
ROSE Compiler Framework Page 1

ROSE Compiler Framework/Print

version

Contents
ROSE Compiler Framework/Print version ... 1

About the Book ... 6

How to contribute ... 6

Mission and Milestones .. 6

Mission Statement ... 7

Use cases ... 7

Core Technlogies .. 8

AST ... 8

bin(tools) directory.. 8

Compilation... 9

Translation .. 9

Analysis... 10

Optimization ... 10

Usability .. 11

Installation... 11

Documentation .. 11

API .. 12

Portability .. 12

Workflow .. 12

ROSE's Documentations ... 13

Obtaining ROSE ... 13

git 1.7.10 or later for github.com .. 14

Installation... 14

Platform Requirement ... 14

Software Requirement .. 14

Installing boost .. 15

Installing Java JDK ... 16

./build .. 16

configure ... 16

ROSE Compiler Framework Page 2

make .. 17

make check.. 17

make install ... 17

set environment variables ... 17

try out a rose translator ... 18

ROSE tools.. 18

identityTranslator .. 18

Supported Programming Languages ... 18

OpenMP support ... 19

CUDA support .. 19

Abstract Syntax Tree (Intermediate Representation) .. 19

visualization of AST ... 20

text output of AST .. 20

preprocessing info. .. 20

Program Translation.. 21

Expected behavior of a ROSE Translator ... 21

SageBuilder and SageInterface ... 21

Steps for writing translators .. 21

Order to traverse AST ... 22

example translators ... 22

Program Analysis .. 22

control flow graph ... 22

virtual control flow graph ... 22

static control flow graph ... 23

static and interprocedural CFGs .. 23

Virtual function analysis ... 23

def-use analysis ... 24

pointer analysis ... 24

SSA ... 25

Generic dataflow framework .. 26

Dependence analysis ... 26

Program Optimizations ... 26

Developer's Guide ... 27

Basic skills for ROSE developers ... 27

ROSE Compiler Framework Page 3

Expected Deliverables for Interns ... 27

code review ... 28

Workflow .. 28

Motivation and Goals .. 28

Current workflow .. 28

Issue tracking .. 29

Proposal of workflow changes .. 30

Review of workflow change proposal .. 30

Coding Standard.. 31

Current Practice vs. Improvement Suggestions .. 31

Allowed Programming Languages ... 32

Allowed Scripting Languages ... 32

Source comments .. 32

Language allowed ... 32

brief source comments .. 32

detailed comments .. 32

combined ... 33

README .. 34

Directory ... 34

Name Convention ... 34

Layout ... 34

Files ... 34

Name Convention ... 34

Header files ... 35

Source files.. 35

Classes and Variables ... 35

References ... 35

Code Review Process .. 35

Motivation ... 35

Goals ... 36

Software .. 36

Github ... 36

Developer Checklist .. 36

Coding Standards .. 36

ROSE Compiler Framework Page 4

Workflow .. 37

Reviewer Checklist ... 38

what to avoid ... 39

criticism... 40

references .. 40

Frequently Asked Questions (FAQ) ... 40

How to search rose-public mailinglist for previously asked questions? 40

Compilation... 40

How to speedup compiling ROSE? .. 40

Can ROSE accept incomplete code?... 41

Can ROSE analyze Linux Kernel sources? .. 41

Can ROSE compile C++ Boost library? ... 42

AST ... 42

How to find XYZ in AST?.. 42

How does the AST merge work? .. 42

How to filter out header files from AST traversals? ... 43

Should SgIfStmt::get_true_body() return SgBasicBlock? .. 43

How to handle #include "header.h", #if, #define etc. ? .. 43

SgClassDeclaration::get_definition() returns NULL? .. 44

Translation .. 44

Can ROSE identityTranslator generate 100% identical output file? 44

How to build a tool inserting function calls? .. 45

How to copy/clone a function? ... 45

Can I transform code within a header file? ... 46

How to work with formal and actual arguments of functions? 47

Daily work .. 47

git clone returns error: SSL certificate problem? .. 47

What is the best IDE for ROSE developers? .. 48

Portability .. 48

What is the status for supporting Windows? .. 48

How-tos ... 49

How to write a How-to ... 49

Create a new page ... 49

Rules of the content .. 50

ROSE Compiler Framework Page 5

How to incrementally work on a project ... 50

Incremental Development ... 50

Code Review ... 50

Continuous Integration.. 51

Divide and Conquer .. 51

How to set up the makefile for a translator ... 52

Environment variables .. 52

Translator Code ... 52

Makefile .. 52

How to debug a translator ... 53

A translator not built by ROSE's build system ... 53

A translator shipped with ROSE ... 54

How to add a new project directory .. 55

A basic example .. 55

How to fix a bug ... 55

Reproduce the bug .. 55

Find causes of the bug... 56

Fix the bug .. 56

Lessons Learned.. 56

Formating/Indending other people's code ... 57

Using branches of a same repository for different tasks ... 57

Testing... 57

Modena Test Suite .. 57

Who is using ROSE .. 58

Universities ... 58

DOE national laboratories... 58

TODO List .. 59

How to backup/mirror this wikibook? .. 59

Maintain the print version ... 59

Maintain the better pdf file ... 59

Sandbox... 60

How to create a new page ... 60

How to do XYZ in wiki? .. 61

Syntax highlighting ... 61

ROSE Compiler Framework Page 6

Math formula .. 62

 About the Book

The goal of this book is to have a community documentation providing extensive and

up-to-date instructional information about how to use the open-source ROSE compiler

framework, developed at Lawrence Livermore National Laboratory .

While the ROSE project website (http://www.rosecompiler.org) already has a variety of

official documentations, having a wikibook for ROSE allows anybody to contribute to

gathering information about this software.

Again, please note that this wikibook is not the official documentation of ROSE. It is the

community efforts contributed by anyone just like you.

 How to contribute

If you want to contribute, please first tell if your contributions are relevant to this

wikibook about ROSE

 Welcomed contributions: ROSE-specific tutorials, how-tos, FAQ, workflow

 What will be not be kept: Copy& paste of general guidelines of doing things:

Please just summary them in the ROSE-relevant wikibook page and give

reference, URL to it.

Once you are certain the relevance of your contributions. Please read how to do one

example contribution.

 http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_Ho

w-to

 You can just test water how to edit in wikibook using

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox

 Bottomline: make sure your contributions are visible in the print version of this

book and are logically consistent with the rest of the content.

o Link

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version

 Thank you!

 Mission and Milestones

http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/ROSE_(compiler_framework)
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory
http://www.rosecompiler.org/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Sandbox
file:///C:/Users/Acer/Downloads/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm

ROSE Compiler Framework Page 7

Some brainstorming for milestones of ROSE. The order of the sections is used to reflect

the priorities. The most important ones come first.

 Mission Statement

The primary mission of the ROSE project is to optimize applications within the U.S.

Department of Energy (DOE).

Goa: To develop the BEST open-source, [[w:Source-to-source_compiler|source-to-

source compiler] infrastructure in the world.

The ROSE team achieves this goal through:

 cutting-edge research on source- and high-level compiler analysis and

optimization algorithms

 best-practice software engineering to encapsulate existing and newly-developed

compiler techniques into easy-to-use APIs

 pre-built ROSE tools to perform program transformation, analysis and

optimization of your code

 an easy-to-use API to help you to build your own customized, domain-specific

compiler tools

Focus: To make advanced compiler techniques accessible to non-expert compiler or tool

writers.

Benefit to You: Improved programmer productivity, source code correctness,

performance, and efficiency.

ROSE Is...

 A research platform

 A library (and set of associated tools) to quickly and easily apply compiler

techniques to your code

 A compiler infrastructure for you to write your own custom source-to-source

translators to perform source code transformations, analyses, and optimizations.

 Use cases

ROSE is intended to be for the following purposes:

 We use ROSE in our own daily work. In other words, we eat our own dog food.

o Build ROSE translators to improve the code quality of ROSE, e.g.,

refactor code

http://energy.gov/
http://energy.gov/
http://en.wikipedia.org/wiki/Eating_your_own_dog_food

ROSE Compiler Framework Page 8

o Run static analysis tools built on ROSE to improve the code quality of

ROSE, e.g. enforce coding conventions and catch errors not found by

compilers and other commercial tools

o Run dynamic analysis tools built on ROSE to catch run-time errors in

ROSE

 ROSE is a DOE-fund software project within LLNL. A priority of ROSE is to

serve the mission of LLNL and build up the software capability of DOE.

o ROSE is being used to analyze, translate, and optimize DOE applications

to make them run faster and more efficiently on high performance

computing platforms.

 For average programmers

o ROSE is funded by the Office of Science of DOE and is released under a

BSD-like license. So everybody can obtain it to use the pre-built tools

shipped with ROSE and/or build them custom tools using ROSE.

 Core Technlogies

The uniqueness of ROSE lies on its high level program representation and its associated

compiler analysis, translation, and optimizations.

 AST

The Abstract Syntax Tree (AST) is the intermediate representation (IR) of programs in

ROSE. It is important to have an intuitive program representation.

TODO:

 clean up name conventions of AST nodes, member functions, member data

 Using Doxygen to document each node for its purpose: like which languages are

using it, the corresponding code constructs, etc

 document important data member and member functions

 use major versions to separate out big changes to names

Doxygen supports using a separated file to document classes/functions. For example, for

SgProject node, we can add documents for it in docs/testDoxygen/SgProject.docs

 bin(tools) directory

A place to provide popular and hardened tools built using ROSE. Users can use them

directly and immediately get real sense about how powerful/useful ROSE can be. We

also use these tools in our daily work.

tool list

 dot graph generator

 identityTranslator

http://en.wikipedia.org/wiki/United_States_Department_of_Energy
http://en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory

ROSE Compiler Framework Page 9

 call graph generator

 control flow graph generator

 outliner

 inliner

 loop transformation tools

 constant folding tool

 static analysis tool (compass)

 runtime error checking tool(RTED)

 automatic parallelization tool (autoPar)

So sample tools from tutorials and immature projects will not conflict with real hardened

tools.

By hardening these tools, we can really improve

 intra- and inter-procedural analysis

 global analysis using AST merge

Previous efforts in this direction:

 rose/tools: to be removed or merged into the new bin directory

 Compilation

This is really no point to talk about a compiler if it cannot compile the code you are

interested in.

Enrich the supported benchmarks for C, C++, Fortran, etc.

 ROSE itself: so we can eat our own dog food

 DOE/LLNL applications

 spec cpu benchmark: many conferences in compiler need proof of impact using

industrial benchmarks

 Linux kernel

 boost C++ library

 Plum Hall test suites and others

Fix blocking bugs

 Translation

With the AST representing an input program, the immediately possible thing is to do

program translation by restructuring the AST.

List

ROSE Compiler Framework Page 10

 refine SageBuilder so no low level AST constructors are needed to create AST

pieces

 refine SageInterface so AST insertion, deletion, copying is simpler

Sample translators built using ROSE

 AST outliner

 OpenMP implementation

 Cross language translation:

o Fortran 77 to C

o C++ to C

 Analysis

The core of compiler technology is the set of sophisticated compiler analyses. These

analyses are the basis for advanced compiler optimizations.

Implement and harden common analysis

 program representation for analysis: often raw AST may not be sufficient or

efficient

o control flow graph: intra-procedural and inter-procedural

o dominance analysis

o call graph

o SSA, including array SSA

 data flow framework: enabling writing a set of data flow analyses, including

o def-use

o liveness analysis

o constant propagation

o side-effect analysis

o alias, points-to analysis

o dependence analysis

Extend the analysis support for multiple languages

 C/C++

 Fortran

 OpenMP

 Optimization

Implementing an optimization often involving calling some relevant analyses and then

doing some translations.

List

ROSE Compiler Framework Page 11

 constant folding

 partial redundancy elimination

 common subexpression elimination

 loop optimizations

 parallelization

 vectorization

 Usability

 Installation

The first step every ROSE user must encounter is to install ROSE. We should try our best

to simplify, speedup, and automate this step as much as possible.

