maintaining and upgrading the hundreds or thousands of clients
caused a problem. It was not practical. The solution to this problem was to create a uni-
fied, standard client, for all applications, and that is the BROWSER11.

Having a standard client, it makes sense to create a unified, standard back-end ser-
vice as well, and that is the APPLICATION SERVER12.
Web Application is an application that is running in the APPLICATION SERVER13, and

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERNETEXPLORER
4 HTTP://JAVA.COM/
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/APPLETS
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAAPPLET
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL(COMPUTING)
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL(COMPUTING)
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAREMOTEMETHODINVOCATION
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/CLIENTSERVER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBBROWSER
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATIONSERVER
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATIONSERVER

37

http://en.wikipedia.org/wiki/Internet Explorer
http://java.com/
http://en.wikibooks.org/wiki/Java Programming/Applets
http://en.wikipedia.org/wiki/Java applet
http://en.wikipedia.org/wiki/Protocol (computing)
http://en.wikipedia.org/wiki/Protocol (computing)
http://en.wikipedia.org/wiki/Java remote method invocation
http://en.wikibooks.org/wiki/Java Programming/Client Server
http://en.wikipedia.org/wiki/Web browser
http://en.wikipedia.org/wiki/Application server
http://en.wikipedia.org/wiki/Application server

Execution

it can be accessed and used by the BROWSER14 client.
There are three main area of interest in Web Applications, those are:

• The WEB BROWSER15. This is the container of rendering HTML text, and running
client scripts

• The HTTP16 PROTOCOL17. Text data are sent back and forth between Browser and
the Server

• The WEB SERVER18 to serve static content, APPLICATION SERVER19 to serve dynamic
content and host EJB20s.

Wikipedia also has an article about WEB APPLICATION21.

7.2 J2EE code execution

As the focus was shifting from reaching GUI clients to thin client applications, with Java version
2, Sun introduced J2EE (Java 2 Extended Edition). J2EE added :

• COMPONENTS BASE ARCHITECTURE22, (Servlet, JSP, EJB Containers)

With J2EE the following Java component executions are possible:

Abb. 7: Figure 3: Servlet Execution

Java Servlet code : (Figure 3) Java got its popularity with server side programming, more specif-
ically with J2EE23 servlets. Servlets are running in a simple J2EE framework to handle

14 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBBROWSER
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBBROWSER
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPERTEXTTRANSFERPROTOCOL
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL(COMPUTING)
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBSERVER
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATIONSERVER
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/ENTERPRISEJAVABEAN
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBAPPLICATION
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARECOMPONENTRY
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAEE

38

http://en.wikipedia.org/wiki/Web browser
http://en.wikipedia.org/wiki/Web Browser
http://en.wikipedia.org/wiki/Hypertext Transfer Protocol
http://en.wikipedia.org/wiki/Protocol (computing)
http://en.wikipedia.org/wiki/Web server
http://en.wikipedia.org/wiki/Application server
http://en.wikipedia.org/wiki/Enterprise JavaBean
http://en.wikipedia.org/wiki/Web application
http://en.wikipedia.org/wiki/Software componentry
http://en.wikipedia.org/wiki/Java EE

J2EE code execution

client HTTP24 requests. They are meant to replace CGI PROGRAMMING25 for web pages
rendering dynamic content.

The servlet is running in a so called SERVLET-CONTAINER/WEB CONTAINER26. The
servlet’s responsibility is to:

• Handle the request by doing the business logic computation,
• Connecting to a database if needed,
• Create HTML to present to the user through the browser

The HTML output represents both the presention logic and the results of the busi-
ness computations. This represents a huge problem, and there is no real application
relying only on servlets to handle the presention part of the responsibility. There are
two main solutions to this:

• Use a template tool (Store the presentation part in an HTML file, marking the areas
that need to be replaced after business logic computations).

• Use JSP (See next section)

Wikipedia also has an article about SERVLETS27.

Abb. 8: Figure 4: Jsp Execution

Java Server Pages (JSP) code : (Figure 4) JSP is an HTML file with embedded Java code inside.
The first time the JSP is accessed, the JSP is converted to a Java Servlet. This servlet outputs
HTML which has inside the result of the business logic computation. There are special JSP
tags that helps to add data dynamically to the HTML. Also JSP technology allows to create
custom tags.

Using the JSP technology correctly, business logic computations should not be in the
embedded Java part of the JSP. JSP should be used to render the presentation of the
static and dynamic data. Depending on the complexity of the data, 100% separation
is not easy to achieve. Using custom tags, however may help to get closer to 100%.
This is advocated also in MVC28 architecture (see below).

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPERTEXTTRANSFERPROTOCOL
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMONGATEWAYINTERFACE
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEBCONTAINER
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVASERVLET
28 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODEL-VIEW-CONTROLLER

39

http://en.wikipedia.org/wiki/Hypertext Transfer Protocol
http://en.wikipedia.org/wiki/Common Gateway Interface
http://en.wikipedia.org/wiki/Web container
http://en.wikipedia.org/wiki/Java Servlet
http://en.wikipedia.org/wiki/Model-view-controller

Execution

Abb. 9: Figure 5: EJB Execution

EJB code : (Figure 5) In the 1990s, with the client server computing, a trend started, that is to
move away from Mainfraim computing. That resulted in many small separate applications
in a Company/Enterprise. Many times the same data was used in different applications.
A new philosophy, "Enterprise Computing", was created to address these issues. The idea
was to create components that can be reused throughout the Enterprise. The Enterprise
Java Beans (EJBs) were supposed to address this.

An EJB is an application component that runs in an EJB container. The client ac-
cesses the EJB modules through the container, never directly. The container man-
ages the life cycle of the EJB modules, and handles all the issues that arise from net-
work/enterpise computing. Some of those are SECURITY/ACCESS CONTROL29, OB-
JECT POOLING30, TRANSACTION MANAGEMENT31,
EJBs have the same problems as any reusable code: they need to be generic enough
to be able to be reused and the changes or maintenance of EJBs can affect existing
clients. Many times EJBs are used unnecessarily when they are not really needed.
An EJB should be designed as a separate application in the enterprise, fulfilling one
function.

29 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACCESSCONTROL
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECTPOOL
31 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSACTIONPROCESSING

40

http://en.wikipedia.org/wiki/Access control
http://en.wikipedia.org/wiki/Object pool
http://en.wikipedia.org/wiki/Transaction processing

J2EE code execution

Abb. 10: Figure 6: MVC Execution

Combine J2EE components to create an MVC architecture : This leads us to the three layer-
s/tiers as shown in (Figure 6).

In modern web applications, with lots of static data and nice graphics, how the data
is presented to the user became very important and usually needs the help of a
graphic artist.
To help programmers and graphic artists to work together, the separation between
data, code, and how it is presented became crucial.

• The view (User Interface Logic) contains the logic that is necessary to construct
the presentation. This could be handled by JSP technology.

• The servlet acts as the controller and contains the logic that is necessary to pro-
cess user events and to select an appropriate response.

• The business logic (model) actually accomplishes the goal of the interaction. This
might be a query or an update to a database. This could be handled by EJB tech-
nology.

For more information about MVC, please see MVC32.

32 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODEL-VIEW-CONTROLLER

41

http://en.wikipedia.org/wiki/Model-view-controller

Execution

7.3 Jini

After J2EE Sun had a vision about the next step of network computing. That is JINI33. The main
idea is that in a network environment, there would be many independent services and con-
sumers. Jini would allow these services/consumers to interact dynamically with each other in
a robust way. The basic features of Jini are:

• No user intervention is needed when services are brought on or offline. (In contrast to EJBs
where the client program has to know the server and port number where the EJB is deployed,
in Jini the client is supposed to find, to discover, the service in the network.)

• Self healing by adapting when services (consumers of services) come and go. (Services peri-
odically need to renew a lease to indicate that they are still available.)

• Consumers of JINI services do not need prior knowledge of the service’s implementation. The
implementation is downloaded dynamically and run on the consumer JVM, without config-
uration and user intervention. (For example, the end user may be presented with a slightly
different user interface depending upon which service is being used at the time. The imple-
mentation of the user interface code would be provided by the service being used.)

A minimal Jini network environment consists of:

• One or more services
• A lookup-service keeping a list of registered services
• One or more consumers

Jini is not widely used at the current writing (2006). There are two possible reasons for it. One is
Jini a bit complicated to understand and to set it up. The other reason is that Microsoft pulled
out from Java, which caused the industry to turn to the use of proprietary solutions.

CATEGORY:JAVA PROGRAMMING34

33 HTTP://EN.WIKIPEDIA.ORG/WIKI/JINI
34 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

42

http://en.wikipedia.org/wiki/Jini
http://en.wikibooks.org/wiki/Category:Java Programming

8 First Java Program

8.1 Hello World

Generally when you first start programming in any language, you’ll start with the traditional
Hello World example. That said, let’s start building your first Java program. You guessed it, it’s
Hello World! Before starting this exercise, make sure you know how to COMPILE1 and RUN2 Java
programs.

Open your IDE and write the following text. Pay close attention to capitalization, as Java is case
sensitive.

public class HelloWorld {
public static void main(String[] args) {

System.out.println(string);
}

}

Save it as HelloWorld.java. Again, make sure that the filename is the same case as the class
name. Compile and run it:

javac HelloWorld.java
java HelloWorld

Your computer should display

Hello, world!

8.1.1 Line-by-line Analysis

The first line of the class,

public class HelloWorld {

declares a Java class named HelloWorld. This class is declared public - it is available to any
other class. The next line,

1 Chapter 6 on page 27
2 Chapter 7 on page 35

43

First Java Program

public static void main(String[] args) {

begins a Java method named main. The main method is where Java will start executing the pro-
gram. args is a method parameter which will contain the command line arguments used to run
the program. The method must be both public and static for the program to run correctly. For
more information on modifiers such as public and static, see ACCESS MODIFIERS3, though at
this level, you don’t need to know a whole lot about them.

The

System.out.println(string);

statement sends the text Hello, world! to the console (with a line terminator). The final two
braces mark the end of the main method and the end of the class.

8.2 Modifying the Program

Now, we will modify this program to print the first command line argument, if there is one, along
with the greeting. For example, if you invoke the program as

java HelloWorld wikibooks

it will print

Hello, wikibooks!

Go back to the program, and modify it to read

public class HelloWorld {
public static void main(String[] args) {

String who;
if (args.length > 0) {

who = args[0];
} else {

who = string;
}
System.out.println(string + who + string);

}
}

Run it again. It should display

3 Chapter 15 on page 87

44

Common Problems

Hello, wikibooks!

or, if you do not pass a command line parameter, it will simply print

Hello, World!

Wikipedia has a hello world sample for each type of java code, for more information see JAVA

(PROGRAMMING LANGUAGE)#HELLO WORLD4

8.3 Common Problems

If the program does not work as you expect, check the following common errors.

• Are you sure all words are spelled correctly and with the exact case as shown?
• Are there semicolons and brackets in the appropriate spot?
• Are you missing a quote? Usually, modern IDEs would try coloring the entire source as a quote

in this case.
• Are you launching the javac or java correctly? Javac requires the full filename with the .java

extension, while java requires the class name itself.

8.4 The Next Step

Now that you have seen the classic Hello, World program in Java, let’s move on to a more realistic
example which highlights the object oriented nature of Java. Visit UNDERSTANDING A JAVA PRO-
GRAM5 which presents key Java language features along with a more complete explanation of the
syntax and structure of a basic Java program.

CS:KURZ PROGRAMOVÁNÍ V JAVĚ/HELLO WORLD6 PT:JAVA/CRIANDO E EXECUTANDO O PRIMEIRO

PROGRAMA7

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA(PROGRAMMINGLANGUAGE)#HELLOWORLD
5 Chapter 9 on page 47
6 HTTP://CS.WIKIBOOKS.ORG/WIKI/KURZPROGRAMOVÁNÍVJAV Ě/HELLOWORLD
7 HTTP://PT.WIKIBOOKS.ORG/WIKI/JAVA/CRIANDOEEXECUTANDOOPRIMEIROPROGRAMA

45

http://en.wikipedia.org/wiki/Java (programming language)##Hello world
http://cs.wikibooks.org/wiki/Kurz programov�n� v Jav�/Hello World
http://pt.wikibooks.org/wiki/Java/Criando e executando o primeiro programa

First Java Program

46

9 Understanding a Java Program

This article presents a small Java program which can be run from the console. It computes the
distance between two points on a plane. You need not understand the structure and meaning of
the program just yet; we will get to that soon. Also, because the program is intended as a simple
introduction, it has some room for improvement, and later in the module we will show some of
these improvements. But let’s not get too far ahead of ourselves!

9.1 The Distance Class: Intent, Source, and Use

This class is named Distance, so using your favorite editor or Java IDE, first create a file named
Distance.java, then copy the source below and paste it into the file and save the file.

public class Distance
{
private java.awt.Point point0, point1;

public Distance(int x0, int y0, int x1, int y1)
{
point0 = new java.awt.Point(x0, y0);
point1 = new java.awt.Point(x1, y1);

}

public void printDistance()
{
System.out.println("Distance between " + point0 + " and " +

point1
+ " is " + point0.distance(point1));

}

public static void main(String[] args)
{
Distance dist = new Distance(

intValue(args[0]), intValue(args[1]),
intValue(args[2]), intValue(args[3]));

dist.printDistance();
}

private static int intValue(String data)
{
return Integer.parseInt(data);

}
}

At this point, you may wish to review the source to see how much you might be able to un-
derstand. While perhaps not being the most literate of programming languages, someone with
understanding of other procedural languages such as C, or other OO languages such as C++ or
C#, will be able to understand most if not all of the sample program.

47

Understanding a Java Program

Once you save the file, COMPILE1 the program:

javac Distance.java

(If the javac command fails, review the JAVA INSTALLATION INSTRUCTIONS2.)

To run the program, you supply it with the x and y coordinates of two points on a plane. (For this
version of Distance, only integer points are supported.) The command sequence is

java Distance x0 y0 x1 y1

to compute the distance between the points (x0, y0) and (x1, y1)

For example, the command

java Distance 0 3 4 0

will compute the distance between the points (0,3) and (4,0) and print the following:

Distance between java.awt.Point[x=0,y=3] and java.awt.Point[x=4,y=0]
is 5.0

The command

java Distance -4 5 11 19

will compute the distance between the points (-4,5) and (11,19):

Distance between java.awt.Point[x=-4,y=5] and
java.awt.Point[x=11,y=19] is 20.518284528683193

We’ll explain this strange looking output, and also show how to improve it, later.

9.2 Detailed Program Structure and Overview

As promised, we will now provide a detailed description of this Java program. We will discuss the
syntax and structure of the program and the meaning of that structure.

1 Chapter 6 on page 27
2 Chapter 5 on page 25

48

Detailed Program Structure and Overview

9.2.1 Introduction to Java Syntax

The syntax of a Java class is the characters and symbols and their structure used to code the
class using Unicode characters. A fuller treatment of the syntax elements of Java may be found at
SYNTAX3. We will provide here only enough description of the syntax to grasp the above program.

Java programs consist of a sequence of tokens. There are different kinds of tokens. For example,
there are word tokens such as class and public which represent KEYWORDS4 - special words
with reserved meaning in Java. Other words (non keywords such as Distance, point0, x1, and
printDistance) are identifiers. Identifiers have many different uses in Java but primarily they
are used as names. Java also has tokens to represent numbers, such as 1 and 3; these are known
as LITERALS5. STRING LITERALS6, such as "Distance between ", consist of zero or more char-
acters embedded in double quotes, and OPERATORS7 such as + and = are used to express basic
computation such as addition or String concatenation or assignment. There are also left and
right braces ({ and }) which enclose BLOCKS8. The body of a class is one such block. Some to-
kens are punctuation, such as periods . and commas , and semicolons ;. You use WHITESPACE9

such as spaces, tabs, and newlines, to separate tokens. For example, whitespace is required be-
tween keywords and identifiers: publicstatic is a single identifier with twelve characters, not
two Java keywords.

9.2.2 Declarations and Definitions

Sequences of tokens are used to construct the next building blocks of Java classes: declarations
and definitions. A class declaration provides the name and visibility of a class. For our example,

public class Distance

is the class declaration. It consists (in this case) of two keywords, PUBLIC10 and CLASS11 fol-
lowed by the identifier Distance.

This means that we are defining a class named Distance. Other classes, or in our case, the com-
mand line, can refer to the class by this name. The public keyword is an ACCESS MODIFIER12

which declares that this class and its members may be accessed from other classes. The class
keyword, obviously, identifies this declaration as a class. Java also allows declarations of INTER-
FACES13 and (as of Java 5) ANNOTATIONS14.

3 Chapter 10 on page 57
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS
5 Chapter 10.2 on page 59
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/STRINGLITERALS
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/OPERATORS
8 Chapter 10.3 on page 60
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/WHITESPACE
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/PUBLIC
11 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/CLASS
12 Chapter 15 on page 87
13 Chapter 25 on page 139
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/ANNOTATIONS

49

http://en.wikibooks.org/wiki/Java Programming/Keywords
http://en.wikibooks.org/wiki/Java Programming/String Literals
http://en.wikibooks.org/wiki/Java Programming/Operators
http://en.wikibooks.org/wiki/Java Programming/Whitespace
http://en.wikibooks.org/wiki/Java Programming/Keywords/public
http://en.wikibooks.org/wiki/Java Programming/Keywords/class
http://en.wikibooks.org/wiki/Java Programming/Annotations

Understanding a Java Program

The class declaration is then followed by a block (surrounded by curly braces) which provides
the class’s definition. The definition is the implementation of the class - the declaration and
definitions of the class’s members. This class contains exactly six members, which we will explain
in turn.

1. Two field declarations, named point0 and point1
2. A constructor declaration
3. Three method declarations

Example: Instance Fields

The declaration

private java.awt.Point point0, point1;

declares two INSTANCE FIELDS15. Instance fields represent named values that are allocated when-
ever an instance of the class is constructed. When a Java program creates a Distance instance,
that instance will contain space for point0 and point1. When another Distance object is cre-
ated, it will contain space for its own point0 and point1 values. The value of point0 in the first
Distance object can vary independently of the value of point0 in the second Distance object.

This declaration consists of:

1. The PRIVATE16 access modifier,
which means these instance fields are not visible to other classes.

2. The type of the instance fields. In this case, the type is java.awt.Point.
This is the class Point in the java.awt package.

3. The names of the instance fields in a comma separated list.

These two fields could also have been declared with two separate but more verbose declarations,

private java.awt.Point point0;
private java.awt.Point point1;

Since the types of these fields is a reference type (i.e. a field that refers to or can hold a reference
to an object value), Java will implicitly initialize the values of point0 and point1 to null when a
Distance instance is created. The null value means that a reference value does not refer to an
object. The special Java literal, null is used to represent the null value in a program. While you
can explicitly assign null values in a declaration, as in

private java.awt.Point point0 = null;
private java.awt.Point point1 = null;

it is not necessary and most programmers omit such default assignments.

15 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/INSTANCEFIELDS
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/PRIVATE

50

http://en.wikibooks.org/wiki/Java Programming/Instance Fields
http://en.wikibooks.org/wiki/Java Programming/Keywords/private

Detailed Program Structure and Overview

Example: Constructor

A CONSTRUCTOR17 is a special method in a class which is used to construct an instance of the
class. The constructor can perform initialization for the object, beyond that which the Java VM
does automatically. For example, Java will automatically initialize the fields point0 and point1
to null.

Below is the constructor for this class. It consists of five parts:

1. The optional ACCESS MODIFIER(S)18.
In this case, the constructor is declared public

2. The constructor name, which must match the class name exactly: Distance in this case.
3. The constructor PARAMETERS19.

The parameter list is required. Even if a constructor does not have any parameters, you
must specify the empty list (). The parameter list declares the type and name of each of
the method’s parameters.

4. An optional throws clause which declares the exceptions that the constructor may throw.
This constructor does not declare any exceptions.

5. The constructor body, which is a Java BLOCK20 (enclosed in {}). This constructor’s body
contains two statements.

public Distance(int x0, int y0, int x1, int y1) { point0 = new
java.awt.Point(x0, y0); point1 = new java.awt.Point(x1, y1); } This constructor
accepts four parameters, named x0, y0, x1 and y1. Each parameter requires a parameter
type declaration, which in this example is int for all four parameters. Java integer values are
signed, 32 bit twos complement integers. The parameters in the parameter list are separated by
commas.

The two assignments in this constructor use Java’s new operator to allocate two java.awt.Point
objects. The first allocates an object representing the first point, (x0, y0), and assigns it to the
point0 instance variable (replacing the null value that the instance variable was initialized to).
The second statement allocates a second java.awt.Point instance with (x1, y1) and assigns
it to the point1 instance variable.

This is the constructor for the Distance class. Distance implicitly extends from
java.lang.Object. Java inserts a call to the super constructor as the first executable statement
of the constructor if there is not one explicitly coded. The above constructor body is equivalent
to the following body with the explicit super constructor call:

{
super();
point0 = new java.awt.Point(x0, y0);
point1 = new java.awt.Point(x1, y1);

}

17 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/METHODS#SPECIALMETHOD,
THECONSTRUCTOR

18 Chapter 15 on page 87
19 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/PARAMETERS
20 Chapter 10.3 on page 60

51

http://en.wikibooks.org/wiki/Java Programming/Methods##Special method, the Constructor
http://en.wikibooks.org/wiki/Java Programming/Methods##Special method, the Constructor
http://en.wikibooks.org/wiki/Java Programming/Parameters

Understanding a Java Program

While it is true that this class could be implemented in other ways, such as simply storing the
coordinates of the two points and computing the distance as

√
(x1 −x0)2 + (y1 − y0)2, this class

instead uses the existing java.awt.Point class. This choice matches the abstract definition of
this class: to print the distance between two points on the plane. We take advantage of existing
behavior already implemented in the Java platform rather than implementing it again. We will
see later how to make the program more flexible without adding much complexity, because we
choose to use object abstractions here. However, the key point is that this class uses information
hiding. That is, how the class stores its state or how it computes the distance is hidden. We can
change this implementation without altering how clients use and invoke the class.

Example: Methods

Methods are the third and most important type of class member. This class contains three
methods in which the behavior of the Distance class is defined: printDistance(), main(), and
intValue()

The printDistance() method

The printDistance() method prints the distance between the two points to the standard
output (normally the console).

public void printDistance()
{

System.out.println("Distance between " + point0
+ " and " + point1
+ " is " + point0.distance(point1)); }

}

This INSTANCE METHOD21 executes within the context of an implicit Distance object. The
instance field references, point0 and point1, refer to instance fields of that implicit object.
You can also use the special variable this to explicitly reference the current object. Within an
instance method, Java binds the name this to the object on which the method is executing, and
the type of this is that of the current class. The body of the printDistance method could also
be coded as

System.out.println("Distance between " + this.point0
+ " and " + this.point1
+ " is " +

this.point0.distance(this.point1)); }

to make the instance field references more explicit.

This method both computes the distance and prints it in one statement. The distance
is computed with point0.distance(point1); distance() is an instance method of the
java.awt.Point class (of which point0 and point1 are instances. The method operates on
point0 (binding this to the object that point0 refers to during the execution of the method)

21 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/INSTANCEMETHODS

52

http://en.wikibooks.org/wiki/Java Programming/Instance Methods

Detailed Program Structure and Overview

and accepting another Point as a parameter. (Actually, it is slightly more complicated than that,
but we’ll explain later.) The result of the distance() method is a double precision floating point
number.

This method uses the syntax

"Distance between " + this.point0
+ " and " + this.point1
+ " is " + this.point0.distance(this.point1)

to construct a String to pass to the System.out.println(). This expression is a series of
STRING CONCATENATION22 methods which concatenates Strings or the String representation of
primitive types (such as doubles) or objects, and returns a long string. For example, the result of
this expression for the points (0,3) and (4,0) is the String

"Distance between java.awt.Point[x=0,y=3] and java.awt.Point[x=4,y=0]
is 5.0"

which the method then prints to System.out.

In order to print, we invoke the println(). This is an instance method from
java.io.PrintStream, which is the type of the static field out in the class java.lang.System.
The Java VM binds System.out to the standard output stream when it starts a program.

The main() method

The main() method is the main entry point which Java invokes when you start a Java program
from the command line. The command

java Distance 0 3 4 0

instructs Java to locate the Distance class, put the four command line arguments into an array
of String values, then pass those arguments the public static main(String[]) method of
the class. (We will introduce arrays shortly.) Any Java class that you want to invoke from the
command line or desktop shortcut must have a main method with this signature.

public static void main(String[] args)
{

Distance dist = new Distance(
intValue(args[0]), intValue(args[1]),
intValue(args[2]), intValue(args[3]));

dist.printDistance();
}

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/STRINGCONCATENATION

53

http://en.wikibooks.org/wiki/Java Programming/String Concatenation

Understanding a Java Program

The main() method invokes the final method, intValue(), four times. The intValue() takes
a single string parameter and returns the integer value represented in the string. For example,
intValue("3") will return the integer 3.