List

 ultimately: one step installation like apt-get install rose

 more realistic: two step process

o apt-get install rose-prerequisite

o ./build, configure, make, make install

 milestones, support two-step process on

o ubuntu

o Centos

 speedup the installation: goal is 30 minutes or less

 release a VM version of ROSE (use VeeWee, Vagrant, etc.)

 Documentation

Types of documentation

 Doxygen documents

o we promote source comment style so they can be automatically processed

to generate class/function reference web pages.

 Design and implementation docs

o written in LaTeX, reusable for writing academic papers, grant proposals.

o separate them out from the rose source base

 Developer/User guide

o we are experimenting with Markdown using github

o this wikibook is another experiment

o How-tos: like how to document an AST node

o coding standard/convention: directory layout

 Tutorials

o with embedded source code examples which must be tested with the latest

version of ROSE

o choice 1: keep adding the existing tutorial written in LaTex

o choice 2: experimenting .md

ROSE Compiler Framework Page 12

 API

ROSE essentially is a library encapsulating compiler techniques. We try to design

intuitive, organized, and well documented API so programmers can easily leverage

sophisticated compiler technology.

Checklist

 define top level namespaces to organize functionalities

 encapsulate core technologies of ROSE into simple functions

 Portability

The goal here is to make ROSE widely available on mainstream platforms.

Support

 popular Linux distributions and their major versions

o RedHat Enterprise Workstation or its open-source version, Centos

o Ubuntu LTS

o Fedora

 Mac OS X

 Windows: native support, not through Cygwin

Often, the key is to support

 more recent versions of GCC

 Boost C++ library

 Workflow

Quality comes from a good process.

See details at Workflow

Streamlined, simplified, and automated workflow involving both users and developers to

improve the qualify of ROSE and simplify our daily work.

 review of workflow changes

Current components and their roles:

 wikibook:

o big pictures and milestones

o instructional tutorials, how-tos, FAQ etc.

o coding standard/convention: file names, directory layout

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow

ROSE Compiler Framework Page 13

 mailing list: interaction with users, feel users' need

 redmine: create projects based on milestones and user input, create and track tasks

 Jenkins: continuous integration of new features, bugfixes

 github:

o internal:code review only,

o external: hosting code, issue tracking

o "rosebot" to automate Github workflow: preliminary testing, policies (git-

hooks), automatically add reviewers, etc.

 website: content management system hooked up with all other components

 ROSE's Documentations

ROSE uses a range of materials to document the project.

 ROSE manual: the design, algorithm, and implementation details. Written in

LaTeX, the content of the manual can come from published papers. It may

contain intense academic citations and math formula.

 ROSE tutorial: code examples for tools built on top of ROSE, step-by-step

instructions for doing things

 Doxygen web reference: class/namespace references of source code

 this wikibook: non-official, community documentation. Editable by anyone,

aimed to supplement official documents and to collect tutorials, FAQ and quick

pointers to important topics.

 Obtaining ROSE

ROSE's source files are managed by git, a distributed revision control and source code

management system. There are several ways to download the source tree:

 Private Git repos within LLNL

o Private Git repository hosted within Lawrence Livermore National

Laboratory: the internal file path is /usr/casc/overture/ROSE/git/ROSE.git:

central repo of ROSE, mostly automatically updated by Jenkins only after

incoming commits pass all regression tests

o Private Git repository hosted by github.llnl.gov: used for daily pushes and

code review

 Public repositories

o Public Git repository hosted at https://github.com/rose-compiler/rose: the

content is identical to the private Git repository's master branch at LLNL,

except that the proprietary EDG submodule is not released.

o Downloadable packages and a subversion repository (synchronized with

stable snapshots of ROSE's git repository):

https://outreach.scidac.gov/projects/rose/

https://github.com/rose-compiler/rose
https://outreach.scidac.gov/projects/rose/

ROSE Compiler Framework Page 14

 git 1.7.10 or later for github.com

github requires git 1.7.10 or later to avoid HTTPS cloning errors, as mentioned at

https://help.github.com/articles/https-cloning-errors

Ubuntu 10.04's package repository has git 1.7.0.4. So building later version of git is

needed. But you still need an older version of git to get the latest version of git.

 apt-get install git-core

Now you can clone the latest git

 git clone https://github.com/git/git.git

Install all prerequisite packages needed to build git from source files(assuming you

already installed GNU tool chain with GCC compiler, make, etc.)

 sudo apt-get install gettext zlib1g-dev asciidoc libcurl4-openssl-dev

 $ cd git # enter the cloned git directory

 $ make configure ;# as yourself

 $./configure --prefix=/usr ;# as yourself

 $ make all doc ;# as yourself

 # make install install-doc install-html;# as root

 Installation

ROSE is released as an open source software package. Users are expected to compile and

install the software.

 Platform Requirement

ROSE is portable to Linux and Mac OS X on IA-32 and x86-64 platforms. In particular,

ROSE developers often use the following development environments:

 Red Hat Enterprise Linux 5.6 or its open source equivalent Centos 5.6

 Ubuntu 10.04.4 LTS. Higher versions of Ubuntu are NOT supported due to the

GCC versions supported by ROSE.

 Mac OS X 10.5 and 10.6

 Software Requirement

Here is a list for prerequisite software packages for installing ROSE

 GCC 4.0.x to 4.4.x , the range of supported GCC versions is checked by support-

rose.m4 during configuration

https://help.github.com/articles/https-cloning-errors
https://github.com/git/git.git
http://www.centos.org/
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4

ROSE Compiler Framework Page 15

o gcc

o g++

o gfortran (optional for Fortran support)

 GNU autoconf >=2.6 and automake >= 1.9.5, GNU m4 >=1.4.5

 libtool

 bison (byacc),

 flex

 glibc-devel

 Sun Java JDK

 git

 boost library: version 1.36 to 1.48. Again the range of supported Boost versions is

checked by support-rose.m4 during configuration

 ZGRViewer, a GraphViz/DOT Viewer: essential to view dot graphs of ROSE

AST

o install Graphviz first - Graph Visualization Software

Optional packages for additional features or advanced users

 libxml2-devel

 sqlite

 texlive-full, need for building LaTeX docs

 Installing boost

The installation of Boost may need some special attention.

Download a supported boost version from

http://sourceforge.net/projects/boost/files/boost/

For version 1.36 to 1.38

./configure --prefix=/home/usera/opt/boost-1.35.0

 make

 make install

Ignore the warning like : Unicode/ICU support for Boost.Regex?... not found.

For version 1.39 and 1.48: create the boost installation directory first

In boost source tree

 ./bootstrap.sh --prefix=your_boost_install_path

 ./bjam install --prefix=your_boost_install_path --

libdir=your_boost_install_path/lib

Remember to export LD_LIBRARY_PATH for the installed boost library, for example

https://github.com/rose-compiler/rose/blob/master/config/support-rose.m4
http://sourceforge.net/projects/boost/files/boost/

ROSE Compiler Framework Page 16

D_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/leo/opt/boost_1.45.0_inst/lib

export PATH LD_LIBRARY_PATH

 Installing Java JDK

Download Java SE JDK from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

For example, you can download jdk-7u5-linux-i586.tar.gz for your Linux 32-bit system.

After untar it to your installation path, remember to set environment variables for Java

JDK

jdk path should be search first before other paths

PATH=/home/leo/opt/jdk1.7.0_05/bin:$PATH

lib path for libjvm.so

D_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/leo/opt/jdk1.7.0_05/jre/lib/i386/

server

Don't forget to export both variables!!

export PATH LD_LIBRARY_PATH

 ./build

In general, it is better to rebuild the configure file in the top level source directory of

ROSE. Just type:

 rose_sourcetree>./build

 configure

The next step is to run configure in a separated build tree. ROSE will complain if you try

to build it within its source directory.

There are many configuration options. You can see the full list of options by

typing ../sourcetree/configure --help . But only --prefix and --with-boost are required as

the minimum options.

 mkdir buildrose

 cd buildrose

 ../rose_sourcetree/configure --prefix=/home/user/opt/rose_tux284 --

with-boost=/home/user/opt/boost-1.36.0/

ROSE's configure turns on debugging option by default. The generated object files

should already have debugging information.

Additional useful configure options

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ROSE Compiler Framework Page 17

 Specify where a gcc's OpenMP runtime library libgomp.a is located. Only GCC

4.4's gomp lib should be used to have OpenMP 3.0 support

o --with-gomp_omp_runtime_library=/usr/apps/gcc/4.4.1/lib/

 make

In ROSE's build tree, type

 cd buildrose

 make -j4

will build the entire ROSE, including librose.so, tutorials, projects, tests, and so on. -j4

means to use four processes to perform the build. You can have bigger numbers if your

machine supports more concurrent processes. Still, the entire process will take hours to

finish.

For most users, building librose.so should be enough for most of their work. In this case,

just type

 make -C src/ -j4

 make check

Optionally, you can type make check to make sure the compiled rose pass all its shipped

tests. This takes hours again to go through all make check rules within projects, tutorial,

and tests directories.

To save time, you can just run partial tests under a selected directory, like the

buildrose/tests

 make -C tests/ check -j4

 make install

After "make", it is recommended to run "make install" so rose's library (librose.so),

headers (rose.h) and some prebuilt rose-based tools can be installed under the specified

installation path using --prefix.

 set environment variables

After the installation, you should set up some standard environment variables so you can

use rose. For bash, the following is an example:

ROSE_INS=/home/userx/opt/rose_installation_tree

PATH=$PATH:$ROSE_INS/bin

ROSE Compiler Framework Page 18

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROSE_INS/lib

Don't forget to export variables !!!

export PATH LD_LIBRARY_PATH

 try out a rose translator

There are quite some pre-built rose translators installed under $ROSE_INS/bin.

You can try identityTranslator, which just parses input code, generates AST, and

unparses it back to original code:

 identityTranslator -c helloWorld.c

It should generate an output file named rose_helloWorld.c, which should just look like

your input code.

 ROSE tools

ROSE is a compiler framework to build customized compiler-based tools. A set of

example tools are provided as part of the ROSE release to demonstrate the use of ROSE.

Some of them are also useful for daily work of ROSE developers.

We list and briefly explain some tools built using ROSE. They are installed under

ROSE_INSTALLATION_TREE/bin .

 identityTranslator

This is the simplest tool built using ROSE. It takes input source files , builds AST, and

then unparses the AST back to compilable source code. It tries its best to preserve

everything from the input file. But due to limitations of the frontends and the internal

processing, it cannot generate 100% identical output compared to the input file.

Some notable changes it may introduce include:

 "int a, b, c;" are transformed to three SgVariableDeclaration statements,

 macros are expanded.

 extra brackets are added around constants of typedef types (e.g.

c=Typedef_Example(12); is translated in the output to c =

Typedef_Example((12));)

 Converting NULL to 0.

 Supported Programming Languages

ROSE Compiler Framework Page 19

ROSE supports a wide range of main stream programming languages, with different

degrees of maturity. The list of supported languages includes:

 C and C++: based on the EDG C++ frontend version 3.3.

o An ongoing effort is to upgrade the EDG frontend to its recent 4.4 version.

o Another ongoing effort is to use clang as an alternative, open-source

C/C++ frontend

 Fortran 77/95/2003: based on the Open Fortran Parser

 OpenMP 3.0: based on ROSE's own parsing and translation support for both

C/C++ and Fortran OpenMP programs.

 UPC 1.1: this is also based on the EDG 3.3 frontend

 OpenMP support

ROSE supports OpenMP 3.0 for C/C++ (and limited Fortran support).

 The ROSE manual has a chapter (Chapter 12 OpenMP Support) explaining the

details. pdf

 A paper was published for the uniqueness of the ROSE OpenMP Implementation

pdf

 Frontend parsing source files (ompparser.yy and ompFortranParser.C) are located

under https://github.com/rose-compiler/rose/tree/master/src/frontend/SageIII

 The transformation of OpenMP into threaded code is located in

omp_lowering.cpp, under https://github.com/rose-

compiler/rose/blob/master/src/midend/programTransformation/ompLowering

 The OpenMP runtime interface is defined in libxomp.h and xomp.c under the

same ompLowering directory mentioned above

 CUDA support

ROSE has an experimental connection to EDG 4.0, which helps us support CUDA.

To enable parsing CUDA codes, please use the following configuration options:

 --enable-edg-version=4.0 --enable-cuda --enable-edg-cuda

Chapter 16 of ROSE User Manual has more details about this.

 Abstract Syntax Tree (Intermediate

Representation)

The main intermediate representation of ROSE is its abstract syntax tree (AST).

http://www.edg.com/index.php?location=c_frontend
http://fortran-parser.sourceforge.net/
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_ResearchPapers/2010-06-AROSEBasedOpenMP3.0ResearchCompiler-IWOMP.pdf
https://github.com/rose-compiler/rose/tree/master/src/frontend/SageIII
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering
https://github.com/rose-compiler/rose/blob/master/src/midend/programTransformation/ompLowering

ROSE Compiler Framework Page 20

 visualization of AST

We provide ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph to

generate a dot graph of the detailed AST of input code.

To visualize the generated dot graph, you have to install

 ZGRViewer here: http://zvtm.sourceforge.net/zgrviewer.html#download.

 Graphviz: http://www.graphviz.org/Download.php.

A complete example

make sure the environment variables(PATH, LD_LIBRARY_PATH) for the

installed rose are correctly set

which dotGeneratorWholeASTGraph

~/workspace/masterClean/build64/install/bin/dotGeneratorWholeASTGraph

run the dot graph generator

dotGeneratorWholeASTGraph -c ttt.c

#see it

which run.sh

~/64home/opt/zgrviewer-0.8.2/run.sh

run.sh ttt.c_WholeAST.dot

 text output of AST

just call: SgNode::unparseToString(). You can call it from any SgLocatedNode within the

AST to dump partial AST's text format.

 preprocessing info.

In addition to nodes and edges, ROSE AST may have some extra attributes attached for

preprocessing information like #include, #if .. #else. They are attached before, after, or

within a nearby lAST node (only the one with source location information.)

An example translator will traverse the input code's AST and dump information about the

found preprocessing information,

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c

main.cxx

Found an IR node with preprocessing Info attached:

(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in

file

/export/tmp.liao6/workspace/userSupport/main.cxx (line 3 column 1)

-------------PreprocessingInfo #0 ----------- :

classification = CpreprocessorIncludeDeclaration:

http://zvtm.sourceforge.net/zgrviewer.html#download
http://www.graphviz.org/Download.php

ROSE Compiler Framework Page 21

 String format = #include "all_headers.h"

relative position is = before

Please read more about this topic from ROSE tutorial: "Chapter 29 Handling Comments,

Preprocessor Directives, And Adding Arbitrary Text to Generated Code" . You can

download it from http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

 Program Translation

With its high level intermediate representation, ROSE is suitable for building source-to-

source translators. This is achieved by re-structuring the AST of the input source code,

then unparsing the transformed AST to the output source code.

 Expected behavior of a ROSE Translator

A translator built using ROSE is designed to act like a compiler (gcc, g++,gfortran ,etc

depending on the input file types).

So users of the translator only need to change the build system for the input files to use

the translator instead of the original compiler.

 SageBuilder and SageInterface

The official guide for restructuring/constructing AST highly recommends using helper

functions from SageBuilder and SageInterfaces namespaces to create AST pieces and

moving them around. These helper functions try to be stable across low-level changes

and be smart enough to transparently set many edges and maintain symbol tables.

Users who want to have lower level control may want to directly invoke the member

functions of AST nodes and symbol tables to explicitly manipulate edges and symbols in

the AST. But this process is very tedious and error-prone.

 Steps for writing translators

Generic steps:

 prepare a simplest source file (a.c) as an example input of your translator

o avoid including any system headers so you can visualize the whole AST

o use ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph

to generate a whole AST for a.c

 prepare another simplest source file (b.c) as an example output of your translator

o again, avoid including any system headers

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

ROSE Compiler Framework Page 22

o use ROSE_INSTALLATION_TREE/bin/dotGeneratorWholeASTGraph

to generate a whole AST for b.c

 compare the two dot graphs side by side

 use SageInterface or SageBuilder functions to restruct the source AST graph to be

the AST graph you want to generate

 Order to traverse AST

Naive pre-order traversal is not suitable for building a translator since the translator may

change the nodes the traversal is expected to visit later on. Conceptually, this is

essentially the same problem with C++ iterator invalidation.

To safely transform AST, It is recommended to use a reverse iterator of the statement list

generated by a preorder traversal. This is different from a list generated from a post order

traversal.

For example, assuming we have a subtree of : parent <child 1, child 2>,

 Pre order traversal will generate a list: parent, child 1, child2

 Post order traversal will generate a list: child 1, child2, parent.

 Reverse iterator of the pre order will give you : child2, child 1, and parent.

Transforming using this order is the safest based on our experiences.

 example translators

split one complex statement into multiple simpler statements

 ROSE/projects/backstroke/ExtractFunctionArguments.C

 Program Analysis

ROSE have implemented the following compiler analysis

 call graph analysis

 control flow graph

 data flow analysis: including liveness analysis, def-use analysis, etc.

 dependence analysis

 side effect analysis

 control flow graph

ROSE provides several variants of control flow graphs

 virtual control flow graph

ROSE Compiler Framework Page 23

The virtual control flow graph (vcfg) is dynamically generated on the fly when needed.

So there is no mismatch between the ROSE AST and its corresponding control flow

graph. The downside is that the same vcfg will be re-generated each time it is needed.

This can be a potentially a performance bottleneck.

Facts

 documentation: virtual CFG is documented in Chapter 19 Virtual CFG of

ROSE tutorial pdf

 source files:

o src/frontend/SageIII/virtualCFG/virtualCFG.h

o src/ROSETTA/Grammar/Statement.code // prototypes of member

functions for located nodes, etc.

o src/frontend/SageIII/virtualCFG/memberFunctions.C // implementation of

virtual CFG related member functions for each AST node

 this file will help the generation of

buildTree/src/frontend/SageIII/Cxx_Grammar.h

 test directory: tests/CompileTests/virtualCFG_tests

 a dot graph generator: generator a dot graph for either the raw or interesting

virtual CFG.

o source: tests/CompileTests/virtualCFG_tests/generateVirtualCFG.C

o Installed under rose_ins/bin

 static control flow graph

Due to the performance concern of virtual control flow graph, we developed another

static version which persistently exists in memory like a regular graph.

Facts:

 documentation: 19.7 Static CFG of ROSE tutorial pdf

 test directory: rose/tests/CompileTests/staticCFG_tests

 static and interprocedural CFGs

Facts:

 documentation: 19.8 Static, Interprocedural CFGs of ROSE tutorial pdf

 test directory: rose/tests/CompileTests/staticCFG_tests

 Virtual function analysis

Facts

 Original contributor: Faizur from UTSA, done in Summer 2011

 Code: at src/midend/programAnalysis/VirtualFunctionAnalysis.

http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://www.rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

ROSE Compiler Framework Page 24

 implemented with the techniques used in the following paper: "Interprocedural

Pointer Alias Analysis -

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382". The paper

boils down the virtual function resolution to pointer aliasing problem. The paper

employs flow sensitive inter procedural data flow analysis to solve aliasing

problem, using compact representation graphs to represent the alias relations.

 some test files in the roseTests folder of the ROSE repository and he told me that

the implementation supports function pointers as well as code which is written

across different files (header files etc).

 documentation: Chapter 24 Dataflow Analysis based Virtual Function Analysis,

of ROSE tutorial pdf

 def-use analysis

If you want a def-use analysis, try this

http://www.rosecompiler.org/ROSE_HTML_Reference/classVariableRenaming.html

VariableRenaming v(project);

v.run();

v.getReachingDefsAtNode(...);

 pointer analysis

https://mailman.nersc.gov/pipermail/rose-public/2010-September/000390.html

On 9/1/10 11:49 AM, Fredrik Kjolstad wrote: > Hi all, > > I am trying to use Rose as the

analysis backend for a refactoring > engine and for one of the refactorings I am

implementing I need > whole-program pointer analysis. Rose has an implementation of >

steensgard's algorithm and I have some questions regarding how to use > this. > > I

looked at the file steensgaardTest2.C to figure out how to invoke > this analysis and I am

a bit perplexed: > > 1. The file SteensgaardPtrAnal.h that is included by the test is not >

present in the include directory of my installed version of Rose. > Does this mean that the

Steensgaard implementation is not a part of > the shipped compiler, or does it mean that I

have to retrieve an > instance of it through some factory method whose static return type

is > PtrAnal? I believe it is in the shipped compiler. And you're using the correct file to

figure out how to use it. It should be in the installed include directory --- if it is not, it's

probably something that needs to be fixed. But you can copy the include file from

ROSE/src/midend/programAnalysis/pointerAnal/ as a temporary fix

> > 2. How do I initialize the alias analysis for a given SgProject? Is > this done through

the overloaded ()?

The steensgaardTest2.C file shows how to set up everything to invoke the analysis. Right

now you need to go over each function definition and invoke the analysis explicitly, as

illustrated by the main function in the file. > > 3. Say I want to query whether two pointer

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2382
http://www.rosecompiler.org/ROSE_HTML_Reference/classVariableRenaming.html
https://mailman.nersc.gov/pipermail/rose-public/2010-September/000390.html

ROSE Compiler Framework Page 25

variables alias and I have > SGNodes to their declarations. How do I get the AstNodePtr

needed to > invoke the may_alias(AstInterface&, const AstNodePtr&, const >

AstNodePtr&) function? Or maybe I should rather invoke the version of > may_alias that

takes two strings (varnames)? > To convert a SgNode* x to AstNodePtr, wrap it inside an

AstNodePtrImpl object, i.e., do AstNodePtrImpl(x), as illustrated inside the () operator of

TestPtrAnal in steensgaardTest2.C.

> 4. How do I query whether two parameters alias? > The PtrAnal class has the following

interface method

 may_alias(AstInterface& fa, const AstNodePtr& r1, const AstNodePtr&

r2); It is implemented in SteensgaardPtrAnal class, which inherit PtrAnal class. To build

AstInterface and AstNodePtr, you simply need to wrap SgNode* with some wrapper

classes, illustrated by steensgaardTest2.C

-Qing Yi

void func(void) {

int* pointer;

int* aliasPointer;

pointer = malloc(sizeof(int));

aliasPointer = pointer;

*aliasPointer = 42;

printf("%d\n", *pointer);

}

The SteensgaardPtrAnal::output function returns:

c:(sizeof(int)) LOC1=>LOC2

c:42 LOC3=>LOC4

v:func LOC5=>LOC6 (inparams:) ->(outparams: LOC7)

v:func-0 LOC8=>LOC7

v:func-2-1 LOC9=>LOC10

v:func-2-3 LOC11=>LOC12 (pending LOC10 LOC13=>LOC14 =>LOC4)

v:func-2-4 LOC15=>LOC16 =>LOC17

v:func-2-5 LOC18=>LOC14 =>LOC4

v:func-2-aliasPointer LOC19=>LOC14 =>LOC4

v:func-2-pointer LOC20=>LOC13 =>LOC14 =>LOC4

v:malloc LOC21=>LOC22 (inparams: LOC2) ->(outparams: LOC12)

v:printf LOC23=>LOC24 (inparams: LOC16=>LOC17 LOC14=>LOC4) -

>(outparams:

 LOC25)

 SSA

ROSE has implemented an SSA form. Some discussions on the mailing list: link.

Rice branch has an implementation of array SSA. We are waiting for their commits to be

pushed into Jenkins. --Liao (discuss • contribs) 18:17, 19 June 2012 (UTC)

https://mailman.nersc.gov/pipermail/rose-public/2012-March/001496.html
http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Contributions/Liao

ROSE Compiler Framework Page 26

 Generic dataflow framework

As the ROSE project goes on, we have collected quite some versions of dataflow

analysis. It is painful to maintain and use them as they

 duplicate the iterative fixed-point algorithm

 scatter in different directories and

 use different representations for results.

An ongoing effort is to consolidate all dataflow analysis work within a single framework.