The intValue() method

The intValue() method delegates its job to the Integer.parseInt() method. The main
method could have called Integer.parseInt() directly; the intValue() method simply
makes the main() method slightly more readable.

private static int intValue(String data)
{

return Integer.parseInt(data);
}

This method is PRIVATE23 since, like the fields point0 and point1, it is part of the internal im-
plementation of the class and is not part of the external programming interface of the Distance
class.

Static vs. Instance Methods

Both the main() and intValue() methods are STATIC METHODS24. The static keyword tells the
compiler to create a single memory space associated with the class. Each individual object in-
stantiated has its own private state variables and methods but use the same static methods and
members common to the single class object created by the compiler when the first class object
is instantiated or created. This means that the method executes in a static or non-object con-
text - there is no implicit separate instance available when the static methods run from various
objects, and the special variable this is not available. As such, static methods cannot access
instance methods or instance fields (such as printDistance()) or point0) directly. The main()
method can only invoke the instance method printDistance() method via an instance refer-
ence such as dist.

9.2.3 Data Types

Most declarations have a data type. Java has several categories of data types: reference types,
primitive types, array types, and a special type, void.

Reference Types

A reference type is a Java data type which is defined by a Java class or interface. Reference types
derive this name because such values refer to an object or contain a reference to an object. The
idea is similar to pointers in other languages like C.

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/PRIVATE
24 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/STATICMETHODS

54

http://en.wikibooks.org/wiki/Java Programming/Keywords/private
http://en.wikibooks.org/wiki/Java Programming/Static Methods

Detailed Program Structure and Overview

Java represents sequences of character data, or STRING25, with the reference type
java.lang.String which is most commonly referred to as String. String literals, such as
"Distance between " are constants whose type is String.

This program uses three separate reference types:

1. java.lang.String (or simply String)
2. Distance
3. java.awt.Point

For more information see chapter : JAVA PROGRAMMING/CLASSES, OBJECTS AND TYPES26.

Primitive Types

In addition to object or reference types, Java supports PRIMITIVE TYPES27. The primitive types
are used to represent Boolean, character, and numeric values. This program uses only one
primitive type explicitly, int, which represents 32 bit signed integer values. The program also
implicitly uses double, which is the return type of the distance() method of java.awt.Point.
double values are 64 bit IEEE floating point values. The main() method uses integer values 0, 1,
2, and 3 to access elements of the command line arguments. The Distance() constructor’s four
parameters also have the type int. Also, the intValue() method has a return type of int. This
means a call to that method, such as intValue(args[0]), is an expression of type int. This
helps explain why the main method cannot call

new Distance(args[0], args[1], args[2], args[3]) // this is an error

Since the type of the args array element is String, and our constructor’s parameters must be int,
such a call would result in an error because Java cannot automatically convert values of type
String into int values.

Java’s primitive types are boolean, byte, char, short, int, long, float and double, each of which
are also Java language keywords.

Array Types

Java supports ARRAYS28, which are aggregate types which have a fixed element type (which can
be any Java type) and an integral size. This program uses only one array, String[] args. This
indicates that args has an array type and that the element type is String. The Java VM con-
structs and initializes the array that is passed to the main method. See ARRAYS29 for more details
on how to create arrays and access their size.

The elements of arrays are accessed with integer indices. The first element of an array is always
element 0. This program accesses the first four elements of the args array explicitly with the

25 Chapter 19 on page 107
26 Chapter 12 on page 75
27 Chapter 17 on page 99
28 Chapter 29 on page 147
29 Chapter 29 on page 147

55

Understanding a Java Program

indices 0, 1, 2, and 3. (This program does not perform any input validation, such as verifying
that the user passed at least four arguments to the program. We will fix that later.)

void

VOID30 is not a type in Java; it represents the absence of a type. Methods which do not return
values are declared as void methods.

This class defines two void methods:

public static void main(String[] args) { ... }
public void printDistance() { ... }

9.3 Comments in Java programs

See HERE31 for more information on that important topic.

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/VOID
31 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA_PROGRAMMING/UNDERSTANDING_A_JAVA_PROGRAM/

JAVADOC_AND_OTHER_COMMENTS

56

http://en.wikibooks.org/wiki/Java Programming/Keywords/void
http://en.wikibooks.org/wiki/Java_Programming/Understanding_a_Java_Program/Javadoc_and_other_comments
http://en.wikibooks.org/wiki/Java_Programming/Understanding_a_Java_Program/Javadoc_and_other_comments

10 Syntax

Java derives much of its syntax from the C1 programming language: basic assignment statement
syntax, expressions, control flow statements and blocks, etc. will be very familiar to C program-
mers.

Unicode : Java source code are built by Unicode characters.

Tokens : Java programs consist of a sequence of different kinds of tokens. For example, there
are word tokens such as class and public which are KEYWORDS2.

KEYWORDS3 : Those are special words with reserved meaning in Java. Those words can not be
used by the programers to name identifiers.

Identifiers : Other words (non keywords) are identifiers. Identifiers have many different uses
in Java but primarily they are used as names, class names, method names, and variable
names... .

LITERALS4 : Java also has tokens to represent numbers, such as 1 and 3; these are known as
LITERALS5.

String LITERALS6, such as "http://en.wikibooks.org/Java_Programming", con-
sist of zero or more characters embedded in double quotes.

OPERATORS7 : And OPERATORS8 such as + and = are used to express basic computation such as
addition or String concatenation or assignment.

BLOCKS9 : There are also left and right braces ({ and }) which enclose BLOCKS10. The body of a
class is one such block.

STATEMENTS11 : A Block contains one or more Java STATEMENT(S)12, separated by semicolons.
A statement is the smallest building block of Java.

Separators : Some tokens are punctuation, such as periods . and commas , and semicolons ;.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING:C
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS
4 Chapter 10.2 on page 59
5 Chapter 10.2 on page 59
6 Chapter 10.2 on page 59
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/OPERATORS
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/OPERATORS
9 Chapter 10.3 on page 60
10 Chapter 10.3 on page 60
11 Chapter 11 on page 63
12 Chapter 11 on page 63

57

http://en.wikibooks.org/wiki/Programming:C
http://en.wikibooks.org/wiki/Java Programming/Keywords
http://en.wikibooks.org/wiki/Java Programming/Keywords
http://en.wikibooks.org/wiki/Java Programming/Operators
http://en.wikibooks.org/wiki/Java Programming/Operators

Syntax

WHITESPACE13 : You use WHITESPACE14 such as spaces, tabs, and newlines, to separate tokens.
For example, whitespace is required between keywords and identifiers: publicstatic is a
single identifier with twelve characters, not two Java keywords.

COMMENTS15 : Comments are not part of the executing code. Comments are used to document
the code.

10.1 Unicode

Most Java program text consists of ASCII16 characters, but any Unicode character can be used
as part of identifier names, in comments, and in character and string literals. UNICODE ESCAPE

SEQUENCES17 may also be used to express a Unicode character.

For example, (which is the Greek Lowercase Letter pi) is a valid Java identifier.

double = Math.PI;

and in a string literal

String pi = string;

may also be represented in Java as the Unicode escape sequence \u03C0. Thus, the following is a
valid, but not very readable, declaration and assignment:

double \u03C0 = Math.PI;

The following demonstrate the use of Unicode escape sequences in other Java syntax:

Declare Strings pi and quote which contain \u03C0 and \u0027
respectively:

String pi = string;
String quote = string;

Note that a Unicode escape sequence functions just like any other character in the source code.
E.g., \u0022 (double quote, ") needs to be quoted in a string just like ".

13 Chapter 10.4 on page 60
14 Chapter 10.4 on page 60
15 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/SYNTAX/COMMENTS
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASCII
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/SYNTAX/UNICODEESCAPESEQUENCES

58

http://en.wikibooks.org/wiki/Java Programming/Syntax/Comments
http://en.wikipedia.org/wiki/ASCII
http://en.wikibooks.org/wiki/Java Programming/Syntax/Unicode Escape Sequences

Literals

Declare Strings doubleQuote1 and doubleQuote2 which both contain "
(double quote):

String doubleQuote1 = string;
String doubleQuote2 = string;

"\u0022" doesn’t work since """ doesn’t work.

See UNICODE ESCAPE SEQUENCES18 for full details.

CATEGORY:JAVA PROGRAMMING19

10.2 Literals

Java Literals are syntactic representations of boolean, character, numeric, or string data. Literals
provide a means of expressing specific values in your program. For example, in the following
statement, an integer variable named count is declared and assigned an integer value. The literal 0
represents, natually enough, the value zero.

int count = 0;

The following method call passes a String literal string the boolean literal true and the special null
value null to the method parse():

List items = parse(string, true, null);

• BOOLEAN LITERALS20

• NUMERIC LITERALS21

• CHARACTER LITERALS22

• INTEGER LITERALS23

• FLOATING POINT LITERALS24

• STRING LITERALS25

18 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/SYNTAX/UNICODEESCAPESEQUENCES
19 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING
20 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/BOOLEANLITERALS
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/NUMERICLITERALS
22 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/NUMERICLITERALS/

CHARACTERLITERALS
23 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/NUMERICLITERALS/

INTEGERLITERALS
24 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/NUMERICLITERALS/

FLOATINGPOINTLITERALS
25 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/STRINGLITERALS

59

http://en.wikibooks.org/wiki/Java Programming/Syntax/Unicode Escape Sequences
http://en.wikibooks.org/wiki/Category:Java Programming
http://en.wikibooks.org/wiki/Java Programming/Literals/Boolean literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Character Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Character Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Integer Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Integer Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Floating Point Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/Numeric Literals/Floating Point Literals
http://en.wikibooks.org/wiki/Java Programming/Literals/String Literals

Syntax

• null26

10.3 Blocks

Java has a concept called block that is enclosed between the { and } characters, called curly braces.
A block executed as a single statetement, and can be used where a single statetement is accepted.

After a block is executed all local variables defined inside the block is discarded, go out of scope.

{
...
// -- This is a block ---

}

Blocks can be nested:

{
...
{

// -- This is a nested block ---
}

}

CATEGORY:JAVA PROGRAMMING27 ll

10.4 Whitespaces

Whitespace in Java is used to separate the tokens in a Java source file. Whitespace is required in
some places, such as between ACCESS MODIFIERS28, TYPE NAMES29 and Identifiers, and is used
to improve readability elsewhere.

Wherever whitespace is required in Java, one or more whitespace characters may be used. Wherever
whitespace is optional in Java, zero or more whitespace characters may be used.

Java whitespace consists of the

• space character ’ ’ (0x20),
• the tab character (hex 0x09),
• the form feed character (hex 0x0c),
• the line separators characters newline (hex 0x0a) or carriage return (hex 0x0d) characters.

Line separators are special whitespace characters in that they also terminate line comments, whereas
normal whitespace does not.

Other Unicode space characters, including vertical tab, are not allowed as whitespace in Java.

26 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/LITERALS/NULL
27 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING
28 Chapter 15 on page 87
29 Chapter 18 on page 101

60

http://en.wikibooks.org/wiki/Java Programming/Literals/null
http://en.wikibooks.org/wiki/Category:Java Programming

Required Whitespace

10.5 Required Whitespace

Below is the declaration of an abstract method taken from a Java class

public abstract Distance distanceTo(Destination dest);

Whitespace is required between public and abstract, between abstract and Distance, between
Distance and distanceTo, and between Destination and dest.

However, the following is not legal:

publicabstractDistance distanceTo(Destination dest);

because whitespace is required between keywords and identifiers. The following is lexically valid

publicabstractDistance distanceTo(Destination dest);

but means something completely different: it declares a method which has the return type
publicabstractDistance It is unlikely that this type exists, so the above would result in a se-
mantic error.

10.6 Indentation

Java ignores all whitespace in front of a statement. As this, these two code snippets are identical
for the compiler:

public static void main(String[] args) {
printMessage();

}

void printMessage() {
System.out.println("Hello World!");

}

public static void main(String[] args) {
printMessage();
}

void printMessage() {
System.out.println("Hello World!");
}

However, the first one’s style (with whitespace) is preferred, as the readability is higher. (The
method body is easier to distinguish from the head, even at a higher reading speed.)

CATEGORY:JAVA PROGRAMMING30

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

61

http://en.wikibooks.org/wiki/Category:Java Programming

Syntax

CATEGORY:JAVA PROGRAMMING31

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

62

http://en.wikibooks.org/wiki/Category:Java Programming

11 Statements

Now, that we have the Java platform on our systems and have run the first program successfully, we
are geared towards understanding how programs are actually made. As we have already discussed.
A program is a set of instructions – very simple tasks provided to a computer. These instructions
are called statements in Java. Statements can be anything from a single line of code to a complex
mathematical equation. This section helps you understand what statements are and how they work.

11.1 What exactly are statements?

Statements are a single instruction in a program – a single unit of code. Consider the following line:

Listing 1.1: A simple assignment statement.

int age = 24;

This line is a simple instruction that tells the system to initialize a variable and set its value as 24.
Within that simple definition, we talked about initialization of a variable and setting its value. This
all might sound a bit too technical, but it will make sense as you read ahead.

11.2 Where do you find statements

Java, in the same style as C and C++, places statements within functions (or methods). The function
in turn is placed within a class declaration. If the above statement was the only one in the program,
it would look similar to this:

public class MyProgram
{

public static void main (String[] args)
{

int age = 24;
}

}

The class declaration and function declaration will be described in the upcoming chapters.

63

Statements

11.3 Variables

Christmases are usually exciting, birthdays too. And the one thing that makes them exciting are:
you get presents. Think of a present you’ve ever gotten. A tiny (or big, if you’re lucky) box with
your name on it. Now think of variables as something similar. They are tiny little boxes in the
computer’s memory that save something within themselves. This something within them is called a
value.

Note:
A variable is an identifier to a value in the system’s memory.

11.4 Data types

Take a look at the code in Listing 1.1. Here the variable we have just created is age. The word
int tells us what is inside the age variable. int actually stands for integer – a number. On the
right to this variable is the value of the variable which is the number 24. Just like int, we can use
byte, short, long, double, float, boolean, char or String. All these tell us what type of data
is within a variable. These are hence called data types.

We explored the statement in Listing 1.1, where the variable held an integer within in. Let’s put
another type of data within it. Let’s say, the number 10.5. The code would look something like
this:

Listing 1.2: Putting a number with decimal point inside an integer variable.

int age = 10.5;

This is actually wrong. By definition (if you have been awake throughout your mathematics lec-
tures) you’d know that integers are whole numbers: 0, 1, 2, all the way up to infinity. Anything with
a decimal point is not an integer, hence the statement by virtue of it is wrong.

What would make it right is when you assign a certain type to the variable that would accept num-
bers with decimal points – numbers with decimal points are called floating points.

11.5 Whole numbers and floating point numbers

The data types that one can use for whole numbers are byte, short, int and long but when it
comes to floating point numbers, we use float or double. Now that we know that, we can modify
the code in Listing 1.2 as:

Listing 1.3: The correct way to assign a type to floating point variables

double age = 10.5;

64

Assignment statements

Why not float, you say? Well, there are several reasons why not. 10.5 can be anything – a float
or a double but by a certain rule, it is given a certain type. This can be explained further by looking
at the table below.

Data type Values accepted Declaration
byte Any number between -128

and 127.
byte b = 123;

short Any number between
-32,768 and 32,767.

short s = 12345;

int Any number between
-2,147,483,648 and
2,147,483,647.

int i = 1234567;

long Any number between
-9,223,372,036,854,775,808
and
9,223,372,036,854,775,807.

long l = 1234567890L;

float Extremely large numbers
beyond the scope of discus-
sion here.

float f = 123.4567f;

double Extremely large numbers
beyond the scope of discus-
sion here. The only differ-
ence between double and
float is the addition of an
f as a suffix after the float
value.

double d = 1234.56789;

The above table only list the number data types. We will look at the others as we go on. So, did you
notice why we used a double in listing 1.3, and not a float? The answer is pretty simple. If we’d
used a float, we would have to append the number with a f as a suffix, so 10.5 should be 10.5f
as in:

Listing 1.4: The correct way to define floating point numbers of type float.

float age = 10.5f;

11.6 Assignment statements

Up until now, we’ve assumed the creation of variables as a single statement. In essence, we assign a
value to those variables, and that’s just what it is called. When you assign a value to a variable in a
statement, that statement is called an assignment statement. Did you notice one more thing? The
semicolon (;). It’s at the end of each statement. A clear indicator that a line of code is a statement is
its termination with an ending semicolon. If one was to write multiple statements, it is usually done
on each separate line ending with a semicolon. Consider the example below:

Listing 1.5: Multiple assignment statements.

65

Statements

int a = 10;
int b = 20;
int c = 30;

You do not necessarily have to use a new line to write each statement. Just like English, you can
begin writing the next statement where you ended the first one as depicted below:

Listing 1.6: Multiple assignment statement on the same line.

int a = 10; int b = 20; int c = 30;

However, the only problem with writing such code is, it’s very difficult to read it back. It doesn’t
look that intimidating at first, but once you’ve got a significant amount of code, it’s usually better to
organize it in a way that makes sense. It would look more complex and incomprehensible written
as it is in Listing 1.6.

Now that we have looked into the anatomy of a simple assignment statement, we can look back at
what we’ve achieved. We know that...

• A statement is a unit of code in programming.
• If we are assigning a variable a value, the statement is called an assignment statement.
• An assignment statement include three parts: a data type, variable name (also called an identifier)

and the value of a variable. We will look more into the nature of identifiers and values in the
section titled IDENTIFIERS, LITERALS AND EXPRESSIONS1 later.

Now, before we more on to the next topic, you need to try and understand what the code below does.

Listing 1.7: Multiple assignment statements with expressions

int firstNumber = 10;
int secondNumber = 20;
int result = firstNumber + secondNumber;

The first two statements are pretty much similar to those in Listing 1.5 but with different variable
names. The third however is a bit interesting. We’ve already talked of variables as being similar to
gift boxes. Think of your computer’s memory as a shelf where you put all those boxes. Whenever
you need a box (or variable), you call its identifier (that’s the name of the variable). So calling
the variable identifier firstNumber gives you the number 10, calling secondNumber would give
you 20 hence when you add the two up, the answer should be 30. That’s what the value of the
last variable result would be. The part of the third statement where you add the numbers, i.e.,
firstNumber + secondNumber is called an expression and the expression is what decides what
the value is to be. If it’s just a plain value, nothing fancy, then it’s called a literal.

With the information you have just attained, you can actually write a decent Java program that can
sum up values. To learn more, continue reading.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/IDENTIFIERS,LITERALSANDEXPRESSIONS

66

http://en.wikibooks.org/wiki/Java Programming/Identifiers, literals and expressions

Program Control Flow

<!--

11.7 Program Control Flow

Statements are evaluated in the order as they occur. The execution of flow begins at the top most
statement and proceed downwards till the last statement is encountered. A statement can be sub-
stituted by a statement block. There are special statements that can redirect the execution flow
based on a condition, those statements are called branching statements, described in detail in a later
section.

11.8 Statement Blocks

A bunch of statements can be placed in braces to be executed as a single block. Such a block of
statement can be named or be provided a condition for execution. Below is how you’d place a
series of statements in a block.

{
int a = 10;
int b = 20;
int result = a + b;

}

11.9 Branching Statements

Program flow can be affected using function/method calls, loops and iterations. Of various types of
branching constructs, we can easily pick out two generic branching methods.

• Unconditional Branching
• Conditional Branching

11.9.1 Unconditional Branching Statements

If you’d closely look at a method, you’ll see that a method is a named statement block that is
executed by calling that particular name. An unconditional branch is created either by invoking the
method or by calling break, continue, return or throw, all of which are described in below.

When a name of a method is encountered in a flow, it stops execution in the current method and
branches to the newly called method. After returning a value from the called method, execution
picks up at the original method on the line below the method call.

public class UnconditionalBranching
{

public static void main(String[] args)
{

67

Statements

System.out.println("Inside main method! Invoking aMethod!");
aMethod();
System.out.println("Back in main method!");

}
public static void aMethod()
{

System.out.println("Inside aMethod!");
}

}

Running the above code would provide us with this screen of information.

Inside main method! Invoking aMethod!
Inside aMethod!
Back in main method!

The program flow begins in the main method. Just as aMethod is invoked, the flow travels to the
called method. At this very point, the flow branches to the other method. Once the method is
completed, the flow is returned to the point it left off and resumes at the next statement after the call
to the method.

11.9.2 Conditional Branching Statements

Conditional branching is attained with the help of the if...else and switch statements. A condi-
tional branch occurs only if a certain condition expression evaluates to true.

Conditional Statements

Also referred to as if statements, these allow a program to perform a test and then take action based
on the result of that test.

The form of the if statement:

if (condition){
do statements here if condition is true

} else {
do statements here if condition is false

}

The condition is a boolean expression which can be either true or false. The actions performed
will depend on the value of the condition.

Example:

if (i > 0){
System.out.println("value stored in i is greater than zero");

}
else {

System.out.println("value stored is not greater than zero");
}

68

Branching Statements

If statements can also be made more complex using the else if combination:

if (condition 1){
do statements here if condition 1 is true

}
else if (condition 2){

do statements here if condition 1 is false and condition 2 is true
} else {

do statements here if neither condition 1 nor condition 2 is true
}

Example:

if (i > 0){
System.out.println("value stored in i is greater than zero");

}
else if (i < 0){

System.out.println("value stored in i is less than zero");
}
else {

System.out.println("value stored is equal to 0");
}

If there is only one statement to be executed after the condition, as in the above example, it is
possible to omit the curly braces, however Sun’s JAVA CODE CONVENTIONS2 explicitly state that
the braces should always be used.

There is no looping involved in an if statement so once the condition has been evaluated the program
will continue with the next instruction after the statement.

If...else statements

The if ... else statement is used to conditionally execute one of two blocks of statements, depending
on the result of a boolean condition.

Example:

if (list == null) {

this block of statements executes if the condition is true

}
else {

this block of statements executes if the condition is false

2 HTTP://JAVA.SUN.COM/DOCS/CODECONV/HTML/CODECONVENTIONS.DOC6.HTML#449

69

http://java.sun.com/docs/codeconv/html/CodeConventions.doc6.html#449

Statements

}

Sun’s JAVA CODE CONVENTIONS3 recommend that the braces should always be used.

An if statement has two forms:

if (boolean-condition)
statement1

and

if (boolean-condition)
statement1

else
statement2

Use the second form if you have different statements to execute if the boolean-condition is true or
if it is false. Use the first if you only wish to execute statement1 if the condition is true and you do
not wish to execute alternate statements if the condition is false.

The following example calls two int methods, f() and y(), stores the results, then uses an if
statement to test if x is less than y and if it is, the statement1 body will swap the values. The end
result is x always contains the larger result and y always contains the smaller result.

int x = f();
int y = y();
if (x < y) {

int z = x;
x = y;
y = z;

}

if...else statements also allow for the use of another statement, else if. This statement is used to
provide another if statement to the conditional that can only be executed if the others are not true.
For example:

if (x == 2)
x = 4;

else if (x == 3)
x = 6;

else
x = -1;

The else if statement is useful in this case because if one of the conditionals is true, the other
must be false. Keep in mind that if one is true, the other will not execute. For example, if the
statement contained in the first conditional, if(x == 2), were changed to x = 3;, the second
conditional, the else if, would still not execute. However, when dealing with primitive types in

3 HTTP://JAVA.SUN.COM/DOCS/CODECONV/HTML/CODECONVENTIONS.DOC6.HTML#449

70

http://java.sun.com/docs/codeconv/html/CodeConventions.doc6.html#449

Iteration Statements

conditional statements, it is more desirable to use SWITCH STATEMENTS4 rather than multiple
else if statements.

Switch statements

The switch conditional statement is basically a shorthand version of writing many if...else state-
ments. The syntax for switch statements is as follows:

switch(<variable>)
{
case <result>: <statements>; break;
case <result>: <statements>; break;
default: <statements>; break;

}

This means that if the variable included equals one of the case results, the statements following
that case, until the word break will run. The default case executes if none of the others are true.
Note: the only types that can be analysed through switch statements are char, byte, short, or int
primitive types. This means that String variables can not by analyzed through switch statements.

int n = 2, x;
switch(n)
{
case 1: x = 2; break;
case 2: x = 4; break;
case 3: x = 6; break;
case 4: x = 8; break;

}
return x;

In this example, since the integer variable n is equal to 2, case 2 will execute, make x equal to 4.
Thus, 4 is returned by the method.

11.10 Iteration Statements

Iteration Statements are statements that used to iterate a block of statements. Such statements are
often referred to as loops. Java offers four kinds of iterative statements.

• The while loop
• The do...while loop
• The for loop
• The foreach loop

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA_PROGRAMMING/STATEMENTS#SWITCH_STATEMENTS

71

http://en.wikibooks.org/wiki/Java_Programming/Statements##Switch_statements

Statements

11.10.1 The while loop

Main Page: JAVA PROGRAMMING/KEYWORDS/WHILE5 The while loop iterates a block of code
while the condition it specifies is true.

The syntax for the loop is:

while (condition) {
statement;

}

Here the condition is an expression. An expression as discussed earlier is any statement that returns
a value. While condition statements evaluate to a boolean value, that is, either true or false. As
long as the condition is true, the loop will iterate the block of code over and over and again. Once
the condition evaluates to false, the loop exits to the next statement outside the loop.