Quick facts

 original author: Greg Bronevetsky

 code reviewer: Chunhua Liao

 Documentation:

 source codes: files under ./src/midend/programAnalysis/genericDataflow

 tests: tests/roseTests/programAnalysisTests/generalDataFlowAnalysisTests

 currently implemented analysis

o dominator analysis: dominatorAnalysis.h dominatorAnalysis.C

o livedead variable analysis, or liveness analysis: liveDeadVarAnalysis.h

liveDeadVarAnalysis.C

o constant propagation: constantPropagation.h constantPropagation.C:

TODO need to move the files into src/ from /tests

 Dependence analysis

The interface for dependence graph could be found in DependencyGraph.h. The

underlying representation is n DepGraph.h. BGL is required to access the graph.

Here are 6 examples attached with this email. In deptest.C, there are also some macros to

enable more accurate analysis.

If USE_IVS is defined, the induction variable substitution will be performed. if

USE_FUNCTION is defined, the dependency could take a user-specified function side-

effect interface. Otherwise, if non of them are defined, it will perform a normal

dependence analysis and build the graph.

 Program Optimizations

ROSE provides the following program optimizations and tranformations:

 loop transformation, including loop fusion, fisson, unrolling, blocking, loop

interchange, etc.

https://mailman.nersc.gov/pipermail/rose-public/2012-May/001620.html

ROSE Compiler Framework Page 27

 inlining

 outlining

 constant folding

 partial redundancy elimination

 Developer's Guide

We briefly describe the workflow of ROSE developers.

 Basic skills for ROSE developers

These are some basic skills that you, as a ROSE developer, should have or acquire as you

work on your project(s):

 Linux shell: bash is the default shell for ROSE. know common commands (grep,

find, ...) and basic scripting (bash, ...)

 C++ programming - be conscious of applying consistent coding-style conventions

and writing code that will be maintainable when you leave -

 Debugging: GDB will be indispensable to make sure your code works as expected

 Git - source code management. Get familiar with the basics of Git: http://git-

scm.com/

 Build systems - GNU Autotools (autoconf, automake), GNU Make, GNU libtool,

and CMake (primarily so you won't break our existing Windows port)

 LaTex - Document your work in ROSE/docs

 Be familiar with ROSE documents (tutorials, installation, and developer guides):

http://rosecompiler.org/documents.html. This also includes the project's Doxygen

documentation.

 Compiler - ROSE is a compiler project after all. Take some compiler courses

o Read online free course materials related to compilers

o Keep learning topics related to your projects

 Expected Deliverables for Interns

Projects should result in some concrete deliverables, including but not limited to

 source codes: must past code review and Jenkins so the codes can be merged into

rose's master branch. Unfortunately, we have no resources to fix/merge dangling

branches after students leave.

 bug fixes: fix issues/bugs assigned to you. The goal is to close these issues after

your work.

 documentation: write new chapters, improve existing ones, mostly in LaTeX

format.

http://git-scm.com/
http://git-scm.com/
http://rosecompiler.org/documents.html

ROSE Compiler Framework Page 28

 presentation: give a talk to share what you have learn and/or what you have done.

It is a group-learning process. We will also use some of your slides to report to

our sponsors.

 publication: try to publish a paper during your stay with us.

 weekly status reports: please update your redmine project's tasks to reflect what

you have done each week

Of course, not every project should produce all types of the deliverables.

 code review

see Code Review for details

 Workflow

 Motivation and Goals

Quality comes from a good process.

The goal is to have a streamlined, simplified, and automated workflow involving both

users and developers to

 improve the qualify of ROSE: source codes and documentations

 improve our productivity: optimize and simplify our daily work process so we can

do more quality work using less time and other resources

 Current workflow

Requirement Analysis

 external (https://github.com/rose-compiler/rose): start an issue to be discussed

 wikibook:

o draft big pictures and milestones

 mailing list: interaction with users, feel users' need

Design

 wikibook: quick draft design documents and provoke discussion

 powerpoint slides: more formal communication about what is the design

Implementation

 redmine (http://hudson-rose-30:3000/): create projects based on milestones and

user input, create and track tasks

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
https://github.com/rose-compiler/rose
http://hudson-rose-30:3000/

ROSE Compiler Framework Page 29

 github:

o internal (http://github.llnl.gov/):code review only,

o external (https://github.com/rose-compiler/rose): public hosting code,

issue tracking

o "rosebot" to automate Github workflow: preliminary testing, policies (git-

hooks), automatically add reviewers, etc.

Testing

 Jenkins ((http://hudson-rose-30:8080/)): continuous integration of new features,

bugfixes

Documentation

 See more at ROSE Compiler Framework/Documentation

Publicity

 website (http://www.rosecompiler.org): content management system hooked up

with all other components

 Issue tracking

We actual have more issue trackers than we would like to have right now. This is caused

by the different purposes of issue tracking and the balancing between transparency and

privacy/security. Maintainability is also a big factor since internal issue trackers may

have quite some down-time compared to commercial websites.

 SciDAC outreach center:

o external issue tracker(in use): used by end-users only to collect user-

submitted issues (ROSE bugs and feature requests). A nice thing about

this tracker is that it allows submitting issues anonymously, very handy for

busy and/or shy users. We should try to keep this quick channel open.

o private issue tracker(phasing out): internal-submitted issues, which are not

suitable for public view for any reasons. All issues should be moved to the

internal issue tracker (redmine) we decide to use.

 Internal redmine (in use): the nice thing here is that it is a dedicated and intuitive

project management web application. Tasks (like papers, presentations) can be not

related to source code at all. Also important is that it is internal. We can have very

secure internal project information. The downside is that it is hard to involve

external collaborators.

o Project specific issue tracking: each research project (and summer student

project) has its own issue trackers

o Internal issue tracking: any issues which are not suitable for public

discussion for any reason.

http://github.llnl.gov/):code
https://github.com/rose-compiler/rose
http://hudson-rose-30:8080/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Documentation
http://www.rosecompiler.org/

ROSE Compiler Framework Page 30

 github.com: potentially handy to connect with issue trackers of github. But not

full-featured as a project management software. Everything has to be tied to a git

repo. It is not a general assumption. Another downside is that it is public, not

suitable for our internal projects.

o rosecompiler/rose 's issue tracking(in use). A very good way to involving

collaborators without remote access to LLNL. Used to track anything

which is general to ROSE and not specific to a ROSE-based project.

o rosecompiler/rose-docs 's issue trackingn(phasing out)

 github enterprise within LLNL: having benefits of being internal. But still not a

general project management software.

o We only use it for code review. Issue tracking there is turned off.

https://github.com/blog/831-issues-2-0-the-next-generation

http://stackoverflow.com/questions/8888675/in-github-issue-tracker-can-non-admin-

users-assign-users-and-labels

http://programmers.stackexchange.com/questions/129714/how-to-manage-github-issues-

for-priority-etc

 Proposal of workflow changes

Major workflow improvements and changes should be thoroughly tested and reviewed by

staff members before deployment since they may have profound impact on the project

How to propose a workflow change

 submit a ticket on github.com's rose-public/rose issue tracker. in the ticket,

 (what is it) explain what change is proposed

 (benefits) why the changes: the long-term benefits for our productivity and quality

of work

 (costs) the cost of the changes: learning curve, maintainability, purchase cost

 Review of workflow change proposal

Review criteria:

 improve our productivity: optimize our workflow to allow us to do more quality

and use less time and other resources

o address what is slowing us down or distracting us

o Simplify daily life (less hoops, the better). Side-by-side comparison of

how many hoops we eliminated/automated by the workflow improvements

 It is counterproductive to improve workflow by adding more

hoops/steps/clicks into daily work.

 improve quality of work incrementally:

https://github.com/blog/831-issues-2-0-the-next-generation
http://stackoverflow.com/questions/8888675/in-github-issue-tracker-can-non-admin-users-assign-users-and-labels
http://stackoverflow.com/questions/8888675/in-github-issue-tracker-can-non-admin-users-assign-users-and-labels
http://programmers.stackexchange.com/questions/129714/how-to-manage-github-issues-for-priority-etc
http://programmers.stackexchange.com/questions/129714/how-to-manage-github-issues-for-priority-etc

ROSE Compiler Framework Page 31

o accepting incremental improvements is more realistic than asking for

perfection for the first attempt.

o workflow should allow quick new contributions and fast revision of

existing contributions

 automation: new steps of workffow should be automated as much as possible.

 compatibility:

o preserve existing work, not create anything from scratch

o interact well with existing workflow

o Or having a way to converting existing code/documents into the new form

 easy to use and maintain:

o the more software tools we depend on, the harder to use and maintain our

workflow. Similarly, the more formats/standards we enforce, the harder

for developers to do their daily work

o So adopting new required software components and new required

technical formats/standards in our workflow should be very carefully

reviewed for the associated long-term benefits and costs. Long-term

means the range of 5 to 10 years and is not tied to a temporary thing we

use now.

 preference of major contributors: whoever contributes the most should has a little

bit more weight to say

 documentation: we require major changes to be documented and reviewed before

deployment. Writing down things can help us clarify details and solicit wider

comments (instead of limited to face-to-face meeting)

 conflict resolution: it will be common to have disagreements or even strong

opinions. So we should try our best to resolve differences or we raise the

difference to Dan to decide.

 Coding Standard

 Current Practice vs. Improvement Suggestions

This page documents the current practice of how we write code within the ROSE project.

It also serves as a guideline for our code review process.

This is not a place to write down the new ideas/concepts/suggestions to be used in the

future.

We do welcome suggestions for improvements and changes so we can do things faster

and better.

 For suggestions, please follow the procedure defined in

Proposal_of_workflow_changes

 The suggestions will be reviewed by the criteria defined in

Review_of_workflow_change_proposal

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Proposal_of_workflow_changes
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Workflow#Review_of_workflow_change_proposal

ROSE Compiler Framework Page 32

 Allowed Programming Languages

Essentially, only C++ is allowed. Any other programming language is an exception on a

case-by-case consideration

Question: But Programming language XYZ is much better than C++ and I am really good

at XYZ!!!

Answer: we can allow XYZ only if

 you can teach at least one of old dogs (staff members) of our team the new tricks

to efficiently use XYZ

 you will be around in our team in the next 5 to 10 years to maintain all the code

written in XYZ if none of the old dogs have time/interest to switch to XYZ

 you can prove that XYZ can interact well with the existing C++ codes in ROSE

 Allowed Scripting Languages

Only two scripting languages are allowed

 bash shell scripting

 perl

Again, this is just a preference of the staff members and what we have now. Allowing

uncontrolled number of scripting languages in a single project will make the project

impossible to maintain and hard to learn.

 Source comments

Please use styles recognizable by Doxygen. So headers and source files can be parsed and

references can be automatically generated.

 Language allowed

Only English is allowed. Period.

 brief source comments

For single line source comments

//! brief description

/// brief description

 detailed comments

ROSE Compiler Framework Page 33

For multiple-line comments

/**

 ... text..

 */

/**

 *

 * ... text..

 *

 */

/*!

 * ...text....

 */

/*!

 ...text....

 */

///

/// ...text

///

//!

//! ...text

//!

/*******************************//**

 * text

*********************************/

/////////////////////////////////////

/// ... text

//////////////////////////////////////

 combined

Often we need both brief and detailed comments at the same time:

/*! \brief Brief description.

 * Brief description continued.

 *

 * Detailed description starts here.

 */

//! A constructor.

/*!

 A more elaborate description of the constructor.

*/

ROSE Compiler Framework Page 34

 README

For all major directory in ROSE, there should be a README explaining

 what this directory is about

 who added it and when

Each project directory must have a README to explain:

 What this project is about

o Name of the project

o Motivation: Why do we have this project

o Goal: what do we want to achieve

 Design/Implementation: So next person can quickly catch up and contribute to

this project

o How do we design/implement it.

o What is the major algorithm

 Brief instructions about how to use the project

o installation

o testing

o or point out where to find the detailed documentation for this project

 Status

o What is working now

o Known limitations

 References and citations: for the underneath algorithms

 Authors and Dates

An example README can be found at

 https://github.com/rose-

compiler/rose/blob/master/projects/OpenMP_Translator/README

 Directory

 Name Convention

 Layout

TODO: big picture about where to put things within the ROSE git repository.

 Files

 Name Convention

https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README
https://github.com/rose-compiler/rose/blob/master/projects/OpenMP_Translator/README

ROSE Compiler Framework Page 35

 Header files

 Source files

 Classes and Variables

Try to use namespace when possible, avoid global variables or classes.

 References

 http://www.possibility.com/Cpp/CppCodingStandard.html

 Code Review Process

Code review using github.llnl.gov

Connection between github and Jenkins

 Motivation

http://www.possibility.com/Cpp/CppCodingStandard.html
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-1.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-1.png
http://commons.wikimedia.org/wiki/File:Rose-compiler-code-review-2.png
http://en.wikibooks.org/wiki/File:Rose-compiler-code-review-2.png

ROSE Compiler Framework Page 36

Without code review, developers have:

 added files into wrong directories, with improper names

 committed hundreds of reformatted files

 disabled tests to subvert our stringent Jenkins CI regression tests

 re-invented the wheel by implementing features that already exist

 Goals

Our primary goals for code reviewing ROSE are to:

 share knowledge about the code: coder + reviewer will know the code, instead of

just the coder

 group-study: learn through studying other peoples' code

 enforce policies for consistent usability and maintainability of ROSE code

 avoid reinventing the wheel and eliminating unnecessary redundancy

 safe-guarding the code: disallowing subversive attempts to disable or remove

regression tests

 Software

We are currently testing Github Enterprise and looking into the possibility of leveraging

Redmine for internal code review.

In the past, we have looked at Google's Gerrit code review system.

 Github

Releases: https://enterprise.github.com/releases

Support: https://support.enterprise.github.com

 Developer Checklist

Read these tips and guidelines before sending a request for code review.

 Coding Standards

Please go to Coding Standard for the complete guideline. Here we only summary some

key points.

Your code should be written in a way that makes it easily maintainable and reviewable:

https://enterprise.github.com/dashboard
http://www.redmine.org/
http://code.google.com/p/gerrit/
https://enterprise.github.com/releases
https://support.enterprise.github.com/
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard

ROSE Compiler Framework Page 37

 write easy to understand code; avoid using exotic techniques which nobody can

easily understand.

 add sufficient documentation (source-code comments, README, etc.) to aid the

understandability of your code, your documentation should cover

o why do you do this (motivation)

o how do you do it (design and/or algorithm)

o where are the associated tests (works as expected)

 before submission of your code for review, make sure

o you have merged with the latest central repository's master branch without

conflicts

o your working copy can pass local tests via: make, make check, and make

distcheck

o you have fixed all compiler warnings of your code whenever possible

 submit a logical unit of work (one or more commits); something coherent like a

bug fix, an improvement of documentation, an intermediate stage for reaching a

big new feature.

 balance code submissions with a good ratio of [lines of code] and [complexity of

code]. A good balance needs to be achieved to make the reviewer's life easier.

o the time needed to review your code should not exceed 1 hour

 Workflow

Steps for initializing code review:

One time setup

 log into http://github.llnl.gov using your OUN and PAC

 fork your own rose repo from rose-compiler/rose

o Goto http://github.llnl.gov/rose-compiler/rose, click Fork on the right

upper corner of the webpage

 add potential reviewers (liao6, too1, vanderbrugge1, aananthakris1, vanka1) into

your forked repo as collaborators, so they can review and merge your branches

into your master branch later on

 add hudson-rose as your collaborator also so it can automatically push latest

commits to your master branch to keep it up-to-date

o Goto youraccount/rose of github.llnl.gov, then click Admin ->

Collaborators

 create your public-private key pair using ssh-keygen, and copy your public key

into your profile with github.llnl.gov

o this is necessary since only ssh is supported by github.llnl.gov for now.

https is not yet supported.

Daily work process

 have a local git repo to do your work and submit local commits, you have two

choices:

http://github.llnl.gov/
http://github.llnl.gov/rose-compiler/rose

ROSE Compiler Framework Page 38

o clone it from /nfs/casc/overture/rose/rose.git as we usually do before

o clone your fork on github.llnl.gov to a local repo: use the ssh URL option

for now since the https option won't work.

o don't use branches, use separated git repositories for each of your tasks. So

status/progress of one task won't interfere with other tasks.

 When ready to push your commits, synchronize with the latest rose-

compiler/master to resolve merge conflicts, etc.

o type: git pull origin master # this should always work since master

branches on github.llnl.gov are automatically kept up-to-date

o make sure your local changes can pass 1)make -j8, 2)make check -j8, and

3)make distcheck -j8

 push your commits to your fork's non-master branch, like bugfix-rc , featurex-rc.

You have total freedom in creating any branches in your forked repo, with any

names you like

 # If your local repository was cloned from

/nfs/casc/overture/ROSE/rose.git.

 # There is no need to discard it. You can just add the github.llnl's

repo as an additional remote repository and push things there:

 git remote add github-llnl-youraccount-rose

http://github.llnl.gov/youraccount/rose.git

 git push github-llnl-youraccount-rose HEAD:refs/heads/bugfix-rc

 add a pull(merge) request to merge bugfix-rc into your own fork's master,

o please note that the default pull request will use rose-compiler/rose's

master as the base branch (destination of the merge). Please change it to be

your own fork's master branch instead.

o Also make sure the source (head) branch of the pull (merge) request is the

one your want (bugfix-rc in this example)

 notify a reviewer that you have a pull request (requesting to merge your bugfix-rc

into your master branch)

o You can assign the pull request to the reviewer so an email notification

will be automatically sent to the reviewer

o Or you can add discussion for the pull request using @revieweraccount

o Or you can just email the reviewer

 waiting for reviewer's feedback:

o if passes, reviewer should have merged your bugfix-rc into your master.

Jenkins will automatically poll your master and do the testing/merging

o if reviewer wants additional changes such as better naming, better places

to put files, more source comments, accompanying regression tests, etc.

Just repeat the process: do local edits, local commits, push to your remote

branch, send merge request again

o A third possible outcome is that reviewers may accept the commits. But

some additional tasks are needed in the future to improve the code.

 Reviewer Checklist

ROSE Compiler Framework Page 39

What to look as a code reviewers?

 Be familiar with the current Coding Standard as a general guideline to do the code

review.

 allocate up to 1 hour each time to review 500 to 1000 lines of code: longer time

may not pay off due to the attention span limit of human brains

 directory paths and file names: are files in the intuitive paths or conform to our

convention? are the names readable?

o source codes, test input, documentation files are added into the right

directories

 clarify of the code: can somebody who did not write the code easily understand

what the code does?

o the reason/motivation for writing the code

o name convention: variable, function, class names should be intuitive

o source comments: sufficient explanations for what each function, class

does, what is the algorithm used, what is the paper/book chapter the

implementation is based on.

 no duplication or reinvent of the wheel: similar code already exists or can be

extended

 refactored: can part of the code be refactored to be reusable by others?

 no big functions: a function with hundreds line of code

 make check rules are associated with each new feature to ensure the new feature

will be tested and verified for expected behaviors

 No turning off/relaxing other make check rules to make developers' commits pass

Jenkins

 make a decision for the code review

o pass. The code does what it is supposed to do with clear documentation

and test cases. Merge the pull request and close the review.

o fail. Additional changes are needed, such as better naming, better places to

put files, more source comments, accompanying regression tests, etc.

Notify the developers the issues and ask for a new push with suggested

improvements.

o pass but with future tasks. The commits are accepted. But some additional

tasks are needed in the future to improve the code. They can be put into a

separate push later on.

 what to avoid

 Judging code by whether it's what the reviewer would have written

o Given a problem, there are usually a dozen different ways to solve it. And

given a solution, there's a million ways to render it as code.

 degenerating into nitpicks:

o perfectionism may hurt the progress. we should allow some non-critical

improvements to be done in the next version/commits.

 feel obligated to say something critical: it is perfectly fine to say "looks good,

pass"

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Coding_Standard

ROSE Compiler Framework Page 40

 delay in review: we should not rush it but we should keep in mind that somebody

is waiting for the review to be done to move forward

 criticism

Code reviews often degenerate into nitpicks. Brainstorming and design reviews to be

more productive.

 I think this makes sense, the early we catch the problems, the better. Design

happens earlier. Design should be reviewed. The same idea applies to requirement

analysis also. --Liao (discuss • contribs) 18:18, 22 June 2012 (UTC)

 references

 http://www.possibility.com/wiki/index.php?title=CodeReviews

 http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-

code-review/

 http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-

review

 http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review

 LLNL Internal URL: http://github.llnl.gov/

 Frequently Asked Questions (FAQ)

We collect a list of frequently asked questions about ROSE, mostly from the rose-public

mailing list link

 How to search rose-public mailinglist for previously

asked questions?

google.com supports search things within the scope of a URL. For example, if you have a

problem with a keyword MY PROBLEM, you can try to search the mailing list by using

the following keyword in google.com:

 "MY PROBLEM site:https://mailman.nersc.gov/pipermail/rose-public/"

 Compilation

 How to speedup compiling ROSE?

Question It takes hours to compile ROSE, how can I speed up this process?

Answer:

http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://www.possibility.com/wiki/index.php?title=CodeReviews
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://scientopia.org/blogs/goodmath/2011/07/06/things-everyone-should-do-code-review/
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/3730527/workflow-for-github-based-code-review
http://stackoverflow.com/questions/4262693/what-to-look-for-in-a-code-review
http://github.llnl.gov/
https://mailman.nersc.gov/pipermail/rose-public/
https://mailman.nersc.gov/pipermail/rose-public/

ROSE Compiler Framework Page 41

 if you have multi-core processors, try to use make -j4 (make by using four

processes).

 also try to only build librose.so under src/ by typing make -C src/ -j4

 Or only try to build the language support you are interested in during configure,

such as

o ../sourcetree/configure --enable-only-c # if you are only interested in

C/C++ support

o ../sourcetree/configure --enable-only-fortran # if you are only interested in

Fortran support

o ../sourcetree/configure --help # show all other options to enable only a few

languages.

 Can ROSE accept incomplete code?

https://mailman.nersc.gov/pipermail/rose-public/2011-July/001015.html

ROSE does not handle incomplete code. Though this might be possible in the future. It

would be language dependent and likely depend heavily on some of the language specific

tools that we use internally. This is however, not really a priority for our work. If you

want to for example demonstrate how some of the internal tools we are using or

alternative tools that we could use might handle incomplete code, this might be

interesting and we could discuss it.

For example, we are not presently using Clang, but if it handled incomplete code that

might be interesting for the future. I recall that some of the latest EDG work might handle

some incomplete code, and if that is true then that might be interesting as well. I have not

attempted to handle incomplete code with OFP, so I am not sure how well that could be

expected to work. Similarly, I don't know what the incomplete code handling capabilities

of ECJ Java support is either. If you know any of these questions we could discuss this

further.

I have some doubts about how much meaningful information can come from incomplete

code analysis and so that would worry me a bit. I expect it is very language dependent

and there would be likely some constraints on the incomplete code. So understanding the

subject better would be an additional requirement for me.

 Can ROSE analyze Linux Kernel sources?

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html

Question: I'm trying to analyze the Linux kernel. I was not sure of the size of the code-

base that can be handled by ROSE, and could not find references as to whether it has

been tried on the Linux kernel source. As of now I'm trying to run the identity translator

on the source, and would like to know if it can be done using ROSE, and if it has been

successfully tested before.

https://mailman.nersc.gov/pipermail/rose-public/2011-July/001015.html
https://mailman.nersc.gov/pipermail/rose-public/2011-April/000856.html

ROSE Compiler Framework Page 42

Short answer: Not for now

Long answer: We are using EDG 3.3 internally by default and this version of EDG does

not handle the GNU specific register modifiers used in the asm() statements of the Linux

Kernel code. There might be other problems, but that was at least the one that we noticed

in previous work on this some time ago. But we are working on upgrading the EDG

frontend to be a more recent version 4.4.

 Can ROSE compile C++ Boost library?

https://mailman.nersc.gov/pipermail/rose-public/2010-November/000544.html

not yet.