11.10.2 The do...while loop

The do-while loop is functionally similar to the while loop, except the condition is evaluated
AFTER the statement executes

do {
statement;

} while (condition);

11.10.3 The for loop

Main Page: JAVA PROGRAMMING/KEYWORDS/FOR6 The for loop is a specialized while loop
whose syntax is designed for easy iteration through a sequence of numbers Example:

for (int i = 0; i < 100; i++) {
System.out.println(i + "\t" + i * i);

}

If you compile and run the statement above, the program will print the numbers 0 to 99 and their
squares

0 0
1 1
2 4
3 9
...
99 9801

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/WHILE
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/FOR

72

http://en.wikibooks.org/wiki/Java Programming/Keywords/while
http://en.wikibooks.org/wiki/Java Programming/Keywords/for

Iteration Statements

The same statement in a while loop:

int i = 0;
while (i < 100){

System.out.println(i + "\t" + i * i);
i++;

}

11.10.4 The foreach loop

The foreach statement allows you to iterate through all the items in a collection, examining each
item in turn while still preserving its type. The syntax for the foreach statement is:

for (type item : collection) statement;

For an example, we’ll take an array of Strings denoting days in a week and traverse through the
collection, examining one item at a time.

String[] days = {"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"};

for (String day : days) {
System.out.println(day);

}

The output of this program would be:

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Notice that the loop automatically exits after the last item in the collection has been examined in the
statement block.

Although the enhanced for loop can make code much clearer, it can’t be used in some common
situations.

• Only access. Elements can not be assigned to, eg, not to increment each element in a collection.
• Only single structure. It’s not possible to traverse two structures at once, eg, to compare two

arrays.
• Only single element. Use only for single element access, eg, not to compare successive elements.
• Only forward. It’s possible to iterate only forward by single steps.
• At least Java 5. Don’t use it if you need compatibility with versions before Java 5.

73

Statements

11.11 The continue and break statements

At times, you would like to re-iterate a loop without executing the remaining statement within
the loop. The continue statement causes the loop to re-iterate and start over from the top most
statement inside the loop.

Where there is an ability to re-iterate the loop, there is an ability to exit the loop when required. At
any given moment, if you’d like to exit a loop and end all further work within the loop, the break
ought to be used.

The continue and break statements can be used with a label like follows:

String s = "A test string for the switch!\nLine two of test
string...";
outer: for (int i=0;i<s.length();i++) {

switch (s.charAt(i)) {
case ’\n’: break outer;
case ’ ’: break;
default: System.out.print(s.charAt(i));

}
}

Compiling and running this statement will produce

Ateststringfortheswitch!

CATEGORY:JAVA PROGRAMMING7

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

74

http://en.wikibooks.org/wiki/Category:Java Programming

12 Classes, Objects and Types

12.1 Objects and Classes

An object is composed of members and methods. The members, also called data members,
characteristics, attributes, or properties, describe the object. The methods generally describe the
actions associated with a particular object. Think of an object as a noun, its members as adjectives
describing that noun, and its methods as the verbs that can be performed by or on that noun.

For example, a sports car is an object. Some of its members might be its height, weight, acceleration,
and speed. An object’s members just hold data about that object. Some of the methods of the sports
car could be "drive", "park", "race", etc. The methods really don’t mean much unless associated
with the sports car, and the same goes for the members.

The blueprint that lets us build our sports car object is called a class. A class doesn’t tell us how
fast our sports car goes, or what color it is, but it does tell us that our sports car will have a member
representing speed and color, and that they will be say, a number and a word (or hex color code),
respectively. The class also lays out the methods for us, telling the car how to park and drive, but
these methods can’t take any action with just the blueprint - they need an object to have an effect.

In Java, a class is located in a file similar to its own name. If you want to have a class called
SportsCar, its source file needs to be SportsCar.java. The class is created by placing the following
in the source file:

public class SportsCar
{

/* Insert your code here */
}

The class doesn’t do anything yet, as you will need to add methods and member variables first.

12.2 Instantiation and Constructors

In order to get from class to object, we "build" our object by instantiation. Instantiation simply
means to create an instance of a class. Instance and object are very similar terms and are sometimes
interchangeable, but remember that an instance refers to a specific object, which was created from a
class.

This instantiation is brought about by one of the class’s methods, called a constructor. As its name
implies, a constructor builds the object based on the blueprint. Behind the scenes, this means that
computer memory is being allocated for the instance, and values are being assigned to the data
members.

75

Classes, Objects and Types

In general there are four constructor types: default, non-default, copy, and cloning.

A default constructor will build the most basic instance. Generally, this means assigning all
the members values like null, zero, or an empty string. Nothing would stop you, however, from
your default sports car color from being red, but this is generally bad programming style. Another
programmer would be confused if your basic car came out red instead of say, colorless.

A non-default constructor is designed to create an object instance with prescribed values for most,
if not all, of the object’s members. The car is red, goes from 0-60 in 12 seconds, tops out at 190mph,
etc.

A copy constructor is not included in the Java language, however one can easily create a construc-
tor that do the same as a copy constructor. It’s important to understand what it is. As the name
implies, a copy constructor creates a new instance to be a duplicate of an already existing one. In
Java, this can be also accomplished by creating the instance with the default constructor, and then
using the assignment operator to equivocate them. This is not possible in all languages though, so
just keep the terminology under your belt.

Java has the concepts of cloning object, and the end results are similar to copy constructor. Cloning
an object is faster than creation with the new keyword, because all the object memory is copied at
once to destination cloned object. This is possible by implementing the Cloneable interface, which
allows the method Object.clone() to perform a field-by-field copy.

12.3 Type

When an object is created, a reference to the object is also created. The object can not be accessed
directly in Java, only through this object reference. This object reference has a type assigned to it.
We need this type when passing the object reference to a method as a parameter. Java does strong
type checking.

Type is basically a list of features/operations, that can be performed through that object reference.
The object reference type basically is a contract that guarantees that those operations will be there
at run time.

When a car is created, it comes with a list of features/operations listed in the user manual that
guarantees that those will be there when the car is used.

When you create an object from a class by default its type is the same as its class. It means that all
the features/operations the class defined are there and available, and can be used. See below:

(new ClassName()).operations();

You can assign this to a variable having the same type as the class:

ClassName objRefVariable = new ClassName();
objRefVariable.operations();

76

Multiple classes in a Java file

You can assign the created object reference to the class super class, or to an interface the class
implements:

SuperClass objectRef = new ClassName(); // features/operations list
are defined by the SuperClass class
..
Interface inter = new ClassName(); // features/operations list are
defined by the interface

In the car analogy, the created car may have different Type of drivers. We create separate user
manuals for them, Average user manual, Power user manual, Child user manual, or Handicapped
user manual. Each type of user manual describes only those features/operations appropriate for the
type of driver. The Power driver may have additional gears to switch to higher speeds, that are not
available to other type of users...

When the car key is passed from an adult to a child we replacing the user manuals, that is called
Type Casting.

In Java, casts can occur in three ways:

• up casting: going up in the inheritance tree, until we reach the Object
• up casting: to an interface the class implements
• down casting: until we reach the class the object was created from

Type and Type Casting will be covered in more details later at ’JAVA PROGRAMMING/TYPES1’
module.

12.4 Multiple classes in a Java file

Normally, a Java file can have one and only one public Java class. However, a given file can
contain additional non-public classes.

public class OuterClass
{

...
}
class AdditionalClass
{

...
}

Because they have the "package (default)" access specifier, the ’AdditionalClass’ can be accessed
only in the same package.

These "additional" classes compile to separate ".class" bytecode files when compiled, just as if they
were in separate source files. However, including multiple classes in one file may increase the
difficulty in examining the structure of a given application.

1 Chapter 18 on page 101

77

Classes, Objects and Types

12.5 External links

• CONSTRUCTORS, INTERACTIVE JAVA LESSON2

CATEGORY:JAVA PROGRAMMING3

2 HTTP://JAVALESSONS.COM/CGI-{}BIN/FUN/JAVA-{}TUTORIALS-{}MAIN.CGI?SES=
AO789&CODE=CTR&SUB=FUN

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

78

http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=ctr&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=ctr&sub=fun
http://en.wikibooks.org/wiki/Category:Java Programming

13 Packages

13.1 Java Package / Name Space

Usually a Java application is built by many developers and it is common that third party modules/-
classes are integrated. The end product can easily contain hundreds of classes. Class name collision
is likely to happen. To avoid this a Java class can be put in a "name space". This "name space" in
Java is called the package.

The Java package needs to be unique across Vendors to avoid name collisions. For that reason
Vendors usually use their domain name in reverse order. That is guaranteed to be unique. For
example a company called ’Your Company Inc.’, would use a package name something like this:
com.yourcompany.yourapplicationname.yourmodule.YourClass.

To put a class in a package, the package keyword is used at the top of each class file. For Example,

package com.yourcompany.yourapplication.yourmodule;

When we want to reference a Java class that is defined outside of the current package name space,
we have to specify which package name space that class is in. So we could reference that class
with something like com.yourcompany.yourapplication.yourmodule.YourClass . To avoid having
to type in the package name each time when we want to reference an outside class, we can declare
which package the class belongs to by using the import Java keyword at the top of the file. For
Example,

import com.yourcompany.yourapplication.yourmodule.YourClass;

Then we can refer to that class by just using the class name YourClass .

In rare cases it can happen that you need to reference two classes having the same name in different
packages. In those cases, you can not use the import keyword for both classes. One of them needs
to be referenced by typing in the whole package name. For Example,

package com.mycompany.myapplication.mymodule;
...
import com.yourcompany.yourapplication.youmodule.SameClassName;
...
SameClassName yourObjectRef = new SameClassName();
com.hercompany.herapplication.hermodule.SameClassName herObjectRef =

new com.hercompany.herapplication.hermodule.SameClassName();

79

Packages

The Java package has one more interesting characteristic; the package name corresponds
where the actual file is stored on the file system. And that is actually how the com-
piler and the class loader find the Java files on the file system. For example, the class
com.yourcompany.yourapplication.yourmodule.YourClass, is stored on the file system in the cor-
responding directory : com/yourcompany/yourapplication/yourmodule/YourClass. Because of
this, package names should be lowercase, since in some operating systems the directory names
are not case sensitive.

13.2 Wildcard imports

It is possible to import an entire package, using an asterisk:

import javax.swing.*;

While it may seem convenient, it may cause problems if you make a typographical error. For
example, if you use the above import to use JFrame, but then type JFraim frame=new JFraim();,
the Java compiler will report an error similar to "Cannot find symbol: JFraim". Even though it seems
as if it was imported, the compiler is giving the error report at the first mention of JFraim, which is
half-way through your code, instead of the point where you imported JFrame along with everything
else in javax.swing.

If you change this to import javax.swing.JFraim; the error will be at the import instead of
within your code.

Furthermore, if you import javax.swing.*; and import java.util.*;, and
javax.swing.Queue is later added in a future version of Java, your code that uses Queue (java.util)
will fail to compile. This particular example is fairly unlikely, but if you are working with non-Sun
libraries, it may be more likely to happen.

13.3 Importing packages from .jar files

If you are importing library packages or classes that reside in a .jar file, you must ensure that the
file is in the current classpath (both at compile- and execution-time). Apart from this requirement,
importing these packages and classes is the same as if they were in their full, expanded, directory
structure.

Example:
To compile and run a class from a project’s top directory (that contains the two directories /source
and /libraries) you could use the following command:

javac -classpath libraries/lib.jar source/MainClass.java

And then to run it, similarly:

80

Class Loading / Name Space

java -classpath libraries/lib.jar source/MainClass

(The above is simplified, and demands that MainClass be in the default package, or a package called
’source’, which isn’t very desirable.)

13.4 Class Loading / Name Space

A fully qualified class name : consist of the package name plus the class name.

For example, the fully qualified class name of HashMap is java.util.HashMap.
Sometime is can happen that two class has the same name, but it can not have on the
same package, otherwise it would be the same class.
It can be said that the two class with the same name is in different name space. In the
above example, the HashMap class is in the java.util name space.

Let be two Customer class with different name space (in different package).

• com.bluecompany.Customer
• com.redcompany.Customer

When we need to use both class in the same program file, we can use the import
keyword only for one of the class. For the other we need to use the fully qualified
name.

The runtime identity of a class in Java 2 : is defined by the fully qualified class name and its
defining class loader. This means that the same class, loaded by two different class loaders,
is seen by the Virtual Machine as two completely different types.

81

Packages

82

14 Nested Classes

In Java you can define a class inside an other class.

A class can be nested:

• inside another class,
• or inside a method

14.1 Nest a class inside a class

When a class is declared inside another class, the nested class’ access modifier can be public,
private or package(default).

public class OuterClass
{

private String outerInstanceVar;

public class InnerClass
{

public void printVars()
{

System.out.println("Print Outer Class Instance Var.:" + outerInstanceVar);
}

}
}

The inner class has access to the enclosing class instance’s variables and methods, even private ones,
as seen above. This makes it very different from the nested class in C++, which are equivalent to
the "static" inner classes, see below.

An inner object has a reference to the outer object. The nested object can only be created with a
reference to the ’outer’ object. See below.

public void testInner()
{

...
OuterClass outer = new OuterClass();
OuterClass.InnerClass inner = outer.new InnerClass();
...

}

(When in a non-static method of the outer class, you can directly use new InnerClass(), since the
class instance is implied to be this.)

83

Nested Classes

You can directly access the reference to the outer object from within an inner class with the syntax
OuterClass.this; although this is usually unnecessary because you already have access to its
fields and methods.

Inner classes compile to separate ".class" bytecode files, usually with the name of the enclosing
class, followed by a "$", followed by the name of the inner class. So for example, the above inner
class would typically be compiled to a file named "OuterClass$InnerClass.class".

14.1.1 Static inner class

An inner class can be declared static. A static inner class has no enclosing instance, and therefore
cannot access instance variables and methods of the outer class. You do not specify an instance
when creating a static inner class. This is equivalent to the inner classes in C++.

14.2 Nest a class inside a method

These inner classes, also called local classes, cannot have access modifiers, like local variables,
since the class is ’private’ to the method. The inner class can be only abstract or final.

public class OuterClass
{

public void method()
{

class InnerClass
{

}
}

}

In addition to instance variables of the enclosing class, local classes can also access local variables
of the enclosing method, but only ones that are declared final. This is because the local class
instance might outlive the invocation of the method, and so needs its own copy of the variable. To
avoid problems with having two different copies of a mutable variable with the same name in the
same scope, it is required to be final, so it cannot be changed.

14.3 Anonymous Classes

In Java a class definition and its instantiation can be combined into a single step. By doing that the
class does not require a name. Those classes are called anonymous classes. An anonymous class
can be defined and instantiated in contexts where a reference can be used, and it is a nested class
to an existing class. Anonymous class is a special case of the local class to a method, above; and
hence they also can use final local variables of the enclosing method.

Anonymous classes are most useful to subclass and upcast to an ’Adapter Class’ or to an interface.

84

Anonymous Classes

public interface ActionListener
{

public void click();
}
...
ActionListener clk = new ActionListener()

{
public void click()
{

// --- implementation of the click event ---
...
return;

}
};

In the above example the class that implements the ActionListener is anonymous. The class is
defined where it is instantiated.

The above code is harder to read than if the class explicitly defined, so why use it? If many imple-
mentations are needed for an interface and those classes are used only in one particular place, using
anonymous class makes sense.

The following example uses anonymous class to implement an action listener.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
class MyApp implements Serializable
{

BigObjectThatShouldNotBeSerializedWithAButton bigOne;
Button aButton = new Button();
MyApp()
{

aButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

System.out.println("Hello There");
}

}
);

}
}

The following example does the same thing, but it names the class that implements the action
listener.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
class MyApp implements Serializable
{

BigObjectThatShouldNotBeSerializedWithAButton bigOne;
Button aButton = new Button();
// --- Nested class to implement the action listener ---
class MyActionListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

85

Nested Classes

System.out.println("Hello There");
}

}
MyApp()
{

aButton.addActionListener(new MyActionListener());
}

}

Using anonymous classes is especially preferable when you intend to use many different classes
that each implement the same Interface.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

86

http://en.wikibooks.org/wiki/Category:Java Programming

15 Access Modifiers

15.1 Access modifiers

You surely would have noticed by now, the words public, protected and private at the beginning
of class’s method declarations used in this book. These keywords are called the access modifiers
in the Java language syntax, and can be defined as...

Quote:
.. keywords that help set the visibility and accessibility of a class, its member variables, and meth-
ods.

The following table shows what Access Modifiers are appropriate for classes, nested classes, mem-
ber variables, and methods:

Class Nested
class

Method,
or Member
variable

Interface Interface
method
signature

public visible from
anywhere

same as its
class

same as its
class

visible from
anywhere

visible from
anywhere

protected N/A its class and
its subclass

its class and
its subclass,
and from its
package

N/A N/A

package
(default)

only from
its package

only from
its package

only from
its package

only from
its package

N/A, de-
fault is pub-
lic

private N/A only from
its class

only from
its class

N/A N/A

Points to ponder:
Note that Interface method visibility is PUBLIC1 by default. You do not need to specify the access
modifier it will default to PUBLIC2. For clarity it is considered a good practice to put the PUBLIC3

keyword.
The same way all member variables defined in the Interface by default will become STATIC4

FINAL5 once inherited in a class.

If a class has public visibility, the class can be referenced by anywhere in the program. If a class
has package visibility, the class can be referenced only in the package where the class is defined. If
a class has private visibility, (it can happen only if the class is defined nested in an other class) the
class can be accessed only in the outer class.

87

Access Modifiers

If a variable is defined in a public class and it has public visibility, the variable can be reference
anywhere in the application through the class it is defined in. If a variable has package visibility, the
variable can be referenced only in the same package through the class it is defined in. If a variable
has private visibility, the variable can be accessed only in the class it is defined in.

If a method is defined in a public class and it has public visibility, the method can be called anywhere
in the application through the class it is defined in. If a method has package visibility, the method
can be called only in the same package through the class it is defined in. If a method has private
visibility, the method can be called only in the class it is defined in.
6

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:

88

http://en.wikibooks.org/wiki/Category:

16 Methods

16.1 Method Definition

A method is an operation on a particular object. An object is an instance of a class. When we define
a class we define its member variables and its methods. For each method we need to give a name,
we need to define its input parameters and we need to define its return type. We also need to set its
visibility(private, package, or public). If the method throws an Exception, that needs to be declared
as well. The syntax of method definition is:

class MyClass
{
...

public ReturnType methodName(ParamOneType param1, ParamTwoType param2) throws
ExceptionName

{
ReturnType retType;
...
return retType;

}
...

}

We can declare that the method does not return anything using the void java keyword. For example:

private void methodName(String param1, String param2)
{
...

return;
}

When the method returns nothing, the return keyword at the end of the method is optional. The
return keyword can be used anywhere in the method, when the executation flow reach the return
keyword, the method execution is stopped and the execution flow returns to the caller method.

16.2 Method Overloading

For the same class we can define two methods with the same name. However the parameter
types and/or the number of parameters must be different for those two methods. In the java
terminology, this is called method overloading. It is useful to use method overloading when we
need to do something different based on a parameter type. For example we may have the operation :
runAroundThe. We can define two methods with the same name, but different input parameter type:

89

Methods

public void runAroundThe(Building block)
{
...

}
public void runAroundThe(Park park)
{
...

}

Related terminology is the method signature. In java the method signature contains method name
and the input parameter types. The java compiler takes the signature for each method and makes
sure that each method signature is unique for a class. For example the following two method
definitions are valid:

public void logIt(String param, Error err)
{
...

}
public void logIt(Error err, String param)
{
...

}

Because the type order is different. If both input parameters were type String, that would be a
problem since the compiler would not be able to distinguish between the two:

public void logIt(String param, String err)
{
...

}
public void logIt(String err, String param)
{
...

}

The compiler would give an error for the following method definitions as well:

public void logIt(String param)
{
...

}
public String logIt(String param)
{

String retType;
...
return retValue;

}

Note, the return type is not part of the unique signature. Why not? The reason is that a method can
be called without assigning its return value to a variable. This feature came from C and C++. So
for the call:

90

Method Overriding

{
logIt(msg);

}

the compiler would not know which method to call.

16.3 Method Overriding

Obviously a method signature has to be unique inside a class. The same method signature can be
defined in different classes. If we define a method that exist in the super class then we override the
super class method. The terminology for this is method overriding. This is different from method
overloading. Method overloading happens with methods with the same name different signature.
Method overriding happens with same name, same signature between inherited classes.

The return type can cause the same problem we saw above. When we override a super class method
the return type also must be the same. In fact if that is not the same, the compiler will give you an
error.

Method overriding is related dynamic linking, or runtime binding. In order for the Method
Overriding to work, the method call that is going to be called can not be determined at compilation
time. It will be decided at runtime, and will be looked up in a table.

{
1 MyClass obj = new SubOfMyClass();
2
3 MyClass obj = new MyClass();
4
5 obj.myMethod(); // -- During compilation, it is not known what
reference the ’obj’ has, MyClass or SubOfMyClass
}

In the above example ’obj’ reference has the type MyClass on both line 1 and line 3. However the
’obj’ reference points two different objects. On line 1 it references SubOfMyClass object, on line 3
it references MyClass object. So on line 5 which method will be called, method define in MyClass,
or the method that defined in its subclasses. Because the ’obj’ reference can point to object and all
its sub object, and that will be known only at runtime, a table needs to be kept with all the possible
method address to be called.

Also another rule is that when you do an override, the visibility of the new method that overrides
the super class method can not be reduced. The visibility can be increased, however. So if the super
class method visibility is public, the override method can not be package, or private.

In the case of the exception the override method may throw can be the same as the super class or it
can be one of that exception inherited class. So the common rule is that the override method must
throw the same exception or it is any of its subclasses.

NOTE: A common mistake to think that if we can override methods, we could also override
member variables. This is not the case, as member variables are not overriden.

91

Methods

{
1 MyClass obj = new SubOfMyClass();
2
3 MyClass obj = new MyClass();
4
5 String var = obj.myMemberVar; // -- The myMemberVar is defined in
the MyClass object
}

In the above example, it does not count what object the ’obj’ reference points to, because it was
declared MyClass type on both line 1 and line 3, the variable in the MyClass object will be refer-
enced. In real examples we rarely use public variables, but if you do keep in mind that Java does
not support variable overriding.

16.4 Parameter Passing

We can pass in all the primitive data types or any object references to a method. An object cannot
be passed to a method, only its references. All parameters (those are primitive types and object
references) are passed by value. In other words if you change the passed in parameter values inside
the method, that will have no effect on the original variable that was passed in. When you pass in
an object reference to a method and then you change that inside the method, that will have no effect
on the original object reference. However if you modify the object itself, that will stay after the
method returns. Think about the object reference as a pointer to an object. If you change the object
the reference points at, that will be permanent. For example:

1 {
2 int var1 = 10;
3 int var2 = 20;
4 ...
5 myMethod(var1, var2);
6 ...
7 System.out.println("var1="+var1 +"var2="+var2); // -- The
variable values did not change
8 }
9 ...
10 void myMethod(int var1, int var2)
11 {
12 ...
13 var1 = 0;
14 var2 = 0;
15 ...
16 }

On line 7 the value of var1 is 10 and the value of var2 is 20. When the variables were passed in to
the methods their values were copied. This is called passing the parameter by value. In java we
do not represent an object directly, we represent an object throught an object reference. You can
think of an object reference as a variable having the address of the object. So the object reference
passed in by value, but the object itself is not. For example:

1 {
2 MyObjOne obj = new MyObjOne();

92

Functions

3 obj.setName("Christin");
4 ...
5 myMethod(obj);
6 String name = obj.getName(); // --- The name attribute was
changed to ’Susan’ inside the method
7 }
8 void myMethod(MyObjOne obj)
9 {
10 obj.setName("Susan");
11 ...
12 obj = new MyObjOne();
13 obj.setName("Sonya");
14 ...
15 }

On line 2, we created an object, on line 3 we set its name property to ’Christin’. On line 5 we called
the myMethod(obj). Inside the method, we changed the name to ’Susan’ through the passed in
object reference. So that change will stay. Note however that after we reassigned the obj reference
to a new object, that is no effect whatsoever on the passed in object.

16.5 Functions

In java, functions (methods really) are just like in C++ except that they must be declared inside a
class and objects are passed by reference automatically. You cannot create pointers to a function
but Java has events which really are function pointers under the hood for when you need that type
of functionality.

int a_function(double d)
{

return (int)d;
}

16.6 Return Parameter

So as we can see, a method may or may not return a value. If the method does not return a
value we use the void java keyword. Same as the parameter passing, the method can return a
primitive type or an object reference. So a method can return only one value. What if you want
to return more than one value from a method. You can always pass in an object reference to the
method, and let the method modify the object properties. The modified values can be considered
as an output value from the method. However better option, and cleaner if you create an Object
array inside the method, assign the return values and return the array to the caller. You could
have a problem however, if you want to mix primitive data types and object references as the
output values from the method. There is a better approach. Defines special return object with
the needed return values. Create that object inside the method, assign the values and return
the reference to this object. This special object is "bound" to this method and used only for re-
turning values, so do not use a public class. The best way is to use a nested class, see example below:

93

Methods

public class MyObject
{
...

/** Nested object is for return values from ’getPersonInfoById’
method */

public static class ReturnObj
{

private int age;
private String name;

public void setAge(int val)
{

this.age = val;
}
public int getAge()
{

return age;
}

public void setName(String val)
{

name = val;
}
public String getName()
{

return name;
}

} // --- End of nested class defination ---

/** Method using the nested class to return values */
public ReturnObj getPersonInfoById(int ID)
{

int age;
String name;

...
// --- Get the name and age based on the ID from the database

...
ReturnObj ret = new ReturnObj();
ret.setAge(age);
ret.setName(name);

return ret;
}

}

In the above example the ’getPersonInfoById’ method returns an object reference that contains
both values the name and age. See below how you may use that object:

{
...
MyObject obj = new MyObject();
MyObject.ReturnObj person = obj.getPersonInfoById(102);

System.out.println("Person Name=" + person.getName());
System.out.println("Person Age =" + person.getAge());

...
}

94

Special method, the Constructor

16.7 Special method, the Constructor

There is a special method for each class that will be executed each time an object is created from
that class. That is the Constructor. Constructor does not have a return value and its name is
the same as the class name. The Constructor can be overloaded; you can define more than one
constructor with different parameters. For example:

public class MyClass
{
private String memberField;

/**
* MyClass Constructor, there is no input parameter
*/

public MyClass()
{

...
}

/**
* MyClass Constructor, there is one input parameter
*/

public MyClass(String param1)
{

memberField = param1;
...

}
}

In the above example we defined two constructors, one with no input parameter, and one with one
input parameter. You may ask which constructor will be called. Its depends how the object is
created with the new keyword. See below:

{
...
MyClass obj1 = new MyClass(); // The constructor with

no input parameter will be called
MyClass obj2 = new MyClass("Init Value"); // The constructor with

one input param. will be called
...

}

In the above example we created two objects from the same class, or we can also say that obj1 and
obj2 both have the same type. The difference between the two is that in the first one the memberVar
field is not initialized, in the second one that is initialized to ’Init Value’. obj1, and obj2 contains the
reference to the object. Each class must have a constructor. If we do not define one, the compiler
will create a default so called empty constructor automatically.

public class MyClass
{
/**
* MyClass Empty Constructor
*/

public MyClass()
{

95

Methods

}
}

The Constructor is called automatically when an object is created with the new keyword. A
constructor may also be called from an other constructor, see below:

public class MyClass
{
private String memberField;

/**
* MyClass Constructor, there is no input parameter
*/

public MyClass()
{

MyClass("Default Value");
}

/**
* MyClass Constructor, there is one input parameter
*/

public MyClass(String param1)
{

memberField = param1;
...

}
}

In the above example, the constructor with no input parameter calls the other constructor with the
default initial value. This gives an option to the user, to create the object with the default value or
create the object with a specified value.

16.8 Static Method

We defined method above as an operation on an object. Static Methods are defined inside a class,
but they are not an operation on an object. No object needs to be created to execute a Static Method,
they are simply global functions, with input parameters and a return value.

public class MyObject
{

static public String myStaticMethod()
{

...
return("I am a Static Method");

}

}

Static Methods can be referenced anywhere prefixed by the class name. See below:

{
...

96

External links

// --- Call myStaticMethod ---
System.out.println("Output from the myStaticMethod:" + MyObject.myStaticMethod());

...
}

You can write a non object oriented program by using only Static Methods in java. Because java
evolved from the C programming language, Static Method is a left over from a non object oriented
language.

You write Static Method the same way as normal method, the only difference is that you can not
reference any member variables and any object methods. Static Methods can reference only Static
variables and call only other Static Methods. However you can create an object an use it inside a
Static Method.

public class MyObject
{

public String memberVar;

static private String memberStaticVar;

static public String myStaticMethod()
{
memberVar = "Value"; --> ERROR Cannot reference member var.

memberStaticVar = "Value"; // --- This is okay, static vars. can be used

// --- Create an object ---
MyObject obj = new MyObject();
obj.memberVar = "Value"; // --- This is okay since an object is created --
...

return("I am a Static Method");
}

}

16.9 External links

• ABSTRACT METHODS, INTERACTIVE JAVA LESSON1

1 HTTP://JAVALESSONS.COM/CGI-{}BIN/FUN/JAVA-{}TUTORIALS-{}MAIN.CGI?SES=
AO789&CODE=ABS&SUB=FUN

97

http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=abs&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=abs&sub=fun

Methods

98

17 Primitive Types

1. redirect JAVA PROGRAMMING/TYPES1

1 Chapter 18 on page 101

99

Primitive Types

100

18 Types

Data Types (or simply Types) in Java are a way of telling what certain data is. It is seen as a way of
declaring allowed values for certain data, the structure of such data and operations associated with
it. Any data, be it numeric or a sentence of words, can have a different data type. For instance, just
to define different types of numbers in Java, there are about six simple types available to program-
mers − some define whole numbers (integers numbers) and others define numbers with a decimal
values (floating point numbers). Java also gives freedom to programmers to create complex and
customizable data types. We will deal with complex data types in later chapters.

18.1 Data Types in Java

Java is considered a strongly typed programming language in that it is obligatory for all data,
expressions and declarations within the code to have a certain type associated with it. This is
either declared or inferred and the Java language only allows programs to run if they adhere to type
constraints.

As we have discussed above, you can have types that define a number, or types that define textual
content within your program. If you present a numeric type with data that is not numeric, say textual
content, then such declarations would violate Java’s type system. This gives Java the unique
ability of type safety. Java checks if an expression or data is encountered with an incorrect type
or none at all. It then automatically flags this occurrence as an error at compile time. Most type-
related errors are caught by the Java compiler, hence making a program more secure and safe once
compiled completely and successfully.

In the Java language, there are three broad categories of data types:

• PRIMITIVES1

• OBJECT REFERENCE TYPES2

• ARRAYS3

In the following section, we will discuss these three categories in detail.

18.1.1 Primitives

Primitives are the most basic data types available within the Java language. These types serve as
the building blocks of data manipulation in Java. Such types serve only one purpose − containing
pure, simple values of a kind. Because these data types are defined into the Java type system by

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/#PRIMITIVES
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/#OBJECTREFERENCETYPES
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/#ARRAYS

101

http://en.wikibooks.org/wiki/##Primitives
http://en.wikibooks.org/wiki/##Object Reference Types
http://en.wikibooks.org/wiki/##Arrays

Types

default, they come with a number of operations predefined. You can not define a new operation for
such primitive types. In the Java type system, there are three further categories of primitives:

• NUMERIC PRIMITIVES4<p>These primitive data types hold only numeric data. Operations as-
sociated with such data types are those of simple arithmetic (addition, subtration, etc.) or of
comparions (is greater than, is equal to, etc.)</p>

• TEXTUAL PRIMITIVES5<p>These primitive data types hold characters (which can be alphabets
or even numbers), but unlike numbers, they do not have operations that serve arithmetic purposes.
Rather, operations associated with such types are those of textual manipulation (comparing two
words, joining characters to make words, etc.)

• BOOLEAN AND NULL PRIMITIVES6

18.1.2 Object Reference Types

18.1.3 Arrays

18.2 About Java Types

some type errors can still occur at runtime because Java supports a CAST7 operation which is a
way of changing the type of one expression to another. However, Java performs run time type
checking when doing such casts, so an incorrect type cast will cause a runtime exception rather than
succeeding silently and allowing data corruption.

Java is also known as a hybrid language. While supporting object oriented (OO) programming,
Java is not a pure OO language like SMALLTALK8 or RUBY9. Instead, Java offers both object
types and PRIMITIVE TYPES10. Primitive types are used for boolean, character, and numeric values
and operations. This allows relatively good performance when manipulating numeric data, at the
expense of flexibility. For example, you cannot subclass the primitive types and add new operations
to them.

18.3 Examples of Types

Below are two examples of Java types and a brief description of the allowed values and operations
for these types. Additional details on each are available in other modules.

4 HTTP://EN.WIKIBOOKS.ORG/WIKI//NUMERICPRIMITIVES
5 HTTP://EN.WIKIBOOKS.ORG/WIKI//TEXTUALPRIMITIVES
6 HTTP://EN.WIKIBOOKS.ORG/WIKI//OTHERPRIMITIVES
7 HTTP://EN.WIKIBOOKS.ORG/WIKI//JAVAPROGRAMMING/CASTS
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING:SMALLTALK
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/RUBYPROGRAMMING
10 Chapter 17 on page 99

102

http://en.wikibooks.org/wiki//Numeric Primitives
http://en.wikibooks.org/wiki//Textual Primitives
http://en.wikibooks.org/wiki//Other Primitives
http://en.wikibooks.org/wiki//Java Programming/Casts
http://en.wikibooks.org/wiki/Programming:Smalltalk
http://en.wikibooks.org/wiki/Ruby Programming

Examples of Types

18.3.1 Example: int

The PRIMITIVE TYPE11 int represents a signed 32 bit integer value. The allowed data values for
int are the integers between -2147483648 to 2147483647 inclusive.

The set of operations that may be performed on int values includes integer arithmetic such as +,
-, *, /, %, comparison operations (==, !=, <, >, <=, >=), assignments (=, ++, --, +=,
-=), bit-wise operations such as logical and, logical or, logical xor, negation (&, |, ˆ, ˜), bit shift
operations (<<, >>, >>>), CONVERSIONS12 to other numeric types and PROMOTION13 to other
integer types.

For example, to declare a private integer instance field named length, one would use the declara-
tion

private int length;

18.3.2 Example: String

You use class and interface definition in Java to define new types. Class and interface types are
associated with object references also sometime refered to as Reference types. An object reference
has two main attributes:

• Its type associated with a class or an interface
• A java object it references, that is created by instantiating a class

The String class is one such example. String values are a sequence of 0 or more Unicode characters.
The null reference is another valid value for a String expression.

The operations on a String reference variable are those available for all reference types, such as
comparison operations ==, != and assignment =.

The allowed operations on String object, however are the set of methods in the java.lang.String
class, which includes length(), toString(), toLowerCase(), toUpperCase(),
compareTo(String anotherString) and more... .

In addition, String objects also inherit the set of operations from the base class that String ex-
tends from, which is java.lang.Object. These operations include methods such as equals(),
hashCode(), wait(), notifyAll(), and getClass().

private String name = "Marry Brown";

In the above example the name object reference’s attributes are:

• Type is : String
• The referenced object is also : String

11 Chapter 17 on page 99
12 Chapter 17 on page 99
13 Chapter 17 on page 99

103

Types

Both the java.lang.String class methods and java.lang.Object class methods are available
for the object reference name.

private Object name = "Marry Brown";

In the above example the name object reference’s attributes are:

• Type is : Object
• The referenced object is : String

Only the java.lang.Object class methods are available for the object reference name.

18.4 Array Types

Arrays in Java are represented as a built-in Array object. As with object types, they behave as a
reference but have a few differences allowing them to allow easy access to sub elements.

When one declares an array, the data type is changed to include square brackets. (While you can
instead place these square brackets next to the variable name, this is not recommended.) To create
an array, you will need to use the new operator to have it create the Array with the specified number
of elements:

/* Declares an array named data, and has it assigned to an array with
25 elements. */
private int[] data = new int[25];

Arrays are described in more detail in the Arrays section.

18.5 Primitive Data Types

The Java primitive data types contain pure values, no operations. It is basically data types similar to
what other non-object-oriented languages have.

There are arrays of primitive types in Java; but because they are not objects, primitive values can
not be put in a collection.

For this reason object wrappers are defined in JDK ’java.lang.*’ package for all the primitive types.

float 32 float f =
65f;

Float

double 64 double d =
65.55;

Double

Other
boolean 1 boolean b =

true;
-- -- Boolean

void -- -- -- -- Void

104

Data Conversion (Casting)

The types short, int, long, float, and double are usually used in arithmetic operations; byte and
char can also be used, but less commonly.

The character type char is used for text processing. The type byte is commonly used in binary file
input output operations.

String objects representing literal character strings in Java, in the java.lang.* package.
java.lang.String is not a primitive type, but instead is a special class built into the Java language.
For further info, see String.

18.6 Data Conversion (Casting)

Data conversion (casting) can happen between two primitive types. There are two kinds:

• Implicit : casting operation is not required; the magnitude of the numeric value is always pre-
served. However, precision may be lost when converting from integer to floating point types

• Explicit : casting operation required; the magnitude of the numeric value may not be preserved

Example for implicit casting:

int i = 65;
long l = i; // --- int is converted to long, casting is not needed

Example for explicit casting:

long l = 656666L;
int i = (int) l; // --- long is converted to int, casting is needed

The following table shows the conversions between primitive types, it shows the casting operation
for explicit conversions:

from
byte

from
char

from
short

from
int

from
long

from
float

from
dou-
ble

from
boolean

to
byte

- (byte) (byte) (byte) (byte) (byte) (byte) N/A

to
char

- (char) (char) (char) (char) (char) N/A

to
short

(short) - (short) (short) (short) (short) N/A

to int - (int) (int) (int) N/A
to
long

- (long) (long) N/A

to
float

- (float) N/A

to
dou-
ble

- N/A

105

Types

from
byte

from
char

from
short

from
int

from
long

from
float

from
dou-
ble

from
boolean

to
boolean

N/A N/A N/A N/A N/A N/A N/A -

18.7 Autoboxing/unboxing

Autoboxing/unboxing : Autoboxing and unboxing, language features since Java 1.5, make the
programmer’s life much easier when it comes to working with the primitive wrapper types.
Consider this code fragment:

int age = 23;
Integer ageObject = new Integer(age);

Primitive wrapper objects were Java’s way of allowing one to treat primitive data types as though
they were objects. Consequently, one was expected to ’wrap’ one’s primitive data type with the
corresponding primitive wrapper object, as shown above.

Autoboxing : Since Java 1.5, one may write as below and the compiler will automatically create
the wrap object. The extra step of wrapping the primitive is no longer required. It has been
’automatically boxed up’ on your behalf.

Points to ponder:
Keep in mind that the compiler still creates the missing wrapper code, so one doesn’t really gain
anything performance-wise. Consider this feature a programmer convenience, not a performance
booster.

int age = 23;
Integer ageObject = age;

Unboxing : Uses the same process in reverse. Study the following code for a moment. The if
statement requires a boolean primitive value, yet it was given a Boolean wrapper object. No
problem! Java 1.5 will automatically ’unbox’ this.

Boolean canMove = new Boolean(true);

if (canMove)
{
System.out.println("This code is legal in Java 1.5");

}

CATEGORY:JAVA PROGRAMMING14

14 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

106

http://en.wikibooks.org/wiki/Category:Java Programming

19 java.lang.String

{{#ifeq:
Types

none

Abb.
11
TYPES1

}}

Java
Pro-
gram-
ming
String

{{#ifeq:
Classes,
Ob-
jects
and
Types

none CLASSES,
OB-
JECTS

AND

TYPES2

Abb.
12
}}

19.1 java.lang.String

String is a special class built into the Java language defined in the java.lang package.

The String class represents character strings. String literals in Java programs, such as "abc", are
implemented as instances of this class.

For example:

String str = "This is string literal";

On the right hand side a String object is created represented by the string literal. Its object reference
is assigned to the str variable.

Strings are immutable; that is, they cannot be modified once created. Whenever it looks as if a
String object was modified, a new String was actually created and the old one was thrown away.

The Java language provides special support for the string concatenation operator (+), and for
conversion of other objects to strings. For example:

String str = "First part" + " second part";
// --- Is the same as:
String str = "First part second part";

Integers will also be converted to String after the (+) operator:

1 Chapter 18 on page 101
2 Chapter 12 on page 75

107

java.lang.String

String str = "Age=" + 25;

Each Java object has the String toString() inherited from the Object class. This method pro-
vides a way to convert objects into Strings. Most classes override the default behavior to provide
more specific (and more useful) data in the returned String.

The String class provides a nice set of methods for string manipulation. Since String objects are
immutable, all methods return a new String object. For example:

name = name.trim();

The trim() method returns a copy of the string with leading and trailing whitespace removed. Note
that the following would do nothing useful:

name.trim(); // wrong!

This would create a new trimmed string and then throw it away. Study the String class and its
methods carefully. Strings are ubiquitous in Java; it will serve you well to know how to manipulate
them skillfully.

19.2 Using StringBuffer/StringBuilder to concatenate strings

Remember that String objects are immutable objects. Once a String is created, it can not be
modified, takes up memory until garbage collected. Be careful of writing a method like this :

public String convertToString(Collection<String> coll)
{

String str = "";
for(String oneElem : coll) // loops through every element in coll
{

str = str + oneElem + " ";
}
return str;

}

On the (+) operation a new String object is created at each iteration. Suppose coll contains the
elements ["Foo", "Bar", "Bam", "Baz"]. The method creates five Strings ("", "Foo ", "Foo
Bar ", "Foo Bar Bam ", and "Foo Bar Bam Baz") even though only last one is actually useful.

Instead use STRINGBUFFER3, as shown below, where only one STRINGBUILDER4 object is created:

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUFFER
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUILDER

108

http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuffer
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuilder

Comparing Strings

To avoid unnecessary memory use like this, use the STRINGBUFFER5 or STRINGBUILDER6 class.
They provide similar functionality to Strings, but store their data in a mutable way. Also because ob-
ject creation is time consuming, using StringBuffer or StringBuilder produces much faster code.

public String convertToString(Collection<String> coll)
{

StringBuilder buf = new StringBuilder();
for(String oneElem : coll) // loops through every element in coll
{

buf.append(oneElem);
buf.append(" ");

}
return buf.toString();

}

StringBuilder was introduced in Java 5. Unlike StringBuffer, StringBuilder isn’t thread
safe, so you can’t use it in more than one thread (see the chapter on CONCURRENCY7). However,
because it doesn’t have to worry about synchronization, StringBuilders are faster.

19.3 Comparing Strings

Comparing strings is not as easy as it may first seem. We cannot just use a simple equality statement
such as:

if(myString == "Hello World!") //Can’t Use this.
{

System.out.println("Match Found");

}

To test for equality, use the equals(Object) method inherited by every class and defined by
String to return true if and only if the object passed in is a String containing the exact same
data.

String greeting = "Hello World!";
if(greeting.equals("Hello World!")) { //true

// ...

}
if(greeting.equals("hello world!")) { //false

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUFFER
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUILDER
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/CONCURRENTPROGRAMMING

109

http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuffer
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuilder
http://en.wikibooks.org/wiki/Java Programming/ConcurrentProgramming

java.lang.String

// ...

}

To order String objects, use the compareTo() method, which can be accessed wherever we use a
String datatype. Let’s take a look at an example:

String myString = "Hello World!";
//...
if(myString.compareTo("Hello World!") == 0)
{

System.out.println("Match Found");

}

This snippet of code is comparing the String variable myString to "Hello World". The
compareTo method returns a negative, zero, or positive number if the parameter is less than, equal
to, or greater than the object on which it is called. If myString was to be different, even in the slight-
est manner we will get a value above or below 0 depending on the exact difference. The result is
negative if this String object lexicographically precedes the argument string. The result is a positive
integer if this String object lexicographically follows the argument string. Take a look at the JAVA

API8 for more details.

19.4 Splitting a String

Sometimes it is useful to split a string into separate strings, based on a regular expression. (For
more information on regular expressions, see REGEX9.) The String class has a split() method,
since Java 1.4, that will return a String array.

See the following example:

String person = "Brown, John:100 Yonge Street,
Toronto:(416)777-9999";
...
String[] personData = person.split(":");
...
String name = personData[0];
String address = personData[1];
String phone = personData[2];

8 HTTP://JAVA.SUN.COM/J2SE/1.4.2/DOCS/API/JAVA/LANG/STRING.HTML#COMPARETO(JAVA.
LANG.STRING)

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA/REGEX

110

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://en.wikibooks.org/wiki/Java/Regex

Creating substrings

An other useful application could be to ’split’ the String text based on the ’new line’ character, so
you could process the text line by line.

19.5 Creating substrings

It may also be sometimes useful to create substrings, or strings using the order of letters from an
existing string. This can be done in two methods.

The first method involves creating a substring out of the characters of a string from a given index to
the end.

For example:

String str = "coffee";
String substr = str.substring(3);

In this example, substr would return "fee". As previously discussed, the index of the first character
in a string is 0. By counting from there, it is apparent that the character in index 3 is the second "f"
in "coffee". This is known as the beginIndex. All characters from the beginIndex until the end
of the string will be copied into the new substring.

The second method involves a user-defined beginIndex and endIndex. For example:

String str = "supporting";
String substr = str.substring(3,7);

The string returned by substr would be "port". Please note that the endIndex is not inclusive. This
means that the last character will be of the index endIndex-1. Therefore, in this example, every
character from index 3 to index 6, inclusive, was copied into the substring.

Note: "Substring" is considered to be one word. This is why the method name does not seem to
follow the common syntax of Java. It is easy to mistake the method substr() for subStr() (which
does not exist and would return with a syntax error on compilation). Just remember that this style
only applies to methods or other elements that are made up of more than one word.

19.6 Modifying String cases

The String Class also allows for the modification of cases. The two methods that make this possible
are toLowerCase() and toUpperCase(). These methods are useful, for example, in the typical
programming classroom assignment of evaluating whether or not a string is a palindrome.

String a = "WIKIBOOKS";
String b = "wikipedia";

111

java.lang.String

In this example, a call to a.toLowerCase() would return a result of "wikibooks", and
b.toUpperCase() would return "WIKIPEDIA".

19.7 See also

• JAVA API: JAVA.LANG.STRING10

• JAVA API: JAVA.LANG.STRINGBUFFER11

• JAVA API: JAVA.LANG.STRINGBUILDER12

• JAVA PROGRAMMING/API/JAVA.LANG.STRINGBUFFER13

• JAVA PROGRAMMING/API/JAVA.LANG.STRINGBUILDER14

10 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/API/JAVA/LANG/STRING.HTML
11 HTTP://JAVA.SUN.COM/JAVASE/6/DOCS/API/JAVA/LANG/STRINGBUFFER.HTML
12 HTTP://JAVA.SUN.COM/JAVASE/6/DOCS/API/JAVA/LANG/STRINGBUILDER.HTML
13 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUFFER
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.STRINGBUILDER

112

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/StringBuffer.html
http://java.sun.com/javase/6/docs/api/java/lang/StringBuilder.html
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuffer
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.StringBuilder

20 Arrays

20.1 Intro to Arrays

An array is similar to a table of data, keyed by number. In Java an array is an object like all other
objects. Look at the following program:

ArrayExample.java

import java.util.*;
public class ArrayExample {

static Scanner input = new Scanner(System.in);
public static void main(String[] args) {

int numNames = getInt("Number of names?");
String[] names = new String[numNames];
for (int i = 0; i < names.length; i++) {

names[i] = getString("Enter name #" + (i+1));
}
for (int i = 0; i < names.length; ++i) {

System.out.println(names[i]);
}

}
public static int getInt(String prompt) {

System.out.print(prompt + " ");
int integer = input.nextInt();
input.nextLine(); // Get rid of this line

// so that getString won’t read it

return integer;
}
public static String getString(String prompt) {

System.out.print(prompt + " ");
return input.nextLine();

}
}

Copy the code and compile it. The program will ask you to enter some names then reprints the
names in order. It demonstrates three major aspects of arrays: how to define an array, how to set
data, and how to access it. The code String[] names = new String[numNames]; tells Java to
create an array of size numNames that will store Strings. To set data, use names[x] = data where
x is the index to access. Note that all Java arrays start at 0 and go to (array size - 1). Thus, if you
dimension an array to size 10, the highest index is 9.

113

Arrays

20.2 Array Fundamentals

• To create an array, use the syntax DataType[] variable = new DataType[ArraySize]. Alterna-
tively, if you know the data beforehand, you can write DataType[] variable = {item 1, item
2,...item n}
• All elements of the array will be automatically initialized with the default value for that

datatype. This is false for boolean’s, 0 for all numeric primitive types, and null for all ref-
erence types. So for example, the previous note created an array of DataType references, all of
which are initialized to null.

• To access an item, use the syntax variable[i] where i is the index
• To set an item, use the syntax variable[i] = data
• To find the length of an array, use the syntax variable.length

20.3 Two-Dimensional Arrays

A two dimensional array is represented by an array of an array. Because an array is also an object,
like any other object having the Object as the super class, it can be used to create an array where
the element of the array is also an array. In this way an array with any number of dimensions can
be created. Here are examples of two dimensional arrays with initializer blocks:

String [][] twoDimArray = { {"00", "01", "02", "03", "04"},
{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "23"} };

...
int [][] twoDimIntArray = { {00, 01, 02, 03, 04},

{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24} };

Note that the above "twoDimArray" is equivalent to the following more verbose code:

String [][] twoDimArray = new String[3][];
for (int i = 0; i < twoDimArray.length; i++) {

twoDimArray[i] = new String[5];
for (int j = 0; j < twoDimArray[i].length; j++)

twoDimArray[i][j] = "" + i + j;
}

In the above example we defined an array which has three elements, each element contains an array
having 5 elements. We could create the array having the 5 elements first and use that one in the
initialize block.