I know of a few cases where ROSE can't handle parts of Boost. In each case it is an EDG

problem where we are using an older version of EDG. We are trying to upgrade to a

newer version of EDG (4.x), but that version's use within ROSE does not include enough

C++ support, so it is not ready. The C support is internally tested, but we need more time

to work on this.

 AST

 How to find XYZ in AST?

The usually steps to retrieve information from AST are:

 prepare a simplest (preferrably 5-10 lines only), compilable sample code with the

code feature you want to find (e.g array[i][j] if you are curious about how to find

use of multi-dimensional arrays in AST), avoid including any headers (#include

file.h) to keep the code small.

o Please note: don't include any headers in the sample code. A header

(#include <stdio.h> for example) can bring in thousands of nodes into

AST.

 use dotGeneratorWholeASTGraph to generate a detailed AST dot graph of the

input code

 use zgrviewer-0.8.2's run.sh to visulize the dot graph

 visually/manually locate the information you want in the dot graph, understand

what to look and where to look

 use code (AST member functions, traversal, SageInteface functions, etc) to

retrieve the information.

 How does the AST merge work?

tests that demonstrate the AST Merge are in the directory:

 tests/CompileTests/mergeAST_tests

https://mailman.nersc.gov/pipermail/rose-public/2010-November/000544.html

ROSE Compiler Framework Page 43

(run "make check" to see hundreds of tests go by).

 How to filter out header files from AST traversals?

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html Question: I

want to exclude functions in #include files from my analysis/transformations during my

processing.

By default, AST traversal may visit all AST nodes, including the ones come from

headers.

So AST processing classes provide three functions :

 T traverse (SgNode * node, ..): traverse full AST , nodes which represent code

from include files

 T traverseInputFiles(SgProject* projectNode,..) traverse the subtree of AST

which represents the files specified on the command line

 T traverseWithinFile(SgNode* node,..): only the nodes which represent code of

the same file as the start node

 Should SgIfStmt::get_true_body() return SgBasicBlock?

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000930.html

Both true/false bodies were SgBasicBlock before.

Later, we decided to have more faithful representation of both blocked (with {...}) and

single-statement (without { ..}) bodies. So they are SgStatement (SgBasicBlock is a

subclass of SgStatement) now.

But it seems like the document has not been updated to be consistent with the change.

You have to check if the body is a block or a single statement in your code. Or you can

use the following function to ensure all bodies must be SgBasicBlock.

//A wrapper of all ensureBasicBlockAs*() above to ensure the parent of s is a scope

statement with list of statements as children, otherwise generate a SgBasicBlock in

between.

SgLocatedNode * SageInterface::ensureBasicBlockAsParent (SgStatement *s)

 How to handle #include "header.h", #if, #define etc. ?

It is called preprocessing info. within ROSE's AST. They are attached before, after, or

within a nearby AST node (only the one with source location information.)

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000144.html
https://mailman.nersc.gov/pipermail/rose-public/2011-April/000930.html

ROSE Compiler Framework Page 44

An example translator is provided to traverse the input code's AST and dump information

about the found preprocessing information,

exampleTranslators/defaultTranslator/preprocessingInfoDumper -c

main.cxx

Found an IR node with preprocessing Info attached:

(memory address: 0x2b7e1852c7d0 Sage type: SgFunctionDeclaration) in

file

/export/tmp.liao6/workspace/userSupport/main.cxx (line 3 column 1)

-------------PreprocessingInfo #0 ----------- :

classification = CpreprocessorIncludeDeclaration:

 String format = #include "all_headers.h"

relative position is = before

 SgClassDeclaration::get_definition() returns NULL?

If you look at the whole AST graph carefully, you can find defining and non-defining

declarations for the same class.

A symbol is usually associated with a non-defining declaration. A class definition is

associated with a defining declaration.

You may want to get the defining declaration from the non-defining declaration before

you try to grab the definition.

 Translation

 Can ROSE identityTranslator generate 100% identical output file?

https://mailman.nersc.gov/pipermail/rose-public/2011-January/000604.html

Questions: Rose identityTranslator performs some modifications, "automatically".

These modifications are:

 Expanding the assert macro.

 Adding extra brackets around constants of typedef types (e.g.

c=Typedef_Example(12); is translated in the output to c =

Typedef_Example((12));)

 Converting NULL to 0.

How can I avoid these modifications?

Answer: No.

https://mailman.nersc.gov/pipermail/rose-public/2011-January/000604.html

ROSE Compiler Framework Page 45

There is no easy way to avoid these changes currently. Some of them are introduced by

the cpp preprocessor. Others are introduced by the EDG front end ROSE uses. 100%

faithful source-to-source translation may require significant changes to preprocessing

directive handling and the EDG internals.

We have had some internal discussion to save raw token strings into AST and use them to

get faithful unparsed code. But this effort is still at its initial stage as far as I know.

 How to build a tool inserting function calls?

https://mailman.nersc.gov/pipermail/rose-public/2010-July/000319.html

Question: I am trying to build a tool which insert one or more function calls whenever in

the source code there is a function belonging to a certain group (e.g. all functions

beginning with foo_*). During the ast traversal, how can I find the right place, i.e., there

is a function in ROSE that searches for a string pattern or something similar?

Answers:

 In Chapter 28 AST Construction of the ROSE tutorial, there are examples to

instrument function calls into the AST using traversals or a queryTree. I would

approach this by checking the node for the specific SgFunctionDefinition (or

whatever you need) and then check the name of the node to find its location.

 You can

o use the AST query mechanism to find all functions and store them in a

container. e.g Rose_STL_Container<SgNode*> nodeList =

NodeQuery::querySubTree(root_node,V_Sg????);

o Then iterate the container to check each function to see if the function

name matches what you want.

o use SageBuilder namespace's buildFunctionCallStmt() to create a function

call statement.

o use SageInterface namespace's insertStatement () to do the insertion.

 How to copy/clone a function?

https://mailman.nersc.gov/pipermail/rose-public/2011-April/000919.html

We need to be more specific about the function you want to copy. Is it just a prototype

function declaration (non-defining declaration in ROSE's term) or a function with a

definition (defining declaration in ROSE's term)?

 Copying a non-defining function declaration can be achieved by using the

following function instead:

// Build a prototype for an existing function declaration (defining or

nondefining is fine).

https://mailman.nersc.gov/pipermail/rose-public/2010-July/000319.html
https://mailman.nersc.gov/pipermail/rose-public/2011-April/000919.html

ROSE Compiler Framework Page 46

SgFunctionDeclaration* SageBuilder::buildNondefiningFunctionDeclaration

(const SgFunctionDeclaration *funcdecl, SgScopeStatement *scope=NULL)

Copying a defining function declaration is semantically a problem since it introduces

redefinition of the same function. It is at least a hack to first introduce something wrong

and later correct it. Here is an example translator to do the hack (copy a defining

function, rename it, fix its symbol):

#include <rose.h>

#include <stdio.h>

using namespace SageInterface;

int main(int argc, char** argv)

{

 SgProject* project = frontend(argc, argv);

 AstTests::runAllTests(project);

// Find a defining function named "bar" under project

 SgFunctionDeclaration* func=

findDeclarationStatement<SgFunctionDeclaration> (project, "bar", NULL,

true);

 ROSE_ASSERT (func != NULL);

// Make a copy and set it to a new name

 SgFunctionDeclaration* func_copy =

isSgFunctionDeclaration(copyStatement (func));

 func_copy->set_name("bar_copy");

// Insert it to a scope

 SgGlobal * glb = getFirstGlobalScope(project);

 appendStatement (func_copy,glb);

#if 1 // fix up the missing symbol, this should be optional now since

SageInterface::appendStatement() should handle it transparently.

 SgFunctionSymbol *func_symbol = glb->lookup_function_symbol

("bar_copy", func_copy->get_type());

 if (func_symbol == NULL);

 {

 func_symbol = new SgFunctionSymbol (func_copy);

 glb ->insert_symbol("bar_copy", func_symbol);

 }

#endif

 AstTests::runAllTests(project);

 backend(project);

 return 0;

}

 Can I transform code within a header file?

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html

https://mailman.nersc.gov/pipermail/rose-public/2011-May/000971.html

ROSE Compiler Framework Page 47

No. ROSE does not unparse AST from headers right now. A summer project tried to do

this. But it did not finish.

https://mailman.nersc.gov/pipermail/rose-public/2010-August/000344.html

I guess ROSE does not support writing out changed headers for safety/practical reasons.

A changed header has to be saved to another file since writing to the original header is

very dangerous (imaging debugging a header translator which corrupts input headers).

Then all other files/headers using the changed header have to be updated to use the new

header file.

Also all files involved have to be writable by user's translators.

As a result, the current unparser skips subtrees of AST from headers by checking file

flags (compiler_generated and/or output_in_code_generation etc.) stored in Sg_File_Info

objects.

 How to work with formal and actual arguments of functions?

https://mailman.nersc.gov/pipermail/rose-public/2011-June/001008.html

 //Get the actual arguments

 SgExprListExp* actualArguments = NULL;

 if (isSgFunctionCallExp(callSite))

 actualArguments = isSgFunctionCallExp(callSite)->get_args();

 else if (isSgConstructorInitializer(callSite))

 actualArguments = isSgConstructorInitializer(callSite)-

>get_args();

 ROSE_ASSERT(actualArguments != NULL);

 const SgExpressionPtrList& actualArgList =

actualArguments->get_expressions();

 //Get the formal arguments.

 SgInitializedNamePtrList formalArgList;

 if (calleeDef != NULL)

 formalArgList = calleeDef->get_declaration()->get_args();

 //The number of actual arguments can be less than the number of

formal arguments (with implicit arguments) or greater

 //than the number of formal arguments (with varargs)

 Daily work

 git clone returns error: SSL certificate problem?

Symptom:

git clone https://github.com/rose-compiler/rose.git

https://mailman.nersc.gov/pipermail/rose-public/2010-August/000344.html
https://mailman.nersc.gov/pipermail/rose-public/2011-June/001008.html

ROSE Compiler Framework Page 48

Cloning into rose...

error: SSL certificate problem, verify that the CA cert is OK. Details:

error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate

verify failed while accessing https://github.com/rose-

compiler/rose.git/info/refs

fatal: HTTP request failed

The reason may be that you are behind a firewall which tweaks the original SSL

certification.

Solutions: Tell cURL to not check for SSL certificates:

#Solution 1: Environment variable (temporary)

 $ env GIT_SSL_NO_VERIFY=true git pull

Solution 2: git-config (permanent)

 # set local configuration

 $ git config --local http.sslVerify false

Solution 2: set global configuration

 $ git config --global http.sslVerify false

 What is the best IDE for ROSE developers?

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000115.html

There may not be a widely recognized best integrated development environment. But

developers have reported that they are using

 vim

 emacs

 KDevelop

 Source Navigator

 Eclipse

 Netbeans

The thing is that ROSE is huge and has some ridiculously large generated source file

(CxxGrammar.h and CxxGrammar.C are generated in the build tree for example). So

many code browsers may have trouble in handling ROSE.

 Portability

 What is the status for supporting Windows?

https://mailman.nersc.gov/pipermail/rose-public/2011-December/001349.html

https://mailman.nersc.gov/pipermail/rose-public/2010-April/000115.html
https://mailman.nersc.gov/pipermail/rose-public/2011-December/001349.html

ROSE Compiler Framework Page 49

We have not finished the Windows work yet. IT is on our list of things to do. It was

started and ROSE internally compiles using MS Visual Studio (using project files

generated from the Cmake build that we maintain and test within our release process for

ROSE) but does not pass our tests. So it is not ready. The distribution of the EDG

binaries for Windows is another step that would come after that. We don't know at

present when this will be done, it is important, but not a high priority for our DOE

specific work, but important for other work. The effort required is something that we

could discuss. If you want to call me that would be the best way to proceed. Send me

email off of the main list and we can set that up.

https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html

Under Windows ROSE uses CMake. This is a project that is currently under

development. As of November 2010 we are able to compile and link the src directory.