String [] oneDimArray = {"00", "01", "02", "03", "04"};
String [][] twoDimArray = { oneDimArray ,

{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "24"} };

Since they are arrays of array references, these multi-dimensional arrays can be "jagged" (i.e.
subarrays can have different lenghts), or the subarray reference can even be null. Consider

114

Multidimensional Array

String [][] weirdTwoDimArray = { {"10", "11", "12"},
null,
{"20", "21", "22", "23", "24"} };

20.4 Multidimensional Array

Going further any number of dimensional array can be defined.

<elementType>[][]...[] <arrayName>
or
<elementType><arrayName>[][]...[]

115

Arrays

116

21 Data and Variables

A variable in Java can store two kinds of variables:

• JAVA PRIMITIVE TYPE VALUES1

• a reference to a JAVA OBJECT2

Java’s primitive types are

• integers (whole numbers, declared as byte, short, int, or long; only int need be of interest to a
beginner)

• floating-point numbers (decimal numbers, declared as float or double; only float need be of
interest at first)

• characters (declared as char, representing one character like ’A’ or ’,’)
• boolean (holding only true or false as values)

In addition, the Java language has special features for its String class, and strings can be treated very
much like primitives for many purposes.

As in most languages, a variable is declared to be a particular type of data; the syntax for a
declaration is:

variabletype variablename;

To store a value in a variable, a program statement like

variablename = data;

And can reference the variable (and use the data stored in it) by its name.

For example, to create an int primitive type value, named year that stores 2007;

year = 2007;

To access the data in year, use the variable in place of the number.

System.out.println(year);

Produces

1 Chapter 17 on page 99
2 Chapter 24 on page 133

117

Data and Variables

2007

21.1 Strong Typing

Variables in Java are strongly typed, which means that the compiler checks the type of a variable
matches the type of data stored in that variable. If you declare a variable to hold a String, for
instance, you cannot assign an integer value to that variable. Some languages (such as C) define an
interpretation of such a statement and use that interpretation without any warning; others (such as
PL/I) define a conversion for almost all such statements and perform the conversion to complete the
assignment. Strong typing is intended to prevent mistakes made by unwittingly assigning the wrong
kind of value to a variable, and catching those mistakes when the program is compiled rather than
waiting to find it when the program is running.

21.2 Case Conventions

Java is case-sensitive. A method called mymethod is completely separate from a method called
myMethod. Be careful!

By convention, most identifiers that includes more than one word uses CAMEL CASE3. Classes
begin with a capital letter; methods and variables do not. (Constructors have to start with a capital,
because they must have the same name as the class.) Package names use lowercase, and do not use
camel case. Thus:

package org.wikibooks.samplecode;

class CaseConventions {
int variable;
int multipleWordVariable;

CaseConventions(String id) {
}

void method() {
}

void longMethodName() {
}

}

21.3 Scope

Java uses block scope, which means that a variable is "un-defined" (and becomes useless) at
the end of the block in which it is defined. A block is any section of code within curly braces.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/CAMELCASE

118

http://en.wikipedia.org/wiki/CamelCase

Scope

Common blocks include class definitions, methods and constructors, if/else blocks, and for, while,
and do-while loops.

class BlockScope {
int classScope; // valid in all of class BlockScope

BlockScope(int param) { // param is valid only in this constructor
int localVariable = 0; // valid only in this constructor

}

void someMethod() {
int local = 42; // valid only in this method

if(local > 0) {
boolean positive = true; // valid only within the if block

} else {
// positive is not defined here!

}
}

}

There are three basic kinds of scope for variables in Java:

• local variable, declared within a method in a class, valid for (and occupying storage only for) the
time that method is executing. Every time the method is called, a new copy of the variable is used.

• instance variable, declared within a class but outside any method. It is valid for and occupies
storage for as long as the corresponding object is in memory; a program can instantiate multiple
objects of the class, and each one gets its own copy of all instance variables. This is the basic
data structure rule of Object-Oriented programming; classes are defined to hold data specific to a
"class of objects" in a given system, and each instance holds its own data.

• static variable, declared within a class as static, outside any method. There is only one copy of
such a variable no matter how many objects are instantiated from that class.

CATEGORY:JAVA PROGRAMMING4

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

119

http://en.wikibooks.org/wiki/Category:Java Programming

Data and Variables

120

22 Generics

Generics were added to the Java language syntax in version 1.5. This means that code using Gener-
ics will not compile with Java 1.4 and less.

Java was long criticized for the need to explicitly type-cast an element when it was taken out of a
"container/collection" class. There was no way to enforce that a "collection" class contains only
one type of object (e.g., to forbid at compile time that an Integer object is added to a Collection
that should only contain Strings). This is now possible since Java 1.5.

In the first couple of years of Java evolution, Java did not have a real competitor. This has changed
by the appearance of Microsoft C#. With Generics Java is better suited to compete against C#.
Similar constructs to Java Generics exist in other languages, see GENERIC PROGRAMMING1 for
more information.

22.1 What are Generics?

Generics are so called because this language feature allows methods to be written generically, with
no foreknowledge of the type on which they will eventually be called upon to carry out their behav-
iors. A better name might have been type parameter argument. Because, it is basically that, to
pass a Type as a parameter to a class at creation time.

When an object is created, parameters can be passed to the created object, through the constructor.
Now with Generics, we can also pass in Types. The type-place-holders will be replaced with the
specified type, before the object is created.

Type parameter arguments can be set:

for a class : When an object is created from that class the type-parameter-argument will be replaced
with the actual Type.

public class Person<T>
{

private Person<T> person;
...
}
...
// --- Create an Employee person ---
Person<Employee> emplPerson = new Person<Employee>();
...
// --- Create a Customer person ---
Person<Customer> custPerson = new Person<Customer>();

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERICPROGRAMMING

121

http://en.wikipedia.org/wiki/Generic programming

Generics

for a method : Just like class declarations, method declarations can be generic--that is, parameter-
ized by one or more type parameters.

public static <T> void assign(Person<T> person, T obj)
{

person.setPerson(obj);
}

use of generics is optional : For backwards compatibility with pre-Generics code, it is okay to use
generic classes without the generics type specification thing (<T>). In such a case, when you
retrieve an object reference from a generic object, you will have to manually typecast it from
type Object to the correct type. The compiler should also warn about unsafe operations.

22.2 Introduction

Java is a strongly typed language. That’s one of the reasons why it is so easy to use. Many potential
problems are caught by the compiler. One area where Java was criticized was regarding the
container objects. Container objects are objects that contain other objects. Before Generics were
introduced there was no way to ensure that a container object contains only one type of objects.
When an object was added to a container, it was automatically cast to Java Object. When it was
taken out an explicit cast was needed. Normally an explicit cast is checked by the compiler.

String st = "This is a String";
...
Integer integer = (Integer) st; // --- Compilation Error --

But in the case of container classes, the compiler was not able to catch an invalid type casting.

1 Collection collString = new ArrayList();
2 collString.add("This is a String");
...
3 Integer integer = (Integer) collString.get(0); // --- No Compilation Error; RunTime CastException

Just looking at line 3, we do not know what type of objects collString contains. If that contains
Integers then the code is fine.

The below code using Generic:

Collection<String> collString = new ArrayList<String>();
collString.add("This is a String");
...
Integer integer = (Integer) collString.get(0); // --- Compilation Error

collString is a container object, that can contain only String objects, nothing else, so when we get
out an element it can be casted only to class that normally a String can be casted.

With Generics, Java strict type checking can be extended to container objects. Using Generics with
container classes, gives an impression that a new container type is created, with each different type

122

Note for C++ programmers

parameter. Before Generics:

Collection collCustomer = new ArrayList();
collCustomer.add(new Customer());
...
Collection collObject = collCustomer; // --- No problem, both collObject and collCustomer have the same type

With generics:

Collection<Customer> collCustomer = new ArrayList<Customer>();
collCustomer.add(new Customer());
...
Collection<Object> collObject = collCustomer; // --- Compilation Error

Both collObject and collCustomer have the same type, BUT it is against the Generic rule, that is
collCustomer can contain only Customer objects, and collObject can contain only Object object. So
there is an additional check to the normal type checking, the type of the parameter type has to be
matched too.

22.3 Note for C++ programmers

Java Generics are similar to C++ Templates in that both were added for the same reason. The syntax
of Java Generic and C++ Template are also similar.

There are some differences however. The C++ template can be seen as a kind of macro, that gener-
ates code before compilation. The generated code depends on how the Template class is referenced.
The amount of code generated depends on how many different types of classes are created from
the Template. C++ Templates do not have any run-time mechanisms. The compiler creates normal
code to substitute the template, similar to any ’hand-written’ code.

In contrast, Java Generics are built into the language. The same Class object handles all the Generic
type variations. No additional code is generated, no matter how many Generic objects are created
with different type parameters. For example.

Collection<String> collString = new ArrayList<String>();

Collection<Integer> collInteger = new ArrayList<Integer>();

There is only one Class object created. In fact, at runtime, both these objects appear as the same
type (both ArrayList’s). The generics type information is erased during compilation (type erasure).
This means, for example, that if you had function that takes Collection<T> as an argument, and
that collection happened to be empty, your function would have no way of instantiating another T
object, because it doesn’t know what T was.

The Class class itself is generic since Java 1.5.

123

Generics

public final class Class<T> extends Object
implements Serializable, GenericDeclaration, Type,

AnnotatedElement
{
...
}

The T type here represents the type that is handed to the Class object. The T type will be substituted
with the class being loaded.

22.4 Class<T>

Since Java 1.5, the class java.lang.Class is generic. It is an interesting example of using genericness
for something other than a container class.

For example, the type of String.class is Class<String>, and the type of Serializable.class is
Class<Serializable>. This can be used to improve the type safety of your reflection code.

In particular, since the newInstance() method in Class now returns a T, you can get more precise
types when creating objects reflectively.

Now we can use the newInstance() method to return a new object with exact type, without
casting. :

Customer cust = Utility.createAnyObject(Customer.class); // - No casting
...
public static <T> T createAnyObject(Class<T> cls)
{

T ret = null;
try
{

ret = cls.newInstance();
}
catch (Exception e)
{

// --- Exception Handling
}
return ret;

}

And the above code without Generics:

Customer cust = (Customer) Utility.createAnyObject(Customer.class); // - Casting is needed
...
public static Object createAnyObject(Class cls)
{

Object ret = null;
try
{

ret = cls.newInstance();
}
catch (Exception e)
{

// --- Exception Handling
}

124

Variable Argument

return ret;
}

Get exact type when getting JavaBean property, using reflection : See the following code where
the method will return the exact type of the Java Bean property, based on how it will be called.

// --- Using reflection, get a Java Bean property by its name ---
public static <T> T getProperty(Object bean, String propertyName)
{

if (bean == null ||
propertyName == null ||
propertyName.length() == 0)

{
return null;

}
// --- Based on the property name build the getter method name

String methodName = "get" +

propertyName.substring(0,1).toUpperCase() +
propertyName.substring(1);

T property = null;
try
{

java.lang.Class c = bean.getClass();
java.lang.reflect.Method m = c.getMethod(methodName, null);
property = (T) m.invoke(bean, null);

}
catch (Exception e)
{

// --- Handle exception --
}
return property;

}

22.5 Variable Argument

Using Generics, it is very easy to define a method with a variable number of arguments. Before
generics, this was not possible in Java—if a likewise feature was needed, this was mostly done by
passing an array. The only requirement for using a variable number of arguments using Generics is
that the arguments in the list must have the same type.

The following code illustrates a method that can be called with a variable number arguments:

/**
* Method using variable-length argument list
* @param <T>
* @param args
*/

public static <T> List<T> makeAList(T... args)
{

List<T> argList = new ArrayList<T>();
for (int i = 0; i < args.length; i++)
{

argList.add(args[i]);
}

125

Generics

return argList;
}

The above method can be called with a variable number of arguments, for example:

List<String> list1 = makeAList("One", "Two", "Three");
List<String> list2 = makeAList("One", "Two", "Three", "Four");

In the above example calls, the arguments must be of type String. If we write <? extends
Object> instead of T, then we can pass any kind of objects, regardles of their type:

List<? extends Object> list3 = makeAList("One", 10, new
StringBuffer(), new LinkedList());

Note: the number 10 in the above code will be converted (autoboxed) to Integer.

See also:

java.util.Arrays.asList(T... a)

22.6 Wildcard Types

As we have seen above, generics give the impression that a new container type is created with each
different type parameter. We have also seen that in addition to the normal type checking, the type
parameter has to match as well when we assign generics variables.

In some cases this is too restrictive. What if we would like to relax this additional checking? What
if we would like to define a collection variable that can hold any generic collection, regardless of
the parameter type it holds?

Wildcard : The wildcard type is represented by the character <?>, and pronounced Unknown, or
Any-Type. This Unknown type matches anything, if it is used only by itself. Any-Type can
be express also by <? extends Object>. Any-Type includes Interfaces, not only Classes.

So now we can define a collection whose element type matches anything. See below:

Collection<?> collUnknown;

Note that we can not add anything to this collection. We can only take out elements of type Object
from it. So what is the use of this variable if we can not add anything to the collection it represents?
The use of this new construct will be clear when you want to create a generic method that takes any
collection.

126

Wildcard Types

public static void printElements(Collection<?> anycoll)
{

Iterator<?> iter = coll.iterator();
while (iter.hasNext())
{

System.out.print(iter.next());
}

}

Wildcard for a specific type of classes :

"<? extends ClassName>" specifies a restriction on the types of classes that may used.

For example, to create a collection that may only contain "Serializable" objects, specify:

Collection<? extends Serializable> serColl = new ArrayList<String>();

The above code is valid because, the String class is serializable. Use of a class that is not serializable
would cause a compilation error.

The following collection can only contain objects that extend the class Animal.

class Dog extends Animal
{
...

}
...
// --- Create "Animal Collection" variable ---
Collection<? extends Animal> animalColl = new ArrayList<Dog>();

"<? super ClassName>" specifies a restriction on the types of classes that may be used.

For example, to declare a Comparator that can compare Dogs, you use

Comparator<? super Dog> myComparator;

Now suppose you define a comparator that can compare Animals:

class AnimalComparator implements Comparator<Animal>
{
int compare(Animal a, Animal b) { //...
}

}

Since Dogs are Animals, you can use this comparator to compare Dogs also. Comparators for any
superclass of Dog can also compare Dog; but comparators for any strict subclass cannot.

Comparator<Animal> myAnimalComparator = new AnimalComparator();

static int compareTwoDogs(Comparator<? super Dog> comp, Dog dog1, Dog

127

Generics

dog2) {
return comp.compare(dog1, dog2);

}

The above code is valid because, the Animal class is a supertype of the Dog class. Use of a class
that is not a supertype would cause a compilation error.

CATEGORY:JAVA PROGRAMMING2

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

128

http://en.wikibooks.org/wiki/Category:Java Programming

23 Defining Classes

23.1 Fundamentals

Every class in Java can be composed of the following elements

• fields - Fields are variables that hold data specific to each object. For example, an employee
might have an ID number. (They are also called member variables.) There is one field for each
object of a class.

• member methods - Member methods perform operations on an object. For example, an em-
ployee might have a method to issue his paycheck or to access his name.

• static fields - Static fields are common to any object of the same class. For example, a static field
within the Employee class could keep track of the last ID number issued. Only one static field
exists for one class.

• static methods - Static methods are methods that do not affect a specific object.
• other classes - Sometimes it is useful to contain a class within another one if it is useless outside

of the class or should not be accessed outside the class.
• Constructors - A special method that generates a new object.
• Parameterized types - Since 1.5, ’parameterized types’ can be assigned to a class during defini-

tion. The ’parameterized types’ will be substituted with the types specified at the class’s instanti-
ation. It is done by the compiler. It is similar to the C language macro ’#define’ statement, where
a preprocessor evaluates the macros.

public class Employee // This defines the Employee class.
{ // The public modifier indicates
that

// it can be accessed by any
other class

private static int nextID; // Define a static field. Only
one copy of this will exist,

// no matter how many Employees
are created.

129

Defining Classes

private int myID; // Define fields that will be
stored

private String myName; // for each Employee. The private
modifier indicates that

// only code inside the Employee
class can access it.

public Employee(String name) // This is a constructor. You can
pass a name to the constructor

{ // and it will give you a newly
created Employee object.

myName = name;
myID = nextID; // Automatically assign an ID to

the object
nextID++; // Increment the ID counter

}

public String getName() // This is a member method that
returns the

{ // Employee object’s name.
return myName; // Note how it can access the

private field myName.
}

public int getID() // This is another member method.
{

return myID;
}

public static int getNextID() // This is a static method that
returns the next ID

{ // that will be assigned if
another Employee is created.

return nextID;
}

}

The following Java code

public class EmployeeList {

public static void main(String[] args) {

System.out.println(Employee.getNextID());

Employee a = new Employee("John Doe");
Employee b = new Employee("Jane Smith");
Employee c = new Employee("Sally Brown");

System.out.println(Employee.getNextID());

System.out.println(a.getID() + " : " + a.getName());
System.out.println(b.getID() + " : " + b.getName());
System.out.println(c.getID() + " : " + c.getName());

}

130

Fundamentals

}

would produce this output:

0
3
0 : John Doe
1 : Jane Smith
2 : Sally Brown

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

131

http://en.wikibooks.org/wiki/Category:Java Programming

Defining Classes

132

24 Creating Objects

24.1 Introduction

Before a Java object can be created the class byte code must be loaded from the file system (with
.class extension) to memory. This process of locating the byte code for a given class name and
converting that code into a Java CLASS1 class instance is known as class loading. There is one
CLASS2 created for each type of Java class.

All objects in java programs are created on heap memory. An object is created based on its class.
You can consider a class as a blueprint, template, or a description how to create an object. When an
object is created, memory is allocated to hold the object properties. An object reference pointing to
that memory location is also created. To use the object in the future, that object reference has to be
stored as a local variable or as an object member variable.

The Java Virtual Machine (JVM), keeps track of the usage of object references. If there are no
more reference to the object, the object can not be used any more and becomes garbage. After a
while the heap memory will be full of unused objects. The JVM collects those garbage objects and
frees the memory they allocated, so the memory can be reused again when a new object is created.
See below a simple example:

{
// --- Create an object ---
MyObject obj = new MyObject();

// --- Use the object ---
obj.printMyValues();

}

The obj contains the object reference pointing to an object created from the MyObject class. The
obj object reference is in scope inside the { }. After the } the object becomes garbage. Object
references can be passed in to methods, object references can be returned from methods.

24.2 Creating object with the new keyword

99% of new objects are created using the new keyword.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.CLASS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.CLASS

133

http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Class
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Class

Creating Objects

{
// --- Create an ’MyObject’ for the first time the application

started --
MyObject obj = new MyObject();

}

When an object from the MyObject class is created for the first time. The JVM searches the file
system for the definition of the class, that is the Java byte code. The file has the extention of
’*.class’. The CLASSPATH environment variable contains locations where Java classes are stored.
The JVM is looking for the ’MyObject.class’ file. Depending on which package the class belongs
to, the package name will be translated to a directory path.

When the ’MyObject.class’ file is found, the JVM’s class loader loads the class in memory, and cre-
ates a Class object. The JVM stores the code in memory, allocates memory for the static variables,
and executes any static initialize block. Memory is not allocated for the object member variables at
this point, memory will be allocated for them when an instance of the class, an object, is created.

There is no limit on how many objects from the same class can be created. Code and static variables
are stored only once, no matter how many objects are created. Memory is allocated for the object
member variables when the object is created. Thus, the size of an object is determined not by its
code’s size but by the memory it needs for its member variables to be stored.

24.3 Creating object by cloning an object

Cloning is not automatically available to classes. There is some help though, as all Java objects
inherit the protected Object clone() method. This base method would allocate the memory
and do the bit by bit copying of the object’s states.

You may ask why we need this clone method. Couldn’t I create a constructor and just passing in
the same object, and do the copying variable by variable? Lets see:

public class MyObject
{

private int memberVar;
...

MyObject(MyObject obj)
{

this.memberVar = obj.memberVar;
...
}

...
}

You might think that accessing the private memberVar variable of obj would fail but as this is in
the same class this code is legal. The clone() method copies the whole object’s memory in one
operation. This is much faster than using the new keyword. Object creation with the new keyword
is expensive, so if you need to create lots of objects with the same type, performance will be better
if you create one object and clone new ones from it. See below a factory method that will return a
new object using cloning.

134

Creating object by cloning an object

HashTable _cacheTemplate = new HashTable;
...
/** Clone Customer object for performance reason */
public Customer createCustomerObject()
{

// --- See if a template object exists in our cache ---
Customer template = _cacheTemplate.get("Customer");
if (template == null)
{

// --- Create template ---
template = new Customer();
_cacheTemplate.put("Customer", template);

}
return template.clone();

}

Now, lets see how to make the Customer object cloneable.

• First the Customer class needs to implement the Cloneable Interface.
• Override and make the clone() method public, as that is protected in the Object class.
• Call the super.clone()method at the beginning of your clone method.
• Override the clone() method in all the subclasses of Customer.

public class Customer implements Cloneable
{
...

public Object clone() throws CloneNotSupportedException
{

Object obj = super.clone();

return obj;
}

}

In the above example we used cloning for speed up object creation.

An other use of cloning could be to take a snapshot of an object that can change in time. Lets say
we want to store Customer objects in a collection, but we want to disassociate them from the ’live’
objects . So before adding the object, we clone them, so if the original object changes from that
point forward, the added object won’t. Also lets say that the Customer object has a reference to an
Activity object that contains the customer activities. Now we are facing a problem, it is not enough
to clone the Customer object, we also need to clone the referenced objects. The solution:

• Make the Activity class also cloneable
• Make sure that if the Activity class has other ’changeable’ object references, those has to be

cloned as well, as seen below
• Change the Customer class clone() method as follows:

public class Customer implements Cloneable
{
Activity _activity;
...

public Customer clone() throws CloneNotSupportedException
{

Customer clonedCustomer = (Customer) super.clone();

// -- Clone the object referenced objects ---
if (_activity != null)

135

Creating Objects

{
clonedCustomer.setActivity((Activity) _activity.clone()

);
}

return clonedCustomer;
}

}

Note that only mutable objects needs to be cloned. References to unchangeable objects such as
String be used in the cloned object without worry.

24.4 Creating object receiving from a remote source

When an object is sent through a network, the object needs to be recreated at the receiving host.

Object Serialization : The term Object Serialization refers to the act of converting the object to
a byte stream. The byte stream can be stored on the file system, or can be sent through a
network.

At the later time the object can be re-created from that stream of bytes. The only
requirement is that the same class has to be available at both times, when the object is
serialized and also when the object is re-created. If that happens in different servers,
then the same class must be available on both servers. Same class means that exactly
the same version of the class must be available, otherwise the object won’t be able to be
re-created. This is a maintenance problem to those applications where java serialization
is used to persist object or sent the object through the network.
When a class is modified, there could be a problem re-creating those objects that were
serialized using an earlier version of the class.

Java has built in support for serialization, using the Serializable interface; however, a class must first
implement the Serializable interface.

By default, a class will have all of its fields serialized when converted into a data stream (with
TRANSIENT3 fields being skipped.) If additional handling is required beyond the default of writing
all fields, you need to provide an implementation for two methods:

private void writeObject(java.io.ObjectOutputStream out) throws
IOException;
private void readObject(java.io.ObjectInputStream in) throws
IOException, ClassNotFoundException;
private void readObjectNoData() throws ObjectStreamException;

If the object needs to write or provide a replacement object during serialization, it needs to impement
the following two methods, with any access specifier:

Object writeReplace() throws ObjectStreamException;

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/TRANSIENT

136

http://en.wikibooks.org/wiki/Java Programming/Keywords/transient

Creating object receiving from a remote source

Object readResolve() throws ObjectStreamException;

Normally, a minor change to the class can cause the serialization to fail. You can still allow the class
to be loaded by defining the serialization version id:

private static final long serialVersionUID = 42L;

CATEGORY:JAVA PROGRAMMING4

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

137

http://en.wikibooks.org/wiki/Category:Java Programming

Creating Objects

138

25 Interfaces

25.1 Interfaces

Java does not allow you to create a subclass from two classes. There is no multiple inheritance.
The major benefit of that is that all java objects can have a common ancestor. That class is called
Object. All java classes can be up-casted to Object. Example:

class MyObject
{
...

}

When you type the above code, it actually means the following:

class MyObject extends Object // -- The compiler adds ’extends Object’. if not
specified
{
...

}

So it can be guaranteed that certain methods are available in all java classes. This makes the lan-
guage simpler.

To mimic multiple inheritance, java offers interfaces, which are similar to abstract classes. In
interfaces all methods are abstract by default, without the abstract key word. Interfaces have no
implementation and no variables, but constant values can be defined in interfaces - however, a
single class can implement as many interfaces as required.

public interface MyInterface
{

public static final String CONSTANT = "This value can not be changed";

public String methodOne(); // This method must be implemented by the class that implements this interface
...

}

...

public class MyObject implements MyInterface
{
// Implement MyInterface interface
public String methodOne()
{
...
}

}

139

Interfaces

25.2 External links

• INTERFACES, INTERACTIVE JAVA LESSON1

• INTERFACES 2, INTERACTIVE JAVA LESSON2

CATEGORY:JAVA PROGRAMMING3

1 HTTP://JAVALESSONS.COM/CGI-{}BIN/FUN/JAVA-{}TUTORIALS-{}MAIN.CGI?SES=
AO789&CODE=IF1&SUB=FUN

2 HTTP://JAVALESSONS.COM/CGI-{}BIN/FUN/JAVA-{}TUTORIALS-{}MAIN.CGI?SES=
AO789&CODE=IF2&SUB=FUN

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

140

http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=if1&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=if1&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=if2&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=if2&sub=fun
http://en.wikibooks.org/wiki/Category:Java Programming

26 Using Static Members

26.1 What does static mean?

When you declare a

• method, or
• member variable

static, it is independent of any particular, but rather it is shared among all instances of a class. To
access a static method or member variable, no instance needs to be created.

The static keyword is used to declare a method, or member variable static.

26.2 What can it be used for?

• Static variables can be used as data sharing amongst objects of the same class. For example to
implement a counter that stores the number of objects created at a given time can be defined as
so:

public AClass
{

static private int counter;
...

public AClass()
{
...
counter += 1;

}
...

public int getNumberOfObjectsCreated()
{

return counter;
}

}

The counter variable is incremented each time an object is created.

Public static variable should not be used, as these become GLOBAL variables that can be accessed
from everywhere in the program. Global constants can be used, however. See below:

static public final String CONSTANT_VAR = "Const";

• Static methods can be used for utility functions or for functions that do not belong to any particular
object. For example:

141

Using Static Members

public Match
{
...

public static addTwoNumbers(int par1, int par2)
{

return par1 + par2;
}

}

26.3 Danger of static variables

Use static variables only for:

• data sharing (be careful)
• defining global constants

Use static methods for:

• utility functions

Using static variables and/or method for other purposes goes against object orientation, and will
make your code either harder to read or maintain.

26.4 External links

• STATIC, INTERACTIVE JAVA LESSON1

CATEGORY:JAVA PROGRAMMING2

1 HTTP://JAVALESSONS.COM/CGI-{}BIN/FUN/JAVA-{}TUTORIALS-{}MAIN.CGI?SES=
AO789&CODE=STC&SUB=FUN

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

142

http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=stc&sub=fun
http://javalessons.com/cgi-{}bin/fun/java-{}tutorials-{}main.cgi?ses=ao789&code=stc&sub=fun
http://en.wikibooks.org/wiki/Category:Java Programming

27 Destroying Objects

Unlike in many other object-oriented programming languages, Java performs automatic garbage
collection - any unreferenced objects are automatically erased from memory - and prohibits the user
from manually destroying objects.

27.1 finalize()

When an object is garbage-collected, the programmer may want to manually perform cleanup, such
as closing any open input/output streams. To accomplish this, the finalize() method is used. Note
that finalize() should never be manually called, except to call a super class’ finalize method from a
derived class’ finalize method. Also, we can not rely on when the finalize() method will be called.
If the java application exits before the object is garbage-collected, the finalize() method may never
be called.

protected void finalize() throws Throwable
{

try {
doCleanup(); // Perform some cleanup. If it fails for

some reason, it is ignored.
} finally {

super.finalize(); //Call finalize on the parent object
}

}

The garbage-collector thread runs in a lower priority than the other threads. If the application
creates objects faster than the garbage-collector can claim back memory, the program can run out
of memory.

The finalize method is required only if there are resources beyond the direct control of the Java
Virtual Machine that need to be cleaned up. In particular, there is no need to explicitly close an
OutputStream, since the OutputStream will close itself when it gets finalized. Instead, the finalize
method is used to release either native or remote resources controlled by the class.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

143

http://en.wikibooks.org/wiki/Category:Java Programming

Destroying Objects

144

28 Overloading Methods and Constructors

If two methods of a class (whether both declared in the same class, or both inherited by a class, or
one declared and one inherited) have the same name but different signatures, then the method name
is said to be overloaded. This fact causes no difficulty and never of itself results in a compile-time
error. There is no required relationship between the return types or between the throws clauses of
two methods with the same name but different signatures.

Methods are overridden on a signature-by-signature basis.

If, for example, a class declares two public methods with the same name, and a subclass overrides
one of them, the subclass still inherits the other method. In this respect, the Java programming
language differs from C++.

When a method is invoked, the number of actual arguments and the compile-time types of the
arguments are used, at compile time, to determine the signature of the method that will be invoked
. If the method that is to be invoked is an instance method, the actual method to be invoked will be
determined at run time, using dynamic method lookup.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

145

http://en.wikibooks.org/wiki/Category:Java Programming

Overloading Methods and Constructors

146

29 Arrays

29.1 Intro to Arrays

An array is similar to a table of data, keyed by number. In Java an array is an object like all other
objects. Look at the following program:

ArrayExample.java

import java.util.*;
public class ArrayExample {

static Scanner input = new Scanner(System.in);
public static void main(String[] args) {

int numNames = getInt("Number of names?");
String[] names = new String[numNames];
for (int i = 0; i < names.length; i++) {

names[i] = getString("Enter name #" + (i+1));
}
for (int i = 0; i < names.length; ++i) {

System.out.println(names[i]);
}

}
public static int getInt(String prompt) {

System.out.print(prompt + " ");
int integer = input.nextInt();
input.nextLine(); // Get rid of this line

// so that getString won’t read it

return integer;
}
public static String getString(String prompt) {

System.out.print(prompt + " ");
return input.nextLine();

}
}

Copy the code and compile it. The program will ask you to enter some names then reprints the
names in order. It demonstrates three major aspects of arrays: how to define an array, how to set
data, and how to access it. The code String[] names = new String[numNames]; tells Java to
create an array of size numNames that will store Strings. To set data, use names[x] = data where
x is the index to access. Note that all Java arrays start at 0 and go to (array size - 1). Thus, if you
dimension an array to size 10, the highest index is 9.

147

Arrays

29.2 Array Fundamentals

• To create an array, use the syntax DataType[] variable = new DataType[ArraySize]. Alterna-
tively, if you know the data beforehand, you can write DataType[] variable = {item 1, item
2,...item n}
• All elements of the array will be automatically initialized with the default value for that

datatype. This is false for boolean’s, 0 for all numeric primitive types, and null for all ref-
erence types. So for example, the previous note created an array of DataType references, all of
which are initialized to null.

• To access an item, use the syntax variable[i] where i is the index
• To set an item, use the syntax variable[i] = data
• To find the length of an array, use the syntax variable.length

29.3 Two-Dimensional Arrays

A two dimensional array is represented by an array of an array. Because an array is also an object,
like any other object having the Object as the super class, it can be used to create an array where
the element of the array is also an array. In this way an array with any number of dimensions can
be created. Here are examples of two dimensional arrays with initializer blocks:

String [][] twoDimArray = { {"00", "01", "02", "03", "04"},
{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "23"} };

...
int [][] twoDimIntArray = { {00, 01, 02, 03, 04},

{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24} };

Note that the above "twoDimArray" is equivalent to the following more verbose code:

String [][] twoDimArray = new String[3][];
for (int i = 0; i < twoDimArray.length; i++) {

twoDimArray[i] = new String[5];
for (int j = 0; j < twoDimArray[i].length; j++)

twoDimArray[i][j] = "" + i + j;
}

In the above example we defined an array which has three elements, each element contains an array
having 5 elements. We could create the array having the 5 elements first and use that one in the
initialize block.

String [] oneDimArray = {"00", "01", "02", "03", "04"};
String [][] twoDimArray = { oneDimArray ,

{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "24"} };

Since they are arrays of array references, these multi-dimensional arrays can be "jagged" (i.e.
subarrays can have different lenghts), or the subarray reference can even be null. Consider

148

Multidimensional Array

String [][] weirdTwoDimArray = { {"10", "11", "12"},
null,
{"20", "21", "22", "23", "24"} };

29.4 Multidimensional Array

Going further any number of dimensional array can be defined.

<elementType>[][]...[] <arrayName>
or
<elementType><arrayName>[][]...[]

149

Arrays

150

30 Collection Classes

Collections are a group of objects bound together by a common characteristic. Java has various
built-in classes to support the collection of objects, either of the same type or general. The most
basic construct to work with is the array of which you will come to know of in a SECTION1 later in
this chapter.

30.1 Introduction to Collections

The most basic collection interface is called Collection. This interface gives the user a generic
usage of a collection.

import java.util.Collection; // Interface
import java.util.ArrayList; // Implementation
import java.util.HashSet; // Implementation
...
Collection coll1 = new ArrayList();
Collection coll2 = new HashSet();
...
< Use coll1 & coll2 >

In the above there are two collections. The usage of the collections are the same, the implementa-
tions are different. If the existing collection implementations do not meet your needs, you can write
your version of the implementation. Your version of the implementation just needs to implement
the same java.util.Collection interface, then you can switch to using your implementation
and the code that is using the collection does not need to be changed.

import java.util.Collection;
import com.yourcomp.util.YourCollectionImpl;
...
Collection coll1 = new YourCollectionImpl();
Collection coll2 = new YourCollectionImpl();
...
< Use coll1 & coll2 >

The Java JDK collection implementations are quite powerful and good, so it is unlikely that you
will need to write your own.

All collections contain object references. Because of that, if the object is changed after it was put
in the collection, the object that is ’in’ the collection also ’changes’. The object is not really in the
collection, only the object reference is. It is not guaranteed that the objects ’inside’ the collections

1 Chapter 29 on page 147

151

Collection Classes

won’t change. This is an issue only if you put an actively used object in the collection. In that case
when you are adding an object that could change any time you need to make a copy or clone of the
object. A new object will be created and its reference will be put in the collection. In that case there
will be no object references outside of the collection, so the objects ’inside’ the collection can only
be changed if we take out an object reference from the collection.

Aside from the java.util.Collection interface, the Java JDK has the java.util.Map interface
as well. This defines key value mappings. Implementations of the Map interface do not contain
collections of objects. Instead they contain collections of key->value mappings.

import java.util.Map;
import java.util.Hashtable;
...
Map map = new Hashtable();
...
map.put(key, value);

All collections need to have the same basic operations. Those are:

• Adding element(s) to the collection
• Removing element(s) from the collection
• Obtaining the number of elements in the collection
• Listing the contents of the collection, (Iterating through the collection)

Before selecting a particular collection implementation, ask the following question:

• Can my collection contain the same elements, i.e. are duplicates allowed?
• Can my collection contain the null element?
• Should the collection maintain the order of the elements? Is the order important in any way?
• How do you want to access an element? By index, key or just with an iterator?
• Does the collection need to be synchronized?
• From a performance perspective, which one needs to be faster, updates or reads?
• From a usage perspective, which operation will be more frequent, updates or reads?

Once you know your needs, you can select an exsisting implementation. But first decide if you need
a ’Collection’, or a ’Map’.

30.2 Generics

Since JDK version 1.5 an enhancement to the type system of the Java language has been added. It
is called Generics. Most often Generics will be used with the collection classes.

parameterized type <E> :

All collection implementations since 1.5 now have one ’parameterized type <E>’ added. The ’E’
refers to an Element type. When a collection is created the actual ’Element type’ will replace the E.

Objects put into a collection are upcasted to Object class. It means that you need to cast the object
reference back when you get an element out from the collection. It also means that you need to
know the type of the object when you taking it out. For this reason we usually add objects of the

152

Collection or Map

same type to a collection. If a collection contains different types of objects, we will have difficulty
finding out the type of the objects obtained from a collection at run time.

With the use of the ’parameterized type <E>’, the ’Element-type’ that can be put into the collection
can be specified when the collection object is created.

Collection<Integer> ageList = new ArrayList<Integer>();
ageList.add(new Integer(46)); // --- Integer can be added
ageList.add("50"); // --- Compilation error, ageList can have only
Integers inside

ageList is a collection that can contain only Integer objects as elements. No casting is required
when we take out an element.

Integer age = ageList.get(0);

For more information about Generics, please go to JAVA PROGRAMMING/GENERICS2.

30.3 Collection or Map

The Java JDK contains two high level Interfaces:

• java.util.Collection
• java.util.Map

Implementations for those interfaces are not interchangeable. Collections are used for collecting
Java objects. Maps are used for mapping key/value pairs.

30.3.1 Collection

Use the Collection interface if you need to keep related (usually the same type of) objects together
in a collection where you can:

• Search for a particular element
• List the elements
• Maintain and/or change the order of the elements by using the collection basic operations (Add,

Remove, Update,..)
• Access the elements by an index number

The advantages of using the Collection interface are:

• Gives a generic usage, as we talked about above, it is easy to switch implementation
• It makes it easy to convert one type of collection to an other.

The Collection interface defines the following basic operations:

• boolean add(E o);

2 Chapter 22 on page 121

153

Collection Classes

• boolean addAll(Collection c);
• boolean remove(Object o);
• boolean removeAll(Collection c);
• boolean retainAll(Collection c);

The methods above return true if the collection has changed due to the operation. Note that in
addAll() we can add any type of collection. This is the beauty of using the Collection interface. You
can have a LinkedList and just call the addAll(list) method, passing in a list. You can pass in
a Vector, an ArrayList, a HashSet, a TreeSet, a YourImpOfCollection, ... All those different
type of collections will be magically converted to a LinkList.

Lets have a closer look at this magic. The conversion is easy because the Collection interface
defines a standard way of looping through the elements. The following code is a possible imple-
mentation of addAll() method of the LinkList.

import java.util.Collection
import java.util.Iterator
...
public String addAll(Collection coll)
{

int sizeBefore = _linkList.size();
Iterator iter = coll.iterator();
while(iter.hasNext())
{

_linkList.add(iter.next());
}
if (sizeBefore > _linkList.size())
{

return true;
}
else
{

return false;
}

}

The above code just iterates through the passed in collection and adds the elements to the link list.
You do not have to do that, since that is already defined. What you might need to code for is to loop
through a ’Customer’ collection:

import java.util.Collection
import java.util.Iterator
import java.yourcompany.Customer
...
public String printCustomerNames(Collection customerColl)
{

StringBuffer buf = new StringBuffer();

Iterator iter = customerColl.iterator();
while(iter.hasNext())
{

Customer cust = (Customer) iter.next();
buf.append(cust.getName());
buf.append("\n");

}
return buf.toString();

}

154

Set or List or Queue

Notice two things:

• The above code will work for all type of collections.
• We have to know the type of objects inside the collection, because we call a method on it.

30.3.2 Map

Abb. 13: Figure 1:Map Interfaces

A map, sometimes also called an Associated Array or a Dictionary, can be thought of as an array
where the index need not be an integer.

Use the Map interface if you need to keep related objects together in a Map where you can:

• Access an element by a key object
• Map one object to other

java.util.Map<K,V> : maps keys to values. A map cannot contain duplicate keys; each key can
map to at most one value. The Map interface provides three collection views, which allow
a map’s contents to be viewed as a set of keys, collection of values, or set of key-value
mappings. The key is usually a non-mutable object. The value object however can be a
mutable object.

java.util.SortedMap<K,V> : same as the Map interface, plus the keys in the Map are sorted.

30.4 Set or List or Queue

Abb. 14: Figure 2:

155

Collection Classes

There is no direct implementation for the java.util.Collection interface. The Collection inter-
face has five sub interfaces. Those are:

java.util.Set<E> : contains unique elements, so duplicates not allowed. It is similar to a mathemat-
ical Set.

java.util.List<E> : elements are put in the list in a certain order, and can be accessed by an index.
Duplicates are allowed, the same element can be added to a list.

java.util.SortedSet<E> : same as the Set interface; plus the elements in the SortedSet are sorted

java.util.Queue<E> : queues provide additional insertion, extraction, and inspection operations.
There are FIFO (first in, first out) and LIFO (last in, first out) queues.

java.util.BlockingQueue<E> : waits for the queue to become non-empty when retrieving an ele-
ment, and waits for space to become available in the queue when storing an element. Best
used for producer-consumer queues.

30.4.1 Set

The basic implementation of the Set interface is the HashSet.

Abb. 15

java.util.TreeSet<E>: Elements are sorted, not synchronized. null not allowed

java.util.HashSet<E> : Not synchronized. Allows the null elements

java.util.CopyOnWriteArraySet<E> : Thread safe, a fresh copy is created during modification
operation. Add, update, delete are expensive.

156

Set or List or Queue

java.util.EnumSet<E extends Enum<E>> : All of the elements in an enum set must come from a
single enum type that is specified, explicitly or implicitly, when the set is created. Enum sets
are represented internally as bit vectors.

java.util.LinkedHashSet<E> : Same as HashSet, plus defines the iteration ordering, which is the
order in which elements were inserted into the set.

Detecting duplicate objects in Sets

Set cannot have duplicates in it. You may wonder how duplicates are detected when we are adding
an object to the Set. We have to see if that object exists in the Set or not. It is not enough to check
the object references, the objects’ values have to be checked as well.

To do that, fortunately, each java object has the boolean equal(Object obj);3, method available
inherited from Object. You need to override it. That method will be called by the Set implementa-
tion to compare the two objects to see if they are equal or not.

There is a problem, though. What if I put two different type of objects to the Set. I put an Ap-
ple and an Orange. They can not be compared. Calling the equal()4 method would cause a
ClassCastException. There are two solutions to this:

• Solution one : Override the int hashCode()5 method and return the same values for the same
type of objects and return different values for different type of objects. The equal()6 method is
used to compare objects only with the same value of hashCode. So before an object is added, the
Set implementation needs to:
• find all the objects in the Set that has the same hashCode as the candidate object hashCode
• and for those, call the equal()7 methods passing in the candidate object
• if any of them returns true, the object is not added to the Set.

• Solution two : Create a super class for the Apple and Orange, let’s call it Fruit class. Put Fruits
in the Set. You need to do the following:
• Do not override the equals() and hashCode() methods in the Apple and Orange classes
• Create appleEquals() method in the Apple class, and create orangeEquals() method in the

Orange class
• Override the hashCode() method in the Fruit class and return the same value, so the equals()

is called by the Set implementation
• Override the equals() method in the Fruit class for something like this.

public boolean equals(Object obj)
{

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
EQUALS()METHOD

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#

HASHCODE()METHOD
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#

157

http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##equals() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##equals() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##

Collection Classes

boolean ret = false;
if (this instanceof Apple &&

obj instanceof Apple)
{

ret = this.appleEquals(obj);
}
else if (this instanceof Orange &&

obj instanceof Orange)
{

ret = this.orangeEquals(obj);
}
else
{

// --- Can not compare Orange to Apple ---
ret = false;

}
return ret;

}

Note:

• only the objects that have the same hashCode will be compared.
• you are responsible to override the equal() and hashCode() methods. The default implementa-

tions in Object won’t work.
• Only override the hashCode()8 method if you want to eliminate value duplicates.
• Do not override the hashCode()9 method if you know that the values of your objects are different,

or if you only want to prevent adding the exactly same object.
• Beware that the hashCode()10 may be used in other collection implementaions, like in a

Hashtable to find an object fast. Overriding the default hashCode() method may affect per-
formance there.

• the default hashCodes are unique for each object created, so if you decide not to override the
hashCode() method, there is no point overriding the equal() method, as it won’t be called.

SortedSet

The SortedSet interface extends the Set Interface. All elements in the SortedSet must implement
the Comparable Interface, futher more all elements must be mutually comparable.

Note that the ordering maintained by a sorted set must be consistent with equals if the sorted set
is to correctly implement the Set interface. This is so because the Set interface is defined in terms
of the equals operation, but a sorted set performs all element comparisons using its compareTo (or
compare) method, so two elements that are deemed equal by this method are, from the standpoint
of the sorted set, equal.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
HASHCODE()METHOD

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
HASHCODE()METHOD

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/API/JAVA.LANG.OBJECT#
HASHCODE()METHOD

158

http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method
http://en.wikibooks.org/wiki/Java Programming/API/java.lang.Object##hashCode() Method

Set or List or Queue

The SortedSet interface has additional methods due to the sorted nature of the ’Set’. Those are:

• E first(); -- returns the first element
• E last(); -- returns the last element
• SortedSet headSet(E toElement); -- returns from the first, to the exclusive toElement
• SortedSet tailSet(E fromElement); -- returns from the inclusive fromElement to the end
• SortedSet subSet(E fromElement, E toElement); -- returns elements range from

fromElement, inclusive, to toElement, exclusive. (If fromElement and toElement are equal, the
returned sorted set is empty.)

30.4.2 List

The List has the following implemenations:

Abb. 16

java.util.Vector<E> : Syncronized, use in multiple thread access, otherwise use ArrayList

java.util.Stack<E> : It extends class Vector with five operations that allow a vector to be treated as
a stack. It represents a last-in-first-out (LIFO) stack of objects.

java.util.ArrayList<E> : Non-syncronized, use in single thread environment, otherwise use Vector

159

Collection Classes

java.util.LinkedList<E> : Non-syncronized, update operation is faster than other lists, easy to use
for stacks, queues, double-ended queues.

javax.management.AtributeList<E> : Represents a list of values for attributes of an MBean. The
methods used for the insertion of Attribute objects in the AttributeList overrides the corre-
sponding methods in the superclass ArrayList. This is needed in order to insure that the
objects contained in the AttributeList are only Attribute objects.

javax.management.relation.RoleList<E> : A RoleList represents a list of roles (Role objects). It is
used as parameter when creating a relation, and when trying to set several roles in a relation
(via ’setRoles()’ method). It is returned as part of a RoleResult, to provide roles successfully
retrieved.

javax.management.relation.RoleUnresolvedList<E> : A RoleUnresolvedList represents a list of
RoleUnresolved objects, representing roles not retrieved from a relation due to a problem
encountered when trying to access (read or write to roles).

The basic implemenation of the List interface is the ArrayList. The ArrayList is not syncronized,
not thread safe. Vector is syncronized, and thread safe. Vector is slower, because of the extra
overhead to make it thread safe. When only one thread is accessing the list, use the ArrayList.
Whenever you insert or remove an element from the list, there are extra overhead to reindex the list.
When you have a large list, and you have lots of insert and remove, consider using the LinkedList.

The name LinkList implies a special data structure where the elements/nodes are connected by
pointers. To remove an element from the link list the pointers need to be rearranged.

Head Node 1 Node 2
Node n

| Size | _________________ _______________

|______| | | point | | | point |

| | |
| First|-------->| Data | to next |------>| Data | to next|-- ...

-->| Data | null |
| elem | |______|_________| |______|________|

|______|______|
|______|

|
| Last

|---
|_elem_|

After removing Node 2:

Head Node 1 Node 2
Node n

___________________...________
| Size | _________________ | _______________

_|____________
|_- 1__| | | point | | | | point |

| | |
| First|-------->| Data | to next |---- | Data | to next|

| Data | null |

160

Set or List or Queue

| elem | |______|_________| |______|________|
|______|______|
|______|

|
| Last

|---
|_elem_|

30.4.3 Queue

The Queue interface adds the following operations to the Collection interface:

E element() Retrieves, but does not remove, the head of
this queue. This method differs from the
peek method only in that it throws an ex-
ception if this queue is empty

boolean offer(E o) Inserts the specified element into this queue,
if possible.

E peek() Retrieves, but does not remove, the head
of this queue, returning null if this queue
is empty

E poll() Retrieves and removes the head of this
queue, or null if this queue is empty

E remove() Retrieves and removes the head of this
queue. This method differs from the poll
method in that it throws an exception if this
queue is empty.

161

Collection Classes

• java.util.PriorityQueue<E> : orders ele-
ments according to an order/priority spec-
ified at construction time, null element is
not allowed.

•
java.util.concorrent.ArrayBlockingQueue<E>
: orders elements FIFO; syncronized,
thread safe.

• java.util.concorrent.SyncronousQueue<E>
: each put must wait for a take, and vice
versa, does not have any internal capacity,
not even a capacity of one, an element is
only present when you try to take it; you
cannot add an element (using any method)
unless another thread is trying to remove
it

Abb. 17

30.5 Map Classes

The Map interface has the following implementations:

Abb. 18

162

Thread Safe Collections

java.util.TreeMap<E>: guarantees that the map will be in ascending key order, sorted according to
the natural order for the key’s class, not-syncronized.

java.util.HashMap<E> : is roughly equivalent to Hashtable, except that it is unsynchronized and
permits nulls

java.util.concurrent.ConcurrentHashMap : same Hashtable, plus retrieval operations (including
get) generally do not block, so may overlap with update operations (including put and re-
move).

java.util.Hashtable<E> : Syncronized, null can not be used as key

java.util.WeakHashMap<E> : entry in a WeakHashMap will automatically be removed when its
key is no longer in ordinary use. Nonsyncronized.

java.util.LinkedHashMap<E> : This linked list defines the iteration ordering, which is normally
the order in which keys were inserted into the map (insertion-order). Note that insertion order
is not affected if a key is re-inserted into the map.

java.util.IdentityHashMap : This class implements the Map interface with a hash table, using
reference-equality in place of object-equality when comparing keys (and values). In other
words, in an IdentityHashMap, two keys k1 and k2 are considered equal if and only if
(k1==k2). (In normal Map implementations (like HashMap) two keys k1 and k2 are con-
sidered equal if and only if (k1==null ? k2==null : k1.equals(k2)).) Not-syncronized.

java.util.EnumMap : All of the keys in an enum map must come from a single enum type that
is specified, explicitly or implicitly, when the map is created. Enum maps are represented
internally as arrays. This representation is extremely compact and efficient. Not-syncronized.