We are also able to run example programs that link against librose and execute the

frontend and backend. {\em However, this is an internal capability and not available

externally yet since we don't distribute the Windows generated EDG binaries that would

be required. Also the current support for Windows is still incomplete, ROSE does not yet

pass its internal tests under Windows.}

 How-tos

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer.

Please create a new wikibook page for each how-to topic. Each how-to wiki page should

NOT contain any level one (=) or level two(==) heading so it can be included at the

correct levels in the print version of this wikibook.

 How to write a How-to

Quick, short, and focused tutorials about how to do common tasks as a ROSE developer.

Please create a new wikibook page for each how-to topic. Each how-to wiki page should

NOT contain any level one (=) or level two(==) heading so it can be included at the

correct levels in the print version of this wikibook.

 Create a new page

 optional step: create an account and log in

 Goto: http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos

 Click on Edit tab on the right top of the How-tos page

 Copy and paste one existing How-to to the end of the page, for example:

==[[ROSE Compiler Framework/How to write a How-to|How to write a How-

to]]==

{{:ROSE Compiler Framework/How to write a How-to}}

https://mailman.nersc.gov/pipermail/rose-public/2011-March/000798.html
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_write_a_How-to
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How-tos

ROSE Compiler Framework Page 50

 rename three places of the pasted text with the desired page name, for example

==[[ROSE Compiler Framework/How to do XYZ|How to do XYZ]]==

{{:ROSE Compiler Framework/How to do XYZ}}

 click save page

 You will see red text trying to link to the not yet existing How to do XYZ page

 click any of the red text, it will bring you to an editing window to add content of

your new how-to page

 you can now add new content and save it.

 Rules of the content

 Only level three headings and higher are allowed in a how-to page. This is

necessary for the how-to page to be correctly included into the final one-page

print version of this wikibook. Sorry about this restriction.

o Again, please don't use level one (=) or level two (==) headings in a how-

to page!

 Keep each how-to short and focused. Readers are expected to only spend 30-

minutes or much less to quickly learn how to do something using ROSE.

 After you created a new how-to page and saved your contributions. Please go to

the print version to make sure it shows up correctly.

o Here is the link:

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version

o Having new content show up in the print version will make sure it is really

visible and consistent with the rest of the book.

 please specify the how-to topic is the current practice or the proposed new ways

of doing things. So we can have clear guideline for code review for what is

mandatory and what is optional.

 How to incrementally work on a project

Developing a big, sophisticated project entails many challenges. To mitigate some of

these challenges, we have adopted several best practices: incremental development, code

review, and continuous integration.

 Incremental Development

Developing new functionality in small steps, where the resulting code at each step is a

useful improvement over the previous state. Contrast to developing an entire feature fully

elaborated, with no points along the way at which it's externally usable.

 Code Review

See Code Review in ROSE.

file:///C:/Users/Acer/Downloads/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_incrementally_work_on_a_project
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Code_Review

ROSE Compiler Framework Page 51

 Continuous Integration

Incorporating changes from work in progress into a shared mainline as frequently as

possible, in order to identify incompatible changes and introduced bugs as early as

possible. The integrated changes need not be particular increments of functionality as far

as the rest of the system is concerned.

In other words, incremental development is about making one's work valuable as early as

possible, and potentially about getting a better sense of what direction it should take,

while continuous integration is about reducing the risks that result from codebase

divergence as multiple people do development in parallel.

The question of whether to conditionalize new code is an interesting one. By doing so,

one narrows the scope of continuous integration to just checking for surface

incompatibilities in merging the changed code. Without actually running the new code

against the existing tests, the early detection of introduced bugs is lost. In exchange,

multiple people working in the same part of the codebase become less likely to step on

each other's toes, because the relevant code changes are distributed more rapidly.

 Divide and Conquer

Here are some tips on how to divide up a big project into smaller, bite-sized pieces so

each piece can be incrementally developed, code reviewed, and integrated.

 Input: define different sets of test inputs based on complexity and difficulty.

Tackle simpler sets first.

 Output: define intermediate results leading to the final output. Often, results A

and B are needed to generate C. So the project can have multiple stages, based on

the intermediate results.

 Algorithm: complex compiler algorithms are often just enhanced versions of

more fundamental algorithms. Implement the fundamental algorithms first to gain

insight and experience. Then, afterward, you can implement the full-blown

versions.

 Language: for projects dealing with multiple languages, focus on one language at

a time.

 Platform: limit the scope of supported platforms: Linux, Ubuntu, OS X (TODO:

add reference to ROSE supported platforms)

 Performance: Start with a basic, working implementation first. Then try to

optimize its performance, efficiency.

 Scope: your translator could first focus on working at a function scope, then grow

to handle an entire source file, or even multiple files, at the same time.

 Skeleton then meat: a project should be created with the major components

defined first. Each component can be enriched separately later on.

 Annotations (manual vs. automated): Performing one compiler task often

requires results from many other tasks being developed. Defining source code

annotations as the interface between two tasks can decouple these dependencies

ROSE Compiler Framework Page 52

in a clean manner. The annotations can be first manually inserted. Later the

annotations can be automatically generated by the finished analysis.

 Optional vs. Default: introducing a flag to turn on/off your feature. Make it as a

default option when it matures.

 How to set up the makefile for a translator

In this How-to, you will create a makefile to compile and test your own custom ROSE

translator.

You may want to first look at "How-to install ROSE": ROSE Compiler

Framework/Installation.

 Environment variables

You must have the proper environment variable set so you translator can find the

librose.so during execution.

export

LD_LIBRARY_PATH=${ROSE_INSTALL}/lib:${BOOST_INSTALL}/lib:$LD_LIBRARY_PA

TH

 Translator Code

Here is a simplest ROSE translator.

// ROSE translator example: identity translator.

//

// No AST manipulations, just a simple translation:

//

// input_code > ROSE AST > output_code

#include <rose.h>

int main (int argc, char** argv)

{

 // Build the AST used by ROSE

 SgProject* project = frontend(argc, argv);

 // Run internal consistency tests on AST

 AstTests::runAllTests(project);

 // Insert your own manipulations of the AST here...

 // Generate source code from AST and invoke your

 // desired backend compiler

 return backend(project);

}

 Makefile

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_set_up_the_makefile_for_a_translator
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Installation

ROSE Compiler Framework Page 53

Here is a sample makefile. Please make sure replacing some leading spaces of make rules

with leading Tabs if you copy & paste this sample.

A sample Makefile to build a ROSE tool.

Important: remember that Makefile recipes must contain tabs:

<target>: [<dependency >]*

[<TAB> <command> <endl>]+

ROSE installation contains

* libraries, e.g. "librose.la"

* headers, e.g. "rose.h"

ROSE_INSTALL=/path/to/rose/installation

ROSE uses the BOOST C++ libraries

BOOST_INSTALL=/path/to/boost/installation

Your translator

TRANSLATOR=my_translator

TRANSLATOR_SOURCE=$(TRANSLATOR).cpp

Input testcode for your translator

TESTCODE=input_code_ifs.cpp

#---

Makefile Targets

#---

all: $(TRANSLATOR)

compile the translator and generate an executable

-g is recommended to be used by default to enable debugging your code

$(TRANSLATOR): $(TRANSLATOR_SOURCE)

 g++ -g $(TRANSLATOR_SOURCE) -I$(BOOST_INSTALL)/include/boost -

I$(ROSE_INSTALL)/include -L$(ROSE_INSTALL)/lib -lrose

test the translator

check: $(TRANSLATOR)

 ./$(TRANSLATOR) -c -I. -I$(ROSE_INSTALL)/include $(TESTCODE)

clean:

 rm -rf $(TRANSLATOR) *.o rose_* *.dot

 How to debug a translator

It is rare that your translator will just work after your finish up coding. Using gdb to

debug your code is indispensable to make sure your code works as expected. This page

shows examples of how to debug your translator.

 A translator not built by ROSE's build system

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_debug_a_translator

ROSE Compiler Framework Page 54

If the translator is built using a makefile using libtool. The debugging steps of your

translator are just classic steps to use gdb.

 make sure your translator is compiled with -g option so there is debugging

information in your object codes

A typical debugging session:

 set a break point

 examine the execution path to make sure the program goes the path your expect

 examine the data to check the values are what you expect

how to print out information about a AST node

#-------------------------------------

(gdb) print n

$1 = (SgNode *) 0xb7f12008

(gdb) print n->sage_class_name()

$2 = 0x578b3af "SgFile"

(gdb) print n->get_parent()

$7 = (SgNode *) 0x95e75b8

#-------------------------------------

When displaying a pointer to an object, identify the actual (derived)

type of the object

rather than the declared type, using the virtual function table.

#-------------------------------------

(gdb) set print object on

(gdb) print astNode

$6 = (SgPragmaDeclaration *) 0xb7c68008

unparse the AST from a node

#-------------------------------------

(gdb) print n->unparseToString()

print out Sg_File_Info

#-------------------------------------

(gdb) print n->get_file_info()->display()

 A translator shipped with ROSE

ROSE turns on debugging support by default so the translators shipped with ROSE

should already have debugging information available.

However, ROSE uses libtool so the executables in the build tree are not real. You have

two choices:

 Find the real executable in the .lib directory then debug the real executables there

 Use libtool command line as follows:

ROSE Compiler Framework Page 55

libtool --mode=execute gdb --args ./built_in_translator file1.c

 How to add a new project directory

Many work within ROSE start as a project. They will be moved/refactored into ROSE/src

later on once they mature.

Here we should how to add a new project into directory.

 A basic example

Many projects start as a translator, analyzer or optimizer, which takes into input code and

generate output.

A basic sample commit which adds a new project directory into ROSE:

https://github.com/rose-

compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a

Please look through the diffs so you know what files to be added and changed for a new

project.

Essentially, a basic project should contain

 a README file explaining what this project is about, algorithm, design,

implementation, etc

 a translator acts as a driver of your project

 additional source files and headers as needed to contain the meat of your project

 test input files

 Makefile.am to

o compile and generator your translator

o contain make check rule so your translator will be invoked to process

your input files and generate expected results

To connect your project into ROSE's build system, you also need to

 Add one more subdir entry into projects/Makefile.am for your project directory

 Add one line into config/support-rose.m4 for EACH new Makefile (generated

from each Makefile.am) used by your projects.

 How to fix a bug

If you are trying to fix a bug (your own or a bug assigned to you to fix). Here are high

level steps to do the work

 Reproduce the bug

http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_add_a_new_project_directory
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a
https://github.com/rose-compiler/rose/commit/edf68927596960d96bb773efa25af5e090168f4a
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/How_to_fix_a_bug

ROSE Compiler Framework Page 56

You can only fix a bug when you can reproduce it. This step may be more difficult than it

sounds. In order to reproduce a bug, you have to

 find proper the input file

 find a proper translator: a translator shipped with ROSE is easy to find. But be

patient and sincere when you ask for a translator written by users.

 find a similar/identical software and hardware environment: a bug may only

appear on a specific platform when a specific software configuration is used

Possible results for this step:

 You can reproduce the bug reliably. Bingo! Go to the next step.

 You cannot reproduce the bug. Either the bug report is invalid or you have to keep

trying.

 You can reproduce the bug once a while. Oops. This is kind of difficult situation.

 Find causes of the bug

Once you can reproduce the bug. You have to identify the root cause of the bug.

Common steps involved

 simplify the input code as much as possible: It can be very hard to debug a

problem with a huge input. Always try to prepare the simplest possible code

which can just trigger the bug.

o Often, you have to use a binary search approach to narrow down the input

code: only use half of the input at a time to try. Recursively cut the input

file into two parts until no further cut is possible while you can still trigger

the bug.

 forward tracking: for the translator, it usually takes input and generate

intermediate results before the final output is generated. Using a debugger to set

break points at each critical stages of the code to check if the intermediate results

are what you expect.

 backwards tracking: similar to the previous techniques. But you just back tracking

the problem.

 Fix the bug

Any bug fix commit should contain

 a regression test: so make check rules can make sure the bug is actually fixed and

no further code changes will make the bug relapse.