30.6 Thread Safe Collections

It is also called Concurrent Collections. Most of the popular collection classes have implementations
for both single thread and multiple thread environments. The non-synchronized implementations are
always faster. You can use the non-synchronized implementations in multiple thread environments,
when you make sure that only one thread updating the collection at any given time.

A new Java JDK package was introduced at Java 1.5, that is java.util.concurrent. This package
supplies a few Collection implementations designed for use in multithreaded environments.

The following table list all the syncronized collection classes:

syncronized non-syncronized

List

java.util.Vector java.util.ArrayList

java.util.Stack
java.util.LinkList

java.util.concurrent.CopyOnWriteArrayList

Set

java.util.TreeSet
java.util.HashSet
java.util.LinkHashSet

java.util.concurrent.CopyOnWriteArraySet

163

Collection Classes

syncronized non-syncronized

Map

java.util.TreeMap
java.util.Hashtable
java.util.concurrent.ConcurrentHashMap

java.util.HashMap

java.util.LinkedHashMap
java.util.IdentityHashMap
java.util.EnumMap

30.7 Classes Diagram (UML)

The following UML class diagram shows the Collection interfaces and their implementations.

Abb. 19

The following UML class diagram shows the Map interfaces and their implementations.

164

External links

Abb. 20

30.8 External links

• JAVA TUTORIAL ON COLLECTIONS11

CATEGORY:JAVA PROGRAMMING12

11 HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/COLLECTIONS/INTERFACES/COLLECTION.
HTML

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

165

http://java.sun.com/docs/books/tutorial/collections/interfaces/collection.html
http://java.sun.com/docs/books/tutorial/collections/interfaces/collection.html
http://en.wikibooks.org/wiki/Category:Java Programming

Collection Classes

166

31 Throwing and Catching Exceptions

In Java, there are two main flow of code executions.

• Normal main sequential code execution, the program doing what it meant to accomplish
• Exception handling code execution, the main program flow was interrupted by an error or some

other condition that prevent the continuation of the normal main sequential code execution. After
the interruption, that is when the exception is "thrown", the search for the first matching catch
block/clause begins, the search is going backward against the main flow, until a match is found.

The exception handling is built in to the language. There is a keyword to throw an exception, there
is keyword to catch an exception, and there is keyword(throws) to declare that a method could
throw an exception that the caller has to deal with.

An exception can be thrown from anywhere in the code by the throw keyword, plus specifying a
Java object, that is instance of the Throwable class. Applications should sub-class the Exception
class as an exception object to be thrown.

The following is an example of throwing an instance of the ExceptionClass.

throw new ExceptionClass("Something happened, the main program flow
has to be interrupted, the caller has to be informed about this");

At the above line the current method execution is interrupted and the created exception object is
thrown back to the caller. The exception object should contain the information about the reason of
the interruption.

The caller of the method catches the exception by the catch keyword.

catch (ExceptionClass e)
{
// --- What to do with this interruption ??? ---

}

Sometimes just the name of the exception class is enough to know the reason of the interruption.

31.1 Catching Matching rules

When an exception is "thrown", the search for the first matching catch block/clause begins.

There are five main catching matching rules:

167

Throwing and Catching Exceptions

1. A thrown exception object, can be caught by the catch keyword with specifying the exception
object’s class or its super-class.

2. When there are a list of catch clauses, it is evaluated sequentially, applying the first rule. If
there is a catch, the following catch clauses are ignored.

3. If there is a catch clause in the list, which will never be executed, because its super-class are
listed before it, the compiler will give an error message.

4. The compiler enforce that all Exception and its sub-class exceptions must be handled by the
programmer, except the RuntimeException and its sub-classes.

5. If the try block would never throw an exception that is specified in the catch list, the compiler
gives an error.

31.1.1 Rule number 1

A thrown exception object, can be caught by the catch keyword with specifying the exception
object’s class or its super-class.

The Throwable class is the super-class of all exception class. So specifying with the catch keyword
we can catch all type of exceptions.

The following piece of code would catch all type of exception, but is not recommended for normal
use:

catch (Throwable th) {
// --- I caught all type of exception ---
log_it(th);
// --- I was not suppose to catch Throwable so I throw it again

throw th;

}

There are some special exceptions that used by the JVM, those are the sub-classes of
java.lang.Error. We are not suppose the catch them. So we should use the following code
to catch all application, and runtime exceptions.

catch (Exception e) {
// --- I caught all application and runtime exceptions ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}

31.1.2 Rule number 2

When there are a list of catch clauses, it is evaluated sequentially, applying the first rule, for each
clause. If there is a catch, the following catch clauses are ignored.

The following piece of code demonstrates rule number 2.

168

Catching Matching rules

The NullPointerException is caught by the first catch clause, the following catch clauses
are ignored. The second catch clause will catch all RuntimeException’s, except the
NullPointerException, because that will be caught by the first clause. All exceptions that are
defined by the application, will be caught by the last catch clause, see below.

catch (NullPointerException e) {
// --- I caught a Nulpointer ex. ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}
catch (RuntimeException e) {

// --- I caught runtime ex. but not NullPointer ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}
catch (Exception e) {

// --- I caught all application but not Runtime exceptions ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}

31.1.3 Rule number 3

If there is a catch clause in the list which will never be executed, because its super-class are listed
before it, the compiler will give an error message.

The following piece of code will not compile, it will give an error message saying that the last
catch clause will never be executed. This demonstrates that the exception handling is built into the
language. The compiler checks the list of catch clauses and reports an error if class follows any of
it super-class on the list.

catch (NullPointerException e) {
// --- I caught a Nullpointer ex. ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}
catch (Exception e) {

// --- I caught all application but not Runtime exceptions ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ---
throw e;

}
catch (RuntimeException e) { // -- COMPILATION ERROR, THIS CODE WILL
NEVER BE EXECUTED ---

// --- I caught runtime ex. but not NullPointer ---
log_it(e);
// --- I don’t know how to handle this, so I throw it again ----
throw e;

}

169

Throwing and Catching Exceptions

31.1.4 Rule number 4

The compiler enforce that all Exception and its sub-class exceptions must be handled by the pro-
grammer, except the RuntimeException and its sub-classes.

From the application’s point of view there are two types of exceptions. One is called
RuntimeException, that suppose to be thrown when there is an anticipated bug in the code. For
example, if the program tries to access an array, with a number that is out side of the array size, then
a RuntimeException is thrown. There are many other possibilities which indicate a coding bug.

The other type of exception is called the application exception. During application design a list
of possible exception is defined that can anticipated during executing the business logic code. For
example, the application tries to retrieve a customer, but the customer does not exist. This may not
necessarily be a bug. In this case an application exception should be thrown. Application exceptions
are sub-classes of the Exception class.

The java language enforces that all application exceptions are dealt with by the application pro-
grammer.

If a method throws an application exception, that must be declared in the method signature by the
throws keyword. The caller of that method can either catch the exception by a catch block or it can
make sure that it is being declared to be thrown in the current method, and so on. The search for a
catch block goes backward on the methods track trace, until a match is found. The compiler ensures
that someone has to handle the exception.

The following method can throw a CustomerNotFoundException, so it must declare it at the
method signature.

public String method() throws CustomerNotFoundException
{

...
throw new CustomerNotFoundException();
...

}

31.1.5 Rule number 5

If the try block would never throw an exception that is specified in the catch list, the compiler gives
an error.

The following code would not compile because inside the try block no Exception is thrown.

try {
...

} catch (Exception e) {
}

The above code won’t compile, because the try block does not throw exception. The compiler can
be fooled with the following code.

170

Example of handling exceptions

try {
if (1 == 0) throw new Exception();
...

} catch (Exception e) {
}

The above code will compile now.

31.2 Example of handling exceptions

Let’s examine the following code:

public void methodA() throws SomeException, AnotherException
{

//methodbody
}
public void methodB() throws CustomException
{

//Methodbody
}
public void methodC()
{

methodB();
methodA();

}

In the code sample, methodC is invalid. Because methodA and methodB pass (or throw) exceptions,
methodC must be prepared to handle them. This can be handled in two ways: a try - catch block,
which will handle the exception within the method and a throws clause which would in turn throw
the exception to the caller to handle. The above example will cause a compilation error, as Java
is very strict about exception handling. So the programmer forced to handle any possible error
condition at some point.

A method can do two things with an exception. Ask the calling method to handle it by the throws
declaration. Or handle the exception inside the method by the try-catch block.

To construct a throws declaration, add throws ExceptionName (additional exceptions can be
added with commas). To construct a try - catch block, use the following syntax

...
try {

//Possibly exception-causing code
}
catch (TheException e) {
//Handle the exception

}
finally {

//Optional. Executes regardless of exceptions thrown
}

171

Throwing and Catching Exceptions

The original code can be modified to work correctly in multiple ways. For example, the follow-
ing:

public void methodC() throws CustomException, SomeException
{

try {
methodB();

}
catch (AnotherException e) {
//handle it

}
methodA();

}

The AnotherException from methodB will be handled locally, while CustomException and Some-
Exception will be thrown to the caller to handle it.

31.3 Application Exceptions

Application Exception classes should extend the java.lang.Exception class. Some of the
JDK classes also throw exception objects inherited from java.lang.Exception. If any of
those Exception object is thrown, it must be caught by the application some point, by
a catch-block. The compiler will enforce that there is a catch-block associated with an
exception thrown, if the thrown exception object is inherited from java.lang.Exception
and it is not the java.lang.RuntimeException or its inherited objects. However,
java.lang.RuntimeException or its inherited objects, can be caught by the application, but that
is not enforced by the compiler.

Lets see what is the catching criteria for a catch block to catch the "thrown" exception.

A catch-block will "catch" a thrown exception if and only if:

• the thrown exception object is the same as the exception object specified by the catch-block
• the thrown exception object is the subtype of the exception object specified by the catch-block

try {
throw new Exception("This will be caught below");

}
catch(Exception e) {

// --- The "thrown" object is the same what is specified at the
catch-block --
}

try {
throw new NullPointerException("This will be caught below");

}
catch(Exception e) {

// --- NullPointerException is subclass of the Exception class --
}

172

Runtime Exceptions

There can be more than one catch-block for a try-block. The catching blocks evaluated sequentially
one by one. If a catch-block catch the exception, the others will not be evaluated.

Example:

try {
throw new NullPointerException("This will be caught below");

}
catch(Exception e) {

// --- The above NullPointerException will catched by here --
}
catch(<strike> NullPointerException e </strike>) { // --- THIS CODE IS
NEVER EXECUTED - Compiler error

// ---
}

Because NullPointerException is subclass of the Exception class. All NullPointerExceptions will
be caught by the first catch-block.

Instead the above code should be rewritten as follows:

try {
throw new NullPointerException("This will be caught below");

}
catch(NullPointerException e) {

// --- The above NullPointerException will caught here ---
}
catch(Exception e) {

// --- Any other exception except the NullPointerException will be
caught here --
}

31.4 Runtime Exceptions

The java.lang.RuntimeException exception class is inherited from java.lang.Exception. It
is a special exception class, because catching this exception class or its subclasses are not enforced
by the Java compiler.

runtime exception : Runtime exceptions are usually caused by data errors, like arithmetic over-
flow, divide by zero, Runtime exceptions are not business related exceptions. In a well
debugged code, runtime exceptions should not occur. Runtime exceptions should only be
used in the case that the exception could be thrown by and only by something hard-coded
into the program. These should not be able to be triggered by the software’s user(s).

31.4.1 NullPointerException

NullPointerException is a RuntimeException. In Java, a special null can be assigned to an object
reference. NullPointerException is thrown when an application attempts to use an object reference,
having the null value. These include:

• Calling an instance method on the object referred by a null reference.

173

Throwing and Catching Exceptions

• Accessing or modifying an instance field of the object referred by a null reference.
• If the reference type is an array type, taking the length of a null reference.
• If the reference type is an array type, accessing or modifying the slots of a null reference.
• If the reference type is a subtype of Throwable, throwing a null reference.

Applications should throw instances of this class to indicate other illegal uses of the null object.

Object obj = null;
...
obj.toString(); // --- This will throw a NullPointerException ---

The above code shows one of the pitfall of Java, and the most common source of bugs. No object
is created and the compiler does not detect it. NullPointerException is one of the most common
exceptions thrown in Java.

why do we need null ? :

The reason we need it is because many times we need to create an object reference, before the ob-
ject itself is created. Object references cannot exist without a value, so we assign the null value to it.

public Customer getCustomer()
{
Customer customer = null;
try {

...
customer = createCustomer();
...

}
catch (Exception e)
{
...
}

return customer;
}

In the above code we want to create the Customer inside the try-block, but we also want to return
the object reference to the caller, so we need to create the object reference outside of the try-block,
because of the scoping rule in Java. This is one of the pitfall of Java.

31.5 Main Exception Classes

174

Main Exception Classes

• java.lang.Throwable : The Throwable
class is the superclass of all errors and
exceptions in the Java language. Only ob-
jects that are instances of this class (or one
of its subclasses) are thrown by the Java
Virtual Machine or can be thrown by the
Java throw statement.

A throwable contains a snapshot of the
execution stack of its thread at the time
it was created. It can also contain a mes-
sage string that gives more information
about the error. Finally, it can contain a
cause: another throwable that caused this
throwable to get thrown. The cause facil-
ity is new in release 1.4. It is also known
as the chained exception facility, as the
cause can, itself, have a cause, and so on,
leading to a "chain" of exceptions, each
caused by another

• java.lang.Error : An Error indicates seri-
ous problems that a reasonable application
should not try to catch. Most such errors
are abnormal conditions.

• java.lang.Exception : The class Exception
and its subclasses are a form of Throwable
that indicates conditions that a reasonable
application might want to catch. Also this
is the class that a programmer may want
to extend when adding business logic ex-
ceptions.

• java.lang.RuntimeException : RuntimeEx-
ception is the superclass of those excep-
tions that can be thrown during the normal
operation of the Java Virtual Machine. A
method is not required to declare in its
throws clause any subclasses of Runtime-
Exception that might be thrown during the
execution of the method but not caught.

• java.lang.NullPointerException : Thrown
when an application attempts to use null
in a case where an object is required.

Abb. 21

175

Throwing and Catching Exceptions

31.6 See Also

• JAVA PROGRAMMING/KEYWORDS/TRY1

• JAVA PROGRAMMING/KEYWORDS/CATCH2

• JAVA PROGRAMMING/KEYWORDS/THROWS3

• JAVA PROGRAMMING/KEYWORDS/THROW4

CATEGORY:JAVA PROGRAMMING5

This page describes some techniques for preventing NullPointerException.

It does not describe general techniques for how you should program Java. It is of some use, to make
you more aware of null values, and to be more careful about generating them yourself.

Note that this list is not complete - there are no rules for preventing NullPointerException entirely
in Java, because the standard libraries have to be used, and they can cause NullPointerExceptions.
Also, it is possible to observe an uninitialised final field in Java, so you can’t even treat a final field
as being completely trusted during the object’s creation.

A good approach is to learn how to deal with NullPointerExceptions first, and become competent
with that. These suggestions will help you to cause less NullPointerExceptions, but they don’t
replace the need to know about NullPointerExceptions.

31.7 Minimize the use of the keyword ’null’ in assignment statements

This means not doing things like:

String s=null;
while (something)

if (something2)
s="yep";

if (s!=null)
something3(s);

You can replace this with:

boolean done=false;

while (!done && something)
if (something2)
{

done=true;
something3("yep");

}

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/TRY
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/CATCH
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/THROWS
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVAPROGRAMMING/KEYWORDS/THROW
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

176

http://en.wikibooks.org/wiki/Java Programming/Keywords/try
http://en.wikibooks.org/wiki/Java Programming/Keywords/catch
http://en.wikibooks.org/wiki/Java Programming/Keywords/throws
http://en.wikibooks.org/wiki/Java Programming/Keywords/throw
http://en.wikibooks.org/wiki/Category:Java Programming

Minimize the use of the new Type[int] syntax for creating arrays of objects

You might also consider replacing null with "" in the first example, but default values bring about
bugs caused by default values being left in place. A NullPointerException is actually better, as it
allows the runtime to tell you about the bug, rather than just continue with a default value.

31.8 Minimize the use of the new Type[int] syntax for creating arrays
of objects

An array created using new Object[10] has 10 null pointers. That’s 10 more than we want, so use
collections instead, or explicitly fill the array at initialisation with:

Object[] objects={"blah",5,new File("/usr/bin")};

or:

Object[] objects;
objects=new Object[]{"blah",5,new File("/usr/bin")};

31.9 Check all references obtained from ’untrusted’ methods

Many methods that can return a reference can return a null reference. Make sure you check these.
For example:

File file=new File("/etc");
File[] files=file.listFiles();
if (files!=null)
{

stuff
}

File.listFiles() can return null if "/etc" is not a directory.

You can decide to trust some methods not to return null, if you like, but that’s an assumption you’re
making. Some methods that don’t specify that they might return null, actually do, instead of throw-
ing an exception.

31.10 Comparing string variable with a string literal

When you compare a variable with a string literal, always put the string literal first. For example
do:

if ("OK".equals(state))
{
...

177

Throwing and Catching Exceptions

}

and do not do:

<strike>

if (state.equals("OK"))
{
...

}

</strike>

If the ’state’ variable is null, you get a NullPointerException in the second example, but not in the
first one.

CATEGORY:JAVA PROGRAMMING6

31.11 See also

• JAVA PLATFORM7

• JAVA API8

• JAVA VIRTUAL MACHINE9

• GCC10 (includes a Java to machine language compiler)
• COMPARISON OF JAVA TO C++11.
• JINI12

• ECLIPSE13 IDE14 http://eclipse.org/
• NETBEANS15 (Another open source IDE)
• OPTIMIZATION OF JAVA16

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAPLATFORM
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAAPI
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVAVIRTUALMACHINE
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNUCOMPILERCOLLECTION
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISONOFJAVATOCPLUSPLUS
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/JINI
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/ECLIPSE(COMPUTING)
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPENSOURCEINTEGRATEDDEVELOPMENTENVIRONMENT
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETBEANS
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPTIMIZATIONOFJAVA

178

http://en.wikibooks.org/wiki/Category:Java Programming
http://en.wikipedia.org/wiki/Java platform
http://en.wikipedia.org/wiki/Java API
http://en.wikipedia.org/wiki/Java virtual machine
http://en.wikipedia.org/wiki/GNU Compiler Collection
http://en.wikipedia.org/wiki/Comparison of Java to Cplusplus
http://en.wikipedia.org/wiki/JINI
http://en.wikipedia.org/wiki/Eclipse (computing)
http://en.wikipedia.org/wiki/Open source Integrated Development Environment
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Optimization of Java

32 Links

32.1 External References

• JAVA CERTIFICATION MOCK EXAMS1 500+ questions with exam simulator (this is the older 1.4
version of the exam)

• JAVA LANGUAGE SPECIFICATION, 3RD EDITION2.
• THINKING IN JAVA3

• JAVA 5 SDK DOCUMENTATION4

• JAVA 5 SDK DOCUMENTATION IN CHM FORMAT5

• JAVA 5 API DOCUMENTATION6

• THE JAVA TUTORIAL7

• Sun Developer Network NEW TO JAVA CENTER8

• A SIMPLE JAVA TUTORIAL 9

• TWO SEMESTERS OF COLLEGE-LEVEL JAVA LECTURES--FREE10

• JAVA LESSONS - INTERACTIVE JAVA PROGRAMMING TUTORIALS BASED ON EXAMPLES11

• JAVA TUTORIALS FOR KIDS AND ADULTS12

32.2 External links

• JAVA CERTIFICATION MOCK EXAMS13 500+ questions with exam simulator
• SWINGWIKI14 - Open documentation project containing tips, tricks and best practices for Java

Swing development
• JAVATIPS15 - Blog project containing best JAVA tips and tricks
• FREE JAVA/ ADVANCED JAVA BOOKS16

• FREE JAVA AND J2EE EBOOKS17

1 HTTP://WWW.CERTIFICATION4CAREER.COM
2 HTTP://JAVA.SUN.COM/DOCS/BOOKS/JLS/THIRD_EDITION/HTML/J3TOC.HTML
3 HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/
4 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/INDEX.HTML
5 HTTP://WWW.ZEUSEDIT.COM/FORUM/VIEWTOPIC.PHP?T=10
6 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/API/INDEX.HTML
7 HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/INDEX.HTML
8 HTTP://JAVA.SUN.COM/DEVELOPER/ONLINETRAINING/NEW2JAVA/INDEX.HTML
9 HTTP://WWW.ALNAJA7.NET/PROGRAMMER/393/ITCS-{}393.HTM
10 HTTP://CURMUDGEON99.GOOGLEPAGES.COM/
11 HTTP://JAVALESSONS.COM
12 HTTP://WWW.KIDWARESOFTWARE.COM
13 HTTP://WWW.CERTIFICATION4CAREER.COM
14 HTTP://WWW.SWINGWIKI.ORG
15 HTTP://WWW.AKKIDI.COM
16 HTTP://WWW.FREEBOOKCENTRE.NET/JAVATECH/JAVACATEGORY.HTML
17 HTTP://WWW.BESTEBOOKSWORLD.COM/DEFAULT.ASP?CAT=55

179

http://www.certification4career.com
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://www.mindview.net/Books/TIJ/
http://java.sun.com/j2se/1.5.0/docs/index.html
http://www.zeusedit.com/forum/viewtopic.php?t=10
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/developer/onlineTraining/new2java/index.html
http://www.alnaja7.net/Programmer/393/ITCS-{}393.htm
http://curmudgeon99.googlepages.com/
http://javalessons.com
http://www.kidwaresoftware.com
http://www.certification4career.com
http://www.swingwiki.org
http://www.akkidi.com
http://www.freebookcentre.net/JavaTech/javaCategory.html
http://www.bestebooksworld.com/default.asp?cat=55

Links

• JAVA BOOKS AVAILABLE FOR FREE DOWNLOADS18

• ROEDY GREEN’S JAVA & INTERNET GLOSSARY19 A comprehensive reference that’s also an
excellent starting point for beginners

• C2: JAVA LANGUAGE20

• NETBEANS IDE21

• ECLIPSE IDE22

• ZEUS FOR WINDOWS IDE23

• OFFICIAL JAVA HOME SITE24

• ORIGINAL JAVA WHITEPAPER25

• COMPLETE JAVA PROGRAMMING TUTORIALS26

• JAVAPASSION, JAVA COURSE27 - The Javapassion Site, Java Course, driven by Sang Shin from
Sun

• BEANSHELL28 Interpreted version
• THE JAVA LANGUAGE SPECIFICATION, THIRD EDITION29 "This book attempts a complete

specification of the syntax and semantics of the language."
• THE JAVA VIRTUAL MACHINE SPECIFICATION, SECOND EDITION30 and AMENDMENTS31

• A PURE JAVA DESKTOP32

• JAVAPEDIA PROJECT33

• Bruce Eckel Thinking in Java Third edition -- HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/34

(Bruce has an C/C++ free book available on-line too)
• JAVAGAMEDEVELOPMENT35 Daily news and articles on Java Game Development
• JAVA CERTIFICATIONS SITE(SCJP,SCWCD,SCBCD,JAVA 5.0,SCEA36

• JAVA PROGRAMMING FAQS AND TUTORIALS37

• MORE RESOURCES38

• JAVA LESSONS39

• ONLINE JAVA TUTORIAL40

• FULL JAVA TUTORIAL41 - A collection of free premium programming tutorials

18 HTTP://WWW.TECHBOOKSFORFREE.COM/JAVA.SHTML
19 HTTP://WWW.MINDPROD.COM/JGLOSS/JGLOSS.HTML
20 HTTP://C2.COM/CGI/WIKI?JAVALANGUAGE
21 HTTP://WWW.NETBEANS.ORG
22 HTTP://WWW.ECLIPSE.ORG
23 HTTP://WWW.ZEUSEDIT.COM/JAVA.HTML
24 HTTP://JAVA.SUN.COM
25 HTTP://JAVA.SUN.COM/DOCS/WHITE/LANGENV/
26 HTTP://WWW.ROSEINDIA.NET/JAVA/
27 HTTP://WWW.JAVAPASSION.COM/JAVAINTRO/
28 HTTP://WWW.BEANSHELL.ORG
29 HTTP://JAVA.SUN.COM/DOCS/BOOKS/JLS/THIRD_EDITION/HTML/J3TOC.HTML
30 HTTP://JAVA.SUN.COM/DOCS/BOOKS/VMSPEC/2ND-{}EDITION/HTML/VMSPECTOC.DOC.HTML
31 HTTP://JAVA.SUN.COM/DOCS/BOOKS/VMSPEC/2ND-{}EDITION/JVMS-{}CLARIFY.HTML
32 HTTP://WWW.JDISTRO.COM/
33 HTTP://WIKI.JAVA.NET/BIN/VIEW/JAVAPEDIA/
34 HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/
35 HTTP://JAVAGAMEDEVELOPMENT.NET
36 HTTP://WWW.JAVABEAT.NET
37 HTTP://WWW.APL.JHU.EDU/~{}HALL/JAVA/FAQS-{}AND-{}TUTORIALS.HTML
38 HTTP://FINDSHELL.COM
39 HTTP://WWW.LANDOFCODE.COM/JAVA/
40 HTTP://COMPUTER.FREEONLINEBOOKSTORE.ORG/SHOWBOOK.PHP?SUBCATEGORYID=17
41 HTTP://WWW.MESHPLEX.ORG/WIKI/JAVA/INTRODUCTION_TO_JAVA

180

http://www.techbooksforfree.com/java.shtml
http://www.mindprod.com/jgloss/jgloss.html
http://c2.com/cgi/wiki?JavaLanguage
http://www.netbeans.org
http://www.eclipse.org
http://www.zeusedit.com/java.html
http://java.sun.com
http://java.sun.com/docs/white/langenv/
http://www.roseindia.net/java/
http://www.javapassion.com/javaintro/
http://www.beanshell.org
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/vmspec/2nd-{}edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-{}edition/jvms-{}clarify.html
http://www.jdistro.com/
http://wiki.java.net/bin/view/Javapedia/
http://www.mindview.net/Books/TIJ/
http://javagamedevelopment.net
http://www.javabeat.net
http://www.apl.jhu.edu/~{}hall/java/FAQs-{}and-{}Tutorials.html
http://findshell.com
http://www.landofcode.com/java/
http://computer.freeonlinebookstore.org/ShowBook.php?subcategoryid=17
http://www.meshplex.org/wiki/Java/Introduction_to_Java

External links

• JAVA CERTIFICATION PRACTICE TESTS AND ARTICLES42

• KODE JAVA - LEARN JAVA PROGRAMMING BY EXAMPLES43

• GAMES PROGRAMMING WIKI44 - Java tutorials and lessons based on game programming
• WIKIJAVA45 - Examples and tutorials in Java
• DOWNLOAD FREE JAVA EBOOKS FROM 83 EBOOKS COLLECTION46 - Free Java Ebooks to

download from ebookslab.info
• DOWNLOAD FREE SUN CERTIFIED DEVELOPER FOR JAVA WEB SERVICES47 - Free Java

Ebooks to download from ebooks.mzwriter.net
• CODE CONVENTIONS FOR THE JAVA PROGRAMMING LANGUAGE48 - At SUN

Newsgroups:

news:comp.lang.java comp.lang.java (GOOGLE’S WEB INTERFACE49)

LINKS50

42 HTTP://WWW.UCERTIFY.COM/VENDORS/SUN.HTML
43 HTTP://WWW.KODEJAVA.ORG/
44 HTTP://GPWIKI.ORG/
45 HTTP://WWW.WIKIJAVA.ORG/
46 HTTP://WWW.EBOOKSLAB.INFO/DOWNLOAD-{}FREE-{}JAVA-{}EBOOKS
47 HTTP://EBOOKS.MZWRITER.NET/E-{}BOOKS/SHARE_EBOOK-{}310-{}220-{}SUN-{}CERTIFIED-{}DEVELOPER-{}FOR-{}JAVA-{}WEB-{}SERVICES
48 HTTP://JAVA.SUN.COM/DOCS/CODECONV/HTML/CODECONVTOC.DOC.HTML
49 HTTP://GROUPS.GOOGLE.COM/GROUPS?GROUP=COMP.LANG.JAVA
50 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY:JAVAPROGRAMMING

181

http://www.ucertify.com/vendors/Sun.html
http://www.kodejava.org/
http://gpwiki.org/
http://www.wikijava.org/
http://www.ebookslab.info/download-{}free-{}java-{}ebooks
http://ebooks.mzwriter.net/e-{}books/share_ebook-{}310-{}220-{}sun-{}certified-{}developer-{}for-{}java-{}web-{}services
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://groups.google.com/groups?group=comp.lang.java
http://en.wikibooks.org/wiki/Category:Java Programming

Links

182

33 License

183

License

184

34 GNU Free Documentation License

1. REDIRECT WIKIBOOKS:GNU FREE DOCUMENTATION LICENSE1

DE:JAVA2 DEUTSCH J.SE3

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/GNUFREEDOCUMENTATIONLICENSE
2 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA
3 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVASTANDARD

185

http://en.wikibooks.org/wiki/GNU Free Documentation License
http://de.wikibooks.org/wiki/Java
http://de.wikibooks.org/wiki/Java Standard

GNU Free Documentation License

186

35 Authors

Edits User
1 ADRILEY1

24 ADRIGNOLA2

2 ALAINR3453

1 ALBMONT4

1 ALEXANDER.ORLOV5

2 ANTIDRUGUE6

1 APHONIK7

1 ARSENALFAN8

69 ARUNREGINALD9

7 ASHMAILIT10

2 AZ156811

1 BENO100012

1 CECLAUSON13

4 COLFULUS14

1 COLINDAVEN15

1 CSPURRIER16

1 DALLAS127817

3 DAN POLANSKY18

2 DARKLAMA19

5 DARKXXXXILLUSION20

3 DAVIDCARY21

1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRILEY
2 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA
3 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALAINR345
4 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALBMONT
5 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEXANDER.ORLOV
6 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANTIDRUGUE
7 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:APHONIK
8 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARSENALFAN
9 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARUNREGINALD
10 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASHMAILIT
11 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AZ1568
12 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BENO1000
13 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CECLAUSON
14 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COLFULUS
15 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COLINDAVEN
16 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CSPURRIER
17 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALLAS1278
18 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN_POLANSKY
19 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
20 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKXXXXILLUSION
21 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDCARY

187

http://en.wikibooks.org/w/index.php?title=User:AdRiley
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alainr345
http://en.wikibooks.org/w/index.php?title=User:Albmont
http://en.wikibooks.org/w/index.php?title=User:Alexander.orlov
http://en.wikibooks.org/w/index.php?title=User:Antidrugue
http://en.wikibooks.org/w/index.php?title=User:Aphonik
http://en.wikibooks.org/w/index.php?title=User:Arsenalfan
http://en.wikibooks.org/w/index.php?title=User:Arunreginald
http://en.wikibooks.org/w/index.php?title=User:Ashmailit
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:Beno1000
http://en.wikibooks.org/w/index.php?title=User:Ceclauson
http://en.wikibooks.org/w/index.php?title=User:Colfulus
http://en.wikibooks.org/w/index.php?title=User:Colindaven
http://en.wikibooks.org/w/index.php?title=User:Cspurrier
http://en.wikibooks.org/w/index.php?title=User:Dallas1278
http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:Darkxxxxillusion
http://en.wikibooks.org/w/index.php?title=User:DavidCary

Authors

1 DEVOURER0922

1 DICKDICKDICK23

5 DIRK HÜNNIGER24

3 DIRK GENTLY25

79 DJB26

1 DMONEGO27

1 DRAWDE8328

646 ERVINN29

3 EXABYTE30

3 EXPLANATOR31

3 FELIPEOCHOA091832

3 FISHPI33

1 FKEREKI34

1 FLATIPAC35

2 FREDMARANHAO36

4 FTIERCEL37

2 GOLLOXP38

2 GROKUS39

1 GRUNNY40

1 GUANACO41

5 GUANGPU.HUANG42

1 HMPERSON143

1 HAGINDAZ44

1 HERMIONE198045

1 HROÐULF46

22 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEVOURER09
23 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DICKDICKDICK
24 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_H%C3%BCNNIGER
25 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_GENTLY
26 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DJB
27 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DMONEGO
28 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRAWDE83
29 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ERVINN
30 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EXABYTE
31 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EXPLANATOR
32 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FELIPEOCHOA0918
33 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHPI
34 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FKEREKI
35 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FLATIPAC
36 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREDMARANHAO
37 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FTIERCEL
38 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOLLOXP
39 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GROKUS
40 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRUNNY
41 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUANACO
42 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUANGPU.HUANG
43 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HMPERSON1
44 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAGINDAZ
45 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERMIONE1980
46 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HRO%C3%B0ULF

188

http://en.wikibooks.org/w/index.php?title=User:Devourer09
http://en.wikibooks.org/w/index.php?title=User:Dickdickdick
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dirk_gently
http://en.wikibooks.org/w/index.php?title=User:Djb
http://en.wikibooks.org/w/index.php?title=User:Dmonego
http://en.wikibooks.org/w/index.php?title=User:Drawde83
http://en.wikibooks.org/w/index.php?title=User:Ervinn
http://en.wikibooks.org/w/index.php?title=User:Exabyte
http://en.wikibooks.org/w/index.php?title=User:Explanator
http://en.wikibooks.org/w/index.php?title=User:Felipeochoa0918
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Fkereki
http://en.wikibooks.org/w/index.php?title=User:Flatipac
http://en.wikibooks.org/w/index.php?title=User:Fredmaranhao
http://en.wikibooks.org/w/index.php?title=User:Ftiercel
http://en.wikibooks.org/w/index.php?title=User:GoLLoXp
http://en.wikibooks.org/w/index.php?title=User:Grokus
http://en.wikibooks.org/w/index.php?title=User:Grunny
http://en.wikibooks.org/w/index.php?title=User:Guanaco
http://en.wikibooks.org/w/index.php?title=User:Guangpu.huang
http://en.wikibooks.org/w/index.php?title=User:HMPerson1
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Hermione1980
http://en.wikibooks.org/w/index.php?title=User:Hro%C3%B0ulf

External links

2 IMACWIN9547

1 ITSBORIN48

1 J36MILES49

33 JGUK50

1 JIMMYATIC51

1 JK3352

7 JOMEGAT53

2 JONATHAN WEBLEY54

1 JPKOTTA55

1 KEJIA56

1 KENJ041857

1 KRIAK58

1 LCAWTE59

6 MALFIST60

2 MATRIXFROG61

11 MATTYLAWS62

1 MAXBOWSHER63

3 METABOHEMIAN64

1 MHAYES65

42 MIKM66

1 MS2GER67

1 MSTENTA68

2 OMZIG8969

4 PANIC2K470

1 PENGO71

47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IMACWIN95
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ITSBORIN
49 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:J36MILES
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JIMMYATIC
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JK33
53 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOMEGAT
54 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JONATHAN_WEBLEY
55 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JPKOTTA
56 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KEJIA
57 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KENJ0418
58 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRIAK
59 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LCAWTE
60 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MALFIST
61 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATRIXFROG
62 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTYLAWS
63 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAXBOWSHER
64 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:METABOHEMIAN
65 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MHAYES
66 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKM
67 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MS2GER
68 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSTENTA
69 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OMZIG89
70 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
71 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PENGO

189

http://en.wikibooks.org/w/index.php?title=User:IMacWin95
http://en.wikibooks.org/w/index.php?title=User:Itsborin
http://en.wikibooks.org/w/index.php?title=User:J36miles
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jimmyatic
http://en.wikibooks.org/w/index.php?title=User:Jk33
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jonathan_Webley
http://en.wikibooks.org/w/index.php?title=User:Jpkotta
http://en.wikibooks.org/w/index.php?title=User:Kejia
http://en.wikibooks.org/w/index.php?title=User:Kenj0418
http://en.wikibooks.org/w/index.php?title=User:Kriak
http://en.wikibooks.org/w/index.php?title=User:Lcawte
http://en.wikibooks.org/w/index.php?title=User:Malfist
http://en.wikibooks.org/w/index.php?title=User:MatrixFrog
http://en.wikibooks.org/w/index.php?title=User:Mattylaws
http://en.wikibooks.org/w/index.php?title=User:MaxBowsher
http://en.wikibooks.org/w/index.php?title=User:MetaBohemian
http://en.wikibooks.org/w/index.php?title=User:Mhayes
http://en.wikibooks.org/w/index.php?title=User:Mikm
http://en.wikibooks.org/w/index.php?title=User:Ms2ger
http://en.wikibooks.org/w/index.php?title=User:Mstenta
http://en.wikibooks.org/w/index.php?title=User:Omzig89
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Pengo

Authors

2 PITEL72

12 PRODOC73

3 QUITEUNUSUAL74

1 RALPHCOOK75

7 RAPPO76

1 RAVICHANDAR8477

3 RECENT RUNES78

10 RICKY CLARKSON79

3 SBJOHNNY80

5 SAMWILSON81

1 SEANJA82

1 SHAHIDSIDD83

65 SIGMA 784

8 SPONGEBOB8885

16 SPOON!86

1 STEPHANVANINGEN87

4 SUNDAR22IN88

3 SUNNYCHAN89

7 SUPERFLY JON90

1 SWIFT91

2 TANMINIVAN92

1 TAROSE.TREVOR93

1 THEDAVEROSS94

2 THEPHILWELLS95

2 UNV96

72 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PITEL
73 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PRODOC
74 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUITEUNUSUAL
75 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RALPHCOOK
76 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAPPO
77 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVICHANDAR84
78 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
79 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RICKY_CLARKSON
80 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SBJOHNNY
81 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAMWILSON
82 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEANJA
83 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHAHIDSIDD
84 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGMA_7
85 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPONGEBOB88
86 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPOON%21
87 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEPHANVANINGEN
88 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUNDAR22IN
89 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUNNYCHAN
90 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUPERFLY_JON
91 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWIFT
92 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TANMINIVAN
93 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAROSE.TREVOR
94 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THEDAVEROSS
95 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THEPHILWELLS
96 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UNV

190

http://en.wikibooks.org/w/index.php?title=User:Pitel
http://en.wikibooks.org/w/index.php?title=User:Prodoc
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Ralphcook
http://en.wikibooks.org/w/index.php?title=User:Rappo
http://en.wikibooks.org/w/index.php?title=User:Ravichandar84
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Ricky_clarkson
http://en.wikibooks.org/w/index.php?title=User:SBJohnny
http://en.wikibooks.org/w/index.php?title=User:Samwilson
http://en.wikibooks.org/w/index.php?title=User:Seanja
http://en.wikibooks.org/w/index.php?title=User:Shahidsidd
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Spongebob88
http://en.wikibooks.org/w/index.php?title=User:Spoon%21
http://en.wikibooks.org/w/index.php?title=User:Stephanvaningen
http://en.wikibooks.org/w/index.php?title=User:Sundar22in
http://en.wikibooks.org/w/index.php?title=User:Sunnychan
http://en.wikibooks.org/w/index.php?title=User:Superfly_Jon
http://en.wikibooks.org/w/index.php?title=User:Swift
http://en.wikibooks.org/w/index.php?title=User:Tanminivan
http://en.wikibooks.org/w/index.php?title=User:Tarose.trevor
http://en.wikibooks.org/w/index.php?title=User:TheDaveRoss
http://en.wikibooks.org/w/index.php?title=User:Thephilwells
http://en.wikibooks.org/w/index.php?title=User:UNV

External links

1 VINAY H97

1 WEBAWARE98

1 WHITEKNIGHT99

6 WIKIWIZARD100

2 WIKIALT101

1 WILLEM SOUWER102

1 WISEEYES103

1 WUR-DENE104

2 WUTZOFANT105

1 YMS106

7 YUUKI MAYUKI107

9 ZEROONE108

1 109

97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VINAY_H
98 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEBAWARE
99 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WHITEKNIGHT
100 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIWIZARD
101 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIALT
102 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILLEM_SOUWER
103 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WISEEYES
104 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WUR-DENE
105 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WUTZOFANT
106 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YMS
107 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YUUKI_MAYUKI
108 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZEROONE
109 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:%E7%A0%B2%E7%81%AB_%E4%B8%87%

E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7

191

http://en.wikibooks.org/w/index.php?title=User:Vinay_h
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:WikiWizard
http://en.wikibooks.org/w/index.php?title=User:Wikialt
http://en.wikibooks.org/w/index.php?title=User:Willem_Souwer
http://en.wikibooks.org/w/index.php?title=User:WiseEyes
http://en.wikibooks.org/w/index.php?title=User:Wur-dene
http://en.wikibooks.org/w/index.php?title=User:Wutzofant
http://en.wikibooks.org/w/index.php?title=User:YMS
http://en.wikibooks.org/w/index.php?title=User:Yuuki_Mayuki
http://en.wikibooks.org/w/index.php?title=User:ZeroOne
http://en.wikibooks.org/w/index.php?title=User:%E7%A0%B2%E7%81%AB_%E4%B8%87%E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7
http://en.wikibooks.org/w/index.php?title=User:%E7%A0%B2%E7%81%AB_%E4%B8%87%E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7

Authors

192

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
http://creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License.
http://creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
http://creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License.
http://creativecommons.org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial use,
and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design of
the common face of the euro coins belongs to the European Commission. Authorised is
reproduction in a format without relief (drawings, paintings, films) provided they are not
detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php

193

List of Figures

1 PETER CAMPBELL110 GFDL
2 USER:ARUNREGINALD111 GFDL
3 USER:ARUNREGINALD112

4 USER:ARUNREGINALD113

5
6
7
8
9
10
11 ARUN REGINALD114 GFDL
12 ARUN REGINALD115 GFDL
13 Original version created by B:USER:ERVINN116, SVG version

created by MYSELF117
cc-by-sa-2.5

14 Original version created by B:USER:ERVINN118, SVG version
created by MYSELF119

cc-by-sa-2.5

15
16
17
18
19
20
21

110 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:PETERCAMPBELL
111 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ARUNREGINALD
112 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ARUNREGINALD
113 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ARUNREGINALD
114 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ARUNREGINALD
115 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ARUNREGINALD
116 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ERVINN
117 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:MIKM
118 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:ERVINN
119 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER:MIKM

194

http://de.wikibooks.org/wiki/File:James%20Gosling%202008.jpg
http://de.wikibooks.org/wiki/File:Java%20Development%20Path.svg
http://de.wikibooks.org/wiki/File:Java%20Programming%20Run%20dialog.png
http://de.wikibooks.org/wiki/File:Java_Programming_Regedit_Av.png
http://de.wikibooks.org/wiki/File:java_stand_alone_appl.jpg
http://de.wikibooks.org/wiki/File:Java%20applet%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20servlet%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20jsp%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20ejb%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20mvc%20appl.gif
http://de.wikibooks.org/wiki/File:Navigation_Left_Arrow.svg
http://de.wikibooks.org/wiki/File:Navigation_Right_Arrow.svg
http://de.wikibooks.org/wiki/File:Java%20map%20interfaces.svg
http://de.wikibooks.org/wiki/File:Java%20collection%20interfaces.svg
http://de.wikibooks.org/wiki/File:java_collection_set_implementations.jpg
http://de.wikibooks.org/wiki/File:java_collection_list_implementations.jpg
http://de.wikibooks.org/wiki/File:java_collection_queue_implementations.jpg
http://de.wikibooks.org/wiki/File:java_map_implementation.jpg
http://de.wikibooks.org/wiki/File:java_collection_implementation.jpg
http://de.wikibooks.org/wiki/File:java_map_implementation.jpg
http://de.wikibooks.org/wiki/File:java_exception_classes.jpg
http://en.wikibooks.org/wiki/User:Peter Campbell
http://en.wikibooks.org/wiki/User:Arunreginald
http://en.wikibooks.org/wiki/User:Arunreginald
http://en.wikibooks.org/wiki/User:Arunreginald
http://en.wikibooks.org/wiki/User:Arunreginald
http://en.wikibooks.org/wiki/User:Arunreginald
http://en.wikibooks.org/wiki/User:Ervinn
http://en.wikibooks.org/wiki/User:Mikm
http://en.wikibooks.org/wiki/User:Ervinn
http://en.wikibooks.org/wiki/User:Mikm

	1 About This Book
	1.1 Who Should Read This Book
	1.2 How this book is evolving

	2 History
	2.1 The Green team
	2.2 Reshaping thought
	2.3 The demise of an idea, birth of another
	2.4 Recent history
	2.5 Versions
	2.6 Citations

	3 The Java Platform
	3.1 Java technologies
	3.2 Java Runtime Environment
	3.3 Languages
	3.4 Similar Platforms

	4 Java Programming Environment
	4.1 The Java Compiler
	4.2 The Java Runtime Environment
	4.3 Other JDK tools

	5 Installation
	5.1 Windows
	5.2 Ubuntu Linux
	5.3 External Links

	6 Compilation
	6.1 Compiling to bytecode
	6.2 Automatic Compilation of Dependent Classes
	6.3 Packages, Subdirectories, and Resources
	6.4 Filename Case
	6.5 Compiler Options
	6.6 Additional Tools
	6.7 JBuilder
	6.8 JCreator
	6.9 Eclipse
	6.10 NetBeans
	6.11 BlueJ
	6.12 Kawa
	6.13 Ant
	6.14 The JIT compiler

	7 Execution
	7.1 JSE code execution
	7.2 J2EE code execution
	7.3 Jini

	8 First Java Program
	8.1 Hello World
	8.2 Modifying the Program
	8.3 Common Problems
	8.4 The Next Step

	9 Understanding a Java Program
	9.1 The Distance Class: Intent, Source, and Use
	9.2 Detailed Program Structure and Overview
	9.3 Comments in Java programs

	10 Syntax
	10.1 Unicode
	10.2 Literals
	10.3 Blocks
	10.4 Whitespaces
	10.5 Required Whitespace
	10.6 Indentation

	11 Statements
	11.1 What exactly are statements?
	11.2 Where do you find statements
	11.3 Variables
	11.4 Data types
	11.5 Whole numbers and floating point numbers
	11.6 Assignment statements
	11.7 Program Control Flow
	11.8 Statement Blocks
	11.9 Branching Statements
	11.10 Iteration Statements
	11.11 The continue and break statements

	12 Classes, Objects and Types
	12.1 Objects and Classes
	12.2 Instantiation and Constructors
	12.3 Type
	12.4 Multiple classes in a Java file
	12.5 External links

	13 Packages
	13.1 Java Package / Name Space
	13.2 Wildcard imports
	13.3 Importing packages from .jar files
	13.4 Class Loading / Name Space

	14 Nested Classes
	14.1 Nest a class inside a class
	14.2 Nest a class inside a method
	14.3 Anonymous Classes

	15 Access Modifiers
	15.1 Access modifiers

	16 Methods
	16.1 Method Definition
	16.2 Method Overloading
	16.3 Method Overriding
	16.4 Parameter Passing
	16.5 Functions
	16.6 Return Parameter
	16.7 Special method, the Constructor
	16.8 Static Method
	16.9 External links

	17 Primitive Types
	18 Types
	18.1 Data Types in Java
	18.2 About Java Types
	18.3 Examples of Types
	18.4 Array Types
	18.5 Primitive Data Types
	18.6 Data Conversion (Casting)
	18.7 Autoboxing/unboxing

	19 java.lang.String
	19.1 java.lang.String
	19.2 Using StringBuffer/StringBuilder to concatenate strings
	19.3 Comparing Strings
	19.4 Splitting a String
	19.5 Creating substrings
	19.6 Modifying String cases
	19.7 See also

	20 Arrays
	20.1 Intro to Arrays
	20.2 Array Fundamentals
	20.3 Two-Dimensional Arrays
	20.4 Multidimensional Array

	21 Data and Variables
	21.1 Strong Typing
	21.2 Case Conventions
	21.3 Scope

	22 Generics
	22.1 What are Generics?
	22.2 Introduction
	22.3 Note for C++ programmers
	22.4 Class<T>
	22.5 Variable Argument
	22.6 Wildcard Types

	23 Defining Classes
	23.1 Fundamentals

	24 Creating Objects
	24.1 Introduction
	24.2 Creating object with the new keyword
	24.3 Creating object by cloning an object
	24.4 Creating object receiving from a remote source

	25 Interfaces
	25.1 Interfaces
	25.2 External links

	26 Using Static Members
	26.1 What does static mean?
	26.2 What can it be used for?
	26.3 Danger of static variables
	26.4 External links

	27 Destroying Objects
	27.1 finalize()

	28 Overloading Methods and Constructors
	29 Arrays
	29.1 Intro to Arrays
	29.2 Array Fundamentals
	29.3 Two-Dimensional Arrays
	29.4 Multidimensional Array

	30 Collection Classes
	30.1 Introduction to Collections
	30.2 Generics
	30.3 Collection or Map
	30.4 Set or List or Queue
	30.5 Map Classes
	30.6 Thread Safe Collections
	30.7 Classes Diagram (UML)
	30.8 External links

	31 Throwing and Catching Exceptions
	31.1 Catching Matching rules
	31.2 Example of handling exceptions
	31.3 Application Exceptions
	31.4 Runtime Exceptions
	31.5 Main Exception Classes
	31.6 See Also
	31.7 Minimize the use of the keyword 'null' in assignment statements
	31.8 Minimize the use of the new Type[int] syntax for creating arrays of objects
	31.9 Check all references obtained from 'untrusted' methods
	31.10 Comparing string variable with a string literal
	31.11 See also

	32 Links
	32.1 External References
	32.2 External links

	33 License
	34 GNU Free Documentation License
	35 Authors
	List of Figures