 Lessons Learned

ROSE Compiler Framework Page 57

Here we try to collect things we usually try to avoid:

 Formating/Indending other people's code

Lesson:

 A developer tried to understand a staff member's source code. But he found that

the code's indentation was not right for him. So he re-formatted the source files

and committed the changes. Later, the staff member found that his codes were

changed too much and he could not read the codes anymore.

Solution:

 Please don't reformat codes you do not own or will maintain.

 Using branches of a same repository for different tasks

Lesson:

 A developer used different branches of the same git repository to do different

tasks: fixing bugs, adding a new feature, and documenting something. Later on he

found that he could not commit and push the work for one task since the changes

for other tasks are not ready.

Solution:

 using separated git repositories for different tasks. So the status of one task won't

interfere with the progress of other tasks.

 Testing

ROSE uses Jenkins to implement a contiguous integration software development process.

It leverages a range of software packages to test its correctness, robustness, and

performance. The software used by the ROSE's Jenkins include:

 SPEC CPU 2006 benchmark: a subset is supported for now

 SPEC OMP benchmark: a subset is supported for now

 NAS parallel benchmark: developed by NASA Ames Research Center. Both C

(customize version) and OpenMP versions are used

 Plum Hall C and C++ Validation Test Suites: a subset is supported for now

 Modena Test Suite

1. Clone the Modena test suite repository:

http://jenkins-ci.org/
http://en.wikipedia.org/wiki/NAS_Parallel_Benchmarks

ROSE Compiler Framework Page 58

 $ git clone ssh://rose-dev@rose-git/modena

2. Autotools setup

 $ cd modena

 $./build.sh

 + libtoolize --force --copy --ltdl --automake

 + aclocal -I ./acmacros -I ./acmacros/ac-archive -I

/usr/share/aclocal

 + autoconf

 + automake -a -c

 configure.ac:4: installing `./install-sh'

 configure.ac:4: installing `./missing'

3. Environment bootstrap

 $ source /nfs/apps/python/latest/setup.sh

4. Build and test!

 $ mkdir buildTree

 $ cd buildTree

 $../configure \

 --with-

sqlalchemy=${HOME}/opt/python/sqlalchemy/0.7.5/lib64/python2.4/site-

packages \

 --with-target-java-interpreter=java \

 --with-target-java-compiler=testTranslator \

 --with-target-java-compiler-flags="-ecj:1.6" \

 --with-host-java-compiler-flags="-source 1.6"

 Who is using ROSE

We are aware of the following ROSE users (people who write their own ROSE-based

tools). They are the reason of the ROSE's existence. Feel free to add your name if you are

using ROSE.

 Universities

 University of California, San Diego, CUDA code generator link

 University of Utah, compiler-based parameterized code transformation for

autotuning

 University of Oregon, performance tools

 University of Wyoming, OpenMP error checking

 DOE national laboratories

 Argonne National Laboratory, performance modeling

http://ege.ucsd.edu/dokuwiki-page/doku.php?id=didem:projects:mint

ROSE Compiler Framework Page 59

 TODO List

What is missing (so you can help if you want)

 How to backup/mirror this wikibook?

Just in case this website is down, how to download a backup of this wiki book?

How to set up a mirror wiki website containing the wikibook of ROSE?

 Maintain the print version

It is possible that new chapters are added but they are not reflected in the one-page print

version. So periodical synchronization is needed by including more chapters or re-

arranging their order in the one-page print version.

Observations:

 A print version is similar to a source file with included contents, each included

chapter will have a first level of heading

 Because the first level heading (=) is used by the print version page to include all

chapters, all included pages/chapters should NOT contain any first level heading.

With the basic understanding of how this work, you can now edit the print version's wiki

page:

 Print version

More at: http://en.wikibooks.org/wiki/Help:Print_versions

 Maintain the better pdf file

The pdf version automatically generated from the print version page is rudimentary. It

has no table of content and pagination etc.

So we used a manual process to generate better pdf file. We need to occasionally repeat

this process to have a up-to-date and better pdf file.

Here are the manual steps:

 Use your web browser to open and save the print version to your own computer as

"web page complete"

 use the HTML-compatible word processor of your choice to open the html file,

convert html to a format the word processor, and add paginate the book.

http://en.wikibooks.org/wiki/Help:Print_versions

ROSE Compiler Framework Page 60

o In Microsoft Word, this can done by

 opening the saved HTML file

 saving it to a word file

 adding table of content by selecting Insert > Field > Index and

Tables > TOC or Preferences-> Table of contents for Word 2012

or later.

 adding page numbers to the footer

 save it to a pdf file with a name like

ROSE_Compiler_Framework.pdf

 upload to wikibooks

To add a link to your wikibook page, insert

{{PDF version|pdf file name without .pdf|size kb, number pages|file

description}}

For example

{{PDF version|ROSE_Compiler_Framework|840 kb, 48

pages|ROSE_Compiler_Framework}}

More background about pdf verions: at: http://en.wikibooks.org/wiki/Help:Print_versions

 Sandbox

Some common tricks to write things on wikibooks/wikipedia (both are using the

mediawiki software).

 How to create a new page

Usually you have to start a new page from an existing wikipage.

Go to the wiki page you want to have a link to the new page you want to create

 click the edit tab the existing page

 at the place you want to have a link to the new page, use
 [[ROSE_Compiler_Framework/name of the page]]

.

 If there is already a page with the desired name. It will become a link to the page.

 If not, the link is red so you can click the red link to enter editing model to add

content to the page.

Please link the new page to the print version of this wikibook so it can be visible in the

print out.

http://en.wikibooks.org/wiki/Help:Print_versions

ROSE Compiler Framework Page 61

 To edit the print version, go to

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_ve

rsion&action=edit

 How to do XYZ in wiki?

The best way is to goto en.wikipedia.com and find a page with the output you want. Then

pretend to edit the page (by clicking edit) to see the source used to generate the output.

For example, you want to know how C++ syntax highlighting is obtained in wikibook.

Go to en.wikipedia.com and find the page for C++. There must be sample code snippet.

Then you pretend to edit it to see the source:

http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

You will see the source code generating the syntax highlighting:

<source lang="cpp">

include <iostream>

int main()

{

 std::cout << "Hello, world!\n";

}

</source>

 Syntax highlighting

Copied from

http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

<source lang="cpp">

include <iostream>

int main()

{

 std::cout << "Hello, world!\n";

}

</source>

Can generate the following highlighted code:

include <iostream>

int main()

{

 std::cout << "Hello, world!\n";

http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6
http://en.wikipedia.org/w/index.php?title=C%2B%2B&action=edit§ion=6

ROSE Compiler Framework Page 62

}

 Math formula

You can pretend to edit this section to see how math formula are written.

More resources are at

 http://en.wikipedia.org/wiki/Help:Formula

 http://www.mediawiki.org/wiki/Manual:Math

Retrieved from

"http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&

oldid=2373918"

Category:

 ROSE Compiler Framework

What do you think of this page? Reliability:
(unsure)

Completeness:
(unsure)

Neutrality:
(unsure)

Presentation:
(unsure) Submit

Re-review this revision

http://en.wikipedia.org/wiki/Help:Formula
http://www.mediawiki.org/wiki/Manual:Math
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2373918
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2373918
http://en.wikibooks.org/wiki/Special:Categories
http://en.wikibooks.org/wiki/Category:ROSE_Compiler_Framework

ROSE Compiler Framework Page 63

Quality: poor/unrated minimal average good

Comment: Accept revision Unaccept revision

Personal tools

 Liao

 My discussion

 My preferences

 My watchlist

 My contributions

 Log out

Namespaces

 Book

 Discussion

Variants

Views

 Read

 Latest draft

 Edit

 View history

 Unwatch

Actions

 Move

Search

Navigation

 Main Page

 Help

 Browse

 Cookbook

 Wikijunior

 Featured books

 Recent changes

 Donations

http://en.wikibooks.org/wiki/User:Liao
http://en.wikibooks.org/wiki/User_talk:Liao
http://en.wikibooks.org/wiki/Special:Preferences
http://en.wikibooks.org/wiki/Special:Watchlist
http://en.wikibooks.org/wiki/Special:Contributions/Liao
http://en.wikibooks.org/w/index.php?title=Special:UserLogout&returnto=ROSE+Compiler+Framework%2FPrint+version
file:///C:/Users/Acer/Downloads/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world_files/ROSE%20Compiler%20Framework%20Print%20version%20-%20Wikibooks,%20open%20books%20for%20an%20open%20world.htm
http://en.wikibooks.org/w/index.php?title=Talk:ROSE_Compiler_Framework/Print_version&action=edit&redlink=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=1
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&stable=0&redirect=no
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=edit
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=history
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&action=unwatch&token=6eedd80031a73c27963512de1aedb2a9%2B%5C
http://en.wikibooks.org/wiki/Special:MovePage/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Main_Page
http://en.wikibooks.org/wiki/Help:Contents
http://en.wikibooks.org/wiki/Wikibooks:Card_Catalog_Office
http://en.wikibooks.org/wiki/Cookbook:Table_of_Contents
http://en.wikibooks.org/wiki/Wikijunior
http://en.wikibooks.org/wiki/Wikibooks:Featured_books
http://en.wikibooks.org/wiki/Special:RecentChanges
http://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=20120521SB001&uselang=en

ROSE Compiler Framework Page 64

 Random book

Community

 Reading room

 Community portal

 Bulletin Board

 Help out!

 Policies and guidelines

 Contact us

Toolbox

 What links here

 Related changes

 Upload file

 Special pages

 Permanent link

 Cite this page

 Page rating

Sister projects

 Wikipedia

 Wikiversity

 Wiktionary

 Wikiquote

 Wikisource

 Wikinews

 Commons

Print/export

 Create a collection

 Download as PDF

 Printable version

 This page was last modified on 6 July 2012, at 13:56.

 Text is available under the Creative Commons Attribution-ShareAlike License;

additional terms may apply. See Terms of Use for details.

 Privacy policy

 About Wikibooks

 Disclaimers

 Mobile view

http://en.wikibooks.org/wiki/Special:Randomrootpage
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Wikibooks:Reading_room
http://en.wikibooks.org/wiki/Wikibooks:Community_Portal
http://en.wikibooks.org/wiki/Wikibooks:Reading_room/Bulletin_Board
http://en.wikibooks.org/wiki/Wikibooks:Maintenance
http://en.wikibooks.org/wiki/Wikibooks:Policies_and_guidelines
http://en.wikibooks.org/wiki/Wikibooks:Contact_us
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:WhatLinksHere/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/Special:RecentChangesLinked/ROSE_Compiler_Framework/Print_version
http://commons.wikimedia.org/wiki/Commons:Upload
http://en.wikibooks.org/wiki/Special:SpecialPages
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&oldid=2373918
http://en.wikibooks.org/w/index.php?title=Special:Cite&page=ROSE_Compiler_Framework/Print_version&id=2373918
http://en.wikibooks.org/w/index.php?title=Special:RatingHistory&target=ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikipedia.org/wiki/Main_Page
http://en.wikiversity.org/wiki/Wikiversity:Main_Page
http://en.wiktionary.org/wiki/Wiktionary:Main_Page
http://en.wikiquote.org/wiki/Main_Page
http://en.wikisource.org/wiki/Main_Page
http://en.wikinews.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Print_version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=book_creator&referer=ROSE+Compiler+Framework%2FPrint+version
http://en.wikibooks.org/w/index.php?title=Special:Book&bookcmd=render_article&arttitle=ROSE+Compiler+Framework%2FPrint+version&oldid=2373918&writer=rl
http://en.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&printable=yes
http://en.wikibooks.org/wiki/Wikibooks:Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://wikimediafoundation.org/wiki/Terms_of_Use
http://wikimediafoundation.org/wiki/Privacy_policy
http://en.wikibooks.org/wiki/Wikibooks:Welcome
http://en.wikibooks.org/wiki/Wikibooks:General_disclaimer
http://en.m.wikibooks.org/w/index.php?title=ROSE_Compiler_Framework/Print_version&mobileaction=toggle_view_mobile

ROSE Compiler Framework Page 65

http://wikimediafoundation.org/
http://www.mediawiki.org/

